JPH0334187B2 - - Google Patents

Info

Publication number
JPH0334187B2
JPH0334187B2 JP7397384A JP7397384A JPH0334187B2 JP H0334187 B2 JPH0334187 B2 JP H0334187B2 JP 7397384 A JP7397384 A JP 7397384A JP 7397384 A JP7397384 A JP 7397384A JP H0334187 B2 JPH0334187 B2 JP H0334187B2
Authority
JP
Japan
Prior art keywords
mercury
tube
amalgam
lamp
arc tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7397384A
Other languages
Japanese (ja)
Other versions
JPS60218758A (en
Inventor
Hidenori Ito
Akihiro Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP7397384A priority Critical patent/JPS60218758A/en
Publication of JPS60218758A publication Critical patent/JPS60218758A/en
Publication of JPH0334187B2 publication Critical patent/JPH0334187B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel
    • H01J61/28Means for producing, introducing, or replenishing gas or vapour during operation of the lamp

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は管内水銀蒸気圧をアマルガムで制御す
るようにした低圧水銀蒸気放電灯に関する。 〔発明の技術的背景とその問題点〕 一般に、けい光ランプに代表される低圧水銀蒸
気放電灯を、例えば密閉形の照明器具内に収容し
て点灯させると、周囲温度の上昇に伴つて水銀蒸
気圧が最適値を上回り、光束が低下する等の問題
が生じる。このようにけい光ランプを温度的に厳
しい条件下で点灯させる場合には、けい光ランプ
の水銀蒸気圧を、純水銀よりも蒸気圧の低いアマ
ルガムを用いて適正な範囲内に制御する方法が有
効とされている。 ところが、この方法はアマルガムの蒸気圧が純
水銀の蒸気圧よりも低いという特性を利用して水
銀蒸気圧の制御を行なつているため、始動時のよ
うにアマルガムの温度が低く、かつまたけい光ラ
ンプの周囲温度が低い場合には、アマルガムの温
度がその作用に最も望ましい温度にまでなかなか
到達せず、水銀を放出する速度が緩慢となつてし
まう。したがつて、光束の立上がりが悪く、定常
状態に安定するまでに時間を要する不具合が生じ
る。 このようなことから、従来例えば特公昭50−
30387号公報に示されている如く、定常点灯時で
の水銀蒸気圧を制御する主アマルガムの他に、消
灯時に管内の浮遊水銀を吸着し、かつ始動時を含
む点灯初期に上記吸着した水銀を放出する少量の
補助アマルガムを電極近傍の高温部に設置し、光
束の立ち上がり特性を改善したものが知られてい
る。ところで、従来この補助アマルガムとして
は、消灯時に浮遊水銀の吸着を効率良く行なえる
ように、ステンレスやニツケル等の金属板からな
る基体の表面に、アマルガム形成金属として代表
的なインジウムを薄膜状に被着させたものが多く
用いられている。そして、このようなインジウム
被膜の膜厚は、光束の立ち上がり特性に大きな影
響を及ぼし、この立ち上がり特性が最高となるよ
うなインジウム被膜の膜厚領域が存在すること
が、本発明者らの研究より明らかとなつてきた。 一方、通常一般的なけい光ランプの製造技術で
は、発光管の両端開口部に、電極はもちろんのこ
と、上記主アマルガムや補助アマルガムの組み付
けが完了したマウントを封着し、次にこの発光管
を炉内で加熱して電極や発光管に含まれている不
純物の排出を行いつつ発光管内の排気を行うの
で、この排気時には、上記補助アマルガムの設置
部の温度は優に400℃を超えてしまう。この場合、
上記補助アマルガムに用いられるインジウムは低
融点で熱に対して弱いことから、その基体として
ステンレスやニツケルを用いた場合に、上述の如
き400℃以上の高温領域では、後で判明したので
あるが、インジウムが基体金属の表面から固体中
に溶け込んでしまい、このため膜厚が薄くなつた
り、極端な場合が基体の表面から失なわれてしま
う虞れのあることが欠点として見い出された。 すなわち、このインジウム被膜は、上述のよう
に予め光束の立ち上がり特性が最高となるような
膜厚で以つて被着されていることから、この被膜
の膜厚がランプ製造工程中に減少してしまうと、
ランプ完成後において所望の立ち上がり特性が得
られないばかりか、立ち上がり特性が著しく不安
定となる不具合があつた。 また、同様にランプ点灯中においては補助アマ
ルガムは電極からの熱影響を受けて少なくとも
100℃以上に昇温されるので、時間の経過ととも
に表面のインジウム被膜が基体内に溶け込む現象
が見出され、ランプ寿命中でも補助アマルガム本
来の機能が徐々に低下することが明らかとなつ
た。 〔発明の目的〕 本発明はこのような事情にもとづいてなされた
もので、インジウム被膜と基体との間に合金反応
がほとんど発生せず、所望の立ち上がり特性が得
られるとともに、この立ち上がり特性を長期に亘
つて良好に持続させることができる低圧水銀蒸気
放電灯の提供を目的とする。 〔発明の概要〕 すなわち、本発明は上記目的を達成するため、
インジウムの被膜が被着される基体を、タングス
テン、モリブデンあるいはタンタル等の高融点金
属材料から形成したことを特徴とする。 〔発明の実施例〕 以下本発明の一実施例を、ボール電球形の照明
装置に適用した図面にもとづいて説明する。 図中1は合成樹脂製のカバーであり、このカバ
ー1の一端頂部には口金2が取着されている。カ
バー1の他端開口部には略球状のグローブ3が被
冠されており、これらカバー1とグローブ3とに
よつてボール形の白熱電球に近似された外囲器4
が構成されている。 外囲器4内には低圧水銀蒸気放電灯として代表
的なけい光ランプ5と、このけい光ランプ5の始
動素子としての点灯管6および放電安定素子とし
てのチヨークコイル形安定器7が一体的に収容さ
れている。けい光ランプ5の発光管8は、直管状
をなしたガラスバルブを、その両端部9,9間の
中央で略U字状に曲成するとともに、この曲成部
10と両端部9,9との間を、上記U字形を含む
平面と略直交する方向に略U字状に曲成したもの
で、両端部9,9と曲成部10とが互に隣接して
同方向に位置されている。この発光管8の内面は
けい光体被腹12が被着されているとともに、両
端部9,9には、第3図に示したようにマウント
13のフレア部14が封着されている。フレア部
14に連なるステム管15には内部リード線1
6,16が封止されており、これら内部リード線
16,16間に電極としてのフイラメント17が
継線されている。また、ステム管15から導出さ
れた細管18は、上記フイラメント17に近接す
るステム管15の先端部に開口されており、この
細管18を通じて発光管8内の排気および所定量
の不活性ガスの封入が行なわれる。 なお、このようなけい光ランプ5は、両端部
9,9および曲成部10を口金2側に向けた姿勢
で外囲器4内に収容されており、上記点灯管6お
よび安定器7を介して口金2と接続されている。 ところで、上記フイラメント17よりも管端部
側に位置する細管18内には、第3図に示したよ
うに定常点灯時での管内水銀蒸気圧を制御する主
アマルガム19が収容されている。この主アマル
ガム19は、インジウム(In)、ビスマス(Bi)、
スズ(Sn)、鉛(Pb)およびこれら各種金属を適
当な割合で混合させた合金にさらに水銀(Hg)
を加えたものを使用しており、本実施例の場合は
略球状をなした一つの塊に形成されて、上記細管
18の途中に設けた絞り部18aと封止端との間
で脱落不能に保持されている。そして、この主ア
マルガム19はその動作温度が定常点灯時での外
囲器4内の雰囲気温度、つまり略70℃〜90℃に達
した時に、発光管8内の水銀量を紫外線に変換す
る効率が最高となる6×10-3mmHg付近に制御す
るようになつている。 なお、この主アマルガム19の代りに最初にア
マルガム形成金属と水銀を別々に細管18および
発光管8内に封入しておき、この後細管18内で
アマルガム形成金属をアマルガム化させるように
しても良い。 上記主アマルガム19よりもフイラメント17
に近接した高温部分、つまり本実施例ではフイラ
メント17と細管18の開口端との間に位置し
て、本発明に係る補助アマルガム20が設置され
ている。補助アマルガム20は、第4図に示した
ように厚みが20〜50μのモリブデン(Mo)箔、
又は同程度の厚みのタンタル(Ta)箔あるいは
ニオブ(Nb)箔等の高融点金属箔からなる基体
21の表面に、インジウム(In)をメツキ又は蒸
着等によつて薄膜状に被着したもので、表面全面
がインジウム被膜22によつて覆われている。そ
して、このインジウム被膜22の膜厚は、光束の
立ち上がりが最高となる2〜5μとすることが望
ましい。このような補助アマルガム20は、その
基体21の一端が上記一方の内部リード線16に
溶接されており、消灯時のように発光管8内の温
度が低い状態では管内の浮遊水銀を吸着し、逆に
ランプ点灯時には吸着した水銀を放出するように
なつている。 このような構成において、いま口金2を電源側
のソケツトに差込み、電源電圧を発光管8に印加
して始動させると、発光管8内に残留している微
量の水銀蒸気と不活性ガスとによりフイラメント
17,17間に放電が開始される。この際、製造
直後のランプではまだ補助アマルガム20に水銀
が吸着されていないので、上記放電により発光管
8の管壁温度が上昇するにつれて、細管18内の
主アマルガム19の温度が徐徐に上昇し、この温
度に対応した量の水銀蒸気が細管18を通じて発
光管8内に放出される。そして、光出力が定常状
態に達した以降の管内水銀蒸気圧は、主アマルガ
ム19の設置部分の温度で定まる蒸気圧に制御さ
れる。 一方、このような動作状態にあるけい光ランプ
5を消灯させると、発光管8および主アマルガム
19の設置部分の温度が低下するので、発光管8
内の浮遊水銀は細管18内の主アマルガム19に
吸着され始める。この場合、細管18の開口は比
較的小さいので、主アマルガム19が浮遊水銀を
吸着する速度は遅くなるとともに、この浮遊水銀
は細管18の開口に向つて流れるので、この開口
近傍に位置する補助アマルガム20のインジウム
被膜22が上記浮遊水銀の大部分を吸着してしま
う。 したがつて、消灯後、発光管8に電源電圧を印
加してけい光ランプ5を再始動させると、上記水
銀を吸着した補助アマルガム20は、近接するフ
イラメント17からの熱影響を受けるとともに、
放電によるイオンの衝撃を受ける。この結果、補
助アマルガム20が急激に温度上昇し、水銀の放
出が活発に行なわれるので、充分な量の水銀が短
時間のうちに発光管8内に供給され、光出力を略
瞬時に立上がらせることができる。 ところで、通常一般的なランプ製造技術では、
マウント13を封着した後に、発光管8を炉内で
加熱しつつ発光管8内の排気を行うので、上述の
如く補助アマルガム20の基体21としてアルミ
ニウム等の金属を使用すると、基体21とその表
面に被着したインジウム被膜22との間に合金反
応が発生してしまう。 そこで、本発明者らは上記アルミニウム等の金
属の代りに、モリブデンやタンタル等の高融点金
属材料を使用することを試み、下記の如き実験を
行つた。 すなわち、この実験では基体21の材料として
従来のニツケルやステンレスのプレートを用いた
場合と、モリブデン、タンタルの箔およびタング
ステンの板を用いた場合夫々において、ランプ完
成直後の初回点灯時での全光束値を調べた。この
実験での全光束値は、始動後30秒経過した時点の
値で評価しており、下記第1表にその実験結果を
示す。
[Technical Field of the Invention] The present invention relates to a low-pressure mercury vapor discharge lamp in which the mercury vapor pressure inside the tube is controlled by an amalgam. [Technical background of the invention and its problems] In general, when a low-pressure mercury vapor discharge lamp, such as a fluorescent lamp, is housed in a closed lighting fixture and turned on, mercury is released as the ambient temperature rises. The vapor pressure exceeds the optimum value, causing problems such as a decrease in luminous flux. When operating a fluorescent lamp under such severe temperature conditions, it is recommended to control the mercury vapor pressure in the fluorescent lamp within an appropriate range by using amalgam, which has a lower vapor pressure than pure mercury. It is considered valid. However, this method uses the property that the vapor pressure of amalgam is lower than that of pure mercury to control the mercury vapor pressure. If the ambient temperature of the light lamp is low, the temperature of the amalgam will be slow to reach the temperature most desirable for its operation, and the rate of release of mercury will be slow. Therefore, a problem arises in that the luminous flux does not rise well and takes time to stabilize in a steady state. For this reason, conventionally, for example,
As shown in Publication No. 30387, in addition to the main amalgam that controls the mercury vapor pressure during steady lighting, it also adsorbs floating mercury in the tube when the lights are turned off, and removes the adsorbed mercury during the early stages of lighting, including when starting. It is known that a small amount of auxiliary amalgam to be emitted is placed in a high temperature area near the electrode to improve the rise characteristics of the luminous flux. By the way, conventionally, this auxiliary amalgam is made by coating a thin film of indium, which is a typical amalgam-forming metal, on the surface of a base made of a metal plate such as stainless steel or nickel, in order to efficiently adsorb floating mercury when the lights are turned off. It is often used to wear clothes. The thickness of the indium film has a large effect on the rise characteristics of the luminous flux, and the research of the present inventors has shown that there is a film thickness region of the indium film in which this rise characteristic is the highest. It's becoming clear. On the other hand, in the usual manufacturing technology for fluorescent lamps, a mount with the electrodes, as well as the main amalgam and auxiliary amalgam assembled, is sealed to the openings at both ends of the arc tube. is heated in a furnace to exhaust impurities contained in the electrodes and arc tube, while exhausting the interior of the arc tube. During this evacuation, the temperature at the area where the auxiliary amalgam is installed easily exceeds 400℃. Put it away. in this case,
It was later discovered that indium used in the above-mentioned auxiliary amalgam has a low melting point and is weak against heat, so when stainless steel or nickel is used as the base, it cannot be used in the high temperature range of 400°C or higher as mentioned above. A drawback was found that indium dissolves into the solid from the surface of the base metal, which may result in a thin film or, in extreme cases, be lost from the surface of the base. In other words, since this indium film is deposited in advance at a thickness that maximizes the rise characteristics of the luminous flux as described above, the film thickness of this film is reduced during the lamp manufacturing process. and,
After the lamp was completed, not only the desired start-up characteristics could not be obtained, but also the start-up characteristics became extremely unstable. Similarly, while the lamp is on, the auxiliary amalgam is affected by heat from the electrodes and at least
As the temperature was raised to over 100℃, it was discovered that the indium coating on the surface melted into the substrate over time, and it became clear that the original function of the auxiliary amalgam gradually deteriorated even during the life of the lamp. [Objective of the Invention] The present invention has been made based on the above circumstances, and it is possible to obtain the desired rise characteristics with almost no alloy reaction occurring between the indium film and the substrate, and to maintain the rise characteristics for a long period of time. An object of the present invention is to provide a low-pressure mercury vapor discharge lamp that can last well for a long period of time. [Summary of the invention] That is, in order to achieve the above object, the present invention
The present invention is characterized in that the substrate on which the indium film is deposited is made of a high melting point metal material such as tungsten, molybdenum, or tantalum. [Embodiment of the Invention] An embodiment of the present invention will be described below based on drawings in which the invention is applied to a ball light bulb type lighting device. In the figure, reference numeral 1 denotes a cover made of synthetic resin, and a base 2 is attached to the top of one end of the cover 1. The opening at the other end of the cover 1 is covered with a substantially spherical globe 3, and the cover 1 and the globe 3 form an envelope 4 that approximates a ball-shaped incandescent light bulb.
is configured. Inside the envelope 4, a fluorescent lamp 5, which is a typical low-pressure mercury vapor discharge lamp, a lighting tube 6 as a starting element of the fluorescent lamp 5, and a chiyoke coil type ballast 7 as a discharge stabilizing element are integrated. is housed in. The arc tube 8 of the fluorescent lamp 5 is made by bending a straight glass bulb into a substantially U-shape at the center between its two ends 9, 9, and connecting the curved part 10 and both ends 9, 9. is curved in a substantially U-shape in a direction substantially orthogonal to the plane containing the U-shape, and both ends 9, 9 and the curved part 10 are located adjacent to each other in the same direction. ing. The inner surface of the arc tube 8 is coated with a phosphor sheath 12, and the flared portions 14 of a mount 13 are sealed to both ends 9, as shown in FIG. An internal lead wire 1 is connected to the stem tube 15 connected to the flare portion 14.
6 and 16 are sealed, and a filament 17 as an electrode is connected between these internal lead wires 16 and 16. Further, a capillary tube 18 led out from the stem tube 15 is opened at the tip of the stem tube 15 close to the filament 17, and through this capillary tube 18, the inside of the arc tube 8 is evacuated and a predetermined amount of inert gas is filled. will be carried out. The fluorescent lamp 5 is housed in the envelope 4 with both end portions 9 and the bent portion 10 facing the base 2, and the lighting tube 6 and ballast 7 are It is connected to the cap 2 via. As shown in FIG. 3, a main amalgam 19 for controlling the mercury vapor pressure inside the tube during steady lighting is accommodated in the thin tube 18 located closer to the tube end than the filament 17. This main amalgam 19 contains indium (In), bismuth (Bi),
Mercury (Hg) is added to tin (Sn), lead (Pb), and an alloy made by mixing these various metals in appropriate proportions.
In the case of this embodiment, it is formed into one substantially spherical lump, and it cannot fall off between the constricted part 18a provided in the middle of the thin tube 18 and the sealed end. is held in This main amalgam 19 has an efficiency of converting the amount of mercury in the arc tube 8 into ultraviolet light when its operating temperature reaches the ambient temperature inside the envelope 4 during steady lighting, that is, approximately 70°C to 90°C. It is designed to be controlled around 6×10 -3 mmHg, which is the maximum value. Note that instead of the main amalgam 19, the amalgam-forming metal and mercury may first be separately sealed in the capillary tube 18 and the arc tube 8, and then the amalgam-forming metal may be amalgamated in the capillary tube 18. . Filament 17 than the main amalgam 19 above
An auxiliary amalgam 20 according to the present invention is installed in a high-temperature area close to the filament 17, that is, in this embodiment, located between the filament 17 and the open end of the capillary tube 18. The auxiliary amalgam 20 is made of molybdenum (Mo) foil with a thickness of 20 to 50μ, as shown in FIG.
Or indium (In) is coated in a thin film form by plating or vapor deposition on the surface of the base 21 made of high melting point metal foil such as tantalum (Ta) foil or niobium (Nb) foil of similar thickness. The entire surface is covered with an indium film 22. The thickness of the indium film 22 is preferably 2 to 5 μm, which maximizes the rise of the luminous flux. One end of the base body 21 of the auxiliary amalgam 20 is welded to one of the internal lead wires 16, and when the temperature inside the arc tube 8 is low, such as when the light is turned off, it adsorbs floating mercury inside the tube. Conversely, when the lamp is turned on, the mercury that has been absorbed is released. In such a configuration, when the cap 2 is inserted into the socket on the power supply side and the power supply voltage is applied to the arc tube 8 to start it, a trace amount of mercury vapor and inert gas remaining in the arc tube 8 will be released. A discharge is started between the filaments 17, 17. At this time, since mercury has not yet been adsorbed to the auxiliary amalgam 20 in the lamp immediately after manufacture, as the temperature of the wall of the arc tube 8 increases due to the discharge, the temperature of the main amalgam 19 in the thin tube 18 gradually increases. , an amount of mercury vapor corresponding to this temperature is released into the arc tube 8 through the thin tube 18. After the light output reaches a steady state, the mercury vapor pressure inside the tube is controlled to a vapor pressure determined by the temperature of the part where the main amalgam 19 is installed. On the other hand, when the fluorescent lamp 5 in such an operating state is turned off, the temperature of the area where the arc tube 8 and the main amalgam 19 are installed decreases, so the arc tube 8
The floating mercury inside begins to be adsorbed by the main amalgam 19 within the capillary tube 18. In this case, since the opening of the capillary tube 18 is relatively small, the rate at which the main amalgam 19 adsorbs floating mercury is slow, and since this floating mercury flows toward the opening of the capillary tube 18, the auxiliary amalgam located near the opening 20 indium coatings 22 adsorb most of the floating mercury. Therefore, when the fluorescent lamp 5 is restarted by applying a power supply voltage to the arc tube 8 after being turned off, the auxiliary amalgam 20 that has adsorbed mercury is affected by heat from the adjacent filament 17, and
Receives ion bombardment due to discharge. As a result, the temperature of the auxiliary amalgam 20 rises rapidly and mercury is actively released, so that a sufficient amount of mercury is supplied into the arc tube 8 in a short period of time, and the light output is increased almost instantly. can be set. By the way, in the usual lamp manufacturing technology,
After sealing the mount 13, the interior of the arc tube 8 is evacuated while being heated in a furnace, so if a metal such as aluminum is used as the base 21 of the auxiliary amalgam 20 as described above, the base 21 and its An alloy reaction occurs with the indium film 22 deposited on the surface. Therefore, the inventors of the present invention attempted to use a high melting point metal material such as molybdenum or tantalum instead of the metal such as aluminum, and conducted the following experiments. In other words, in this experiment, the total luminous flux at the first lighting immediately after completion of the lamp was determined in the case where a conventional nickel or stainless steel plate was used as the material of the base 21, and in the case where a molybdenum, tantalum foil and a tungsten plate were used. I checked the value. The total luminous flux value in this experiment was evaluated based on the value 30 seconds after starting, and the experimental results are shown in Table 1 below.

〔発明の効果〕〔Effect of the invention〕

以上詳述した本発明によれば、基体自体の融点
が高いことから、補助アマルガムがランプ製造工
程中やランプ点灯中電極からの熱影響を受けて高
温に昇温された場合でも、上記基体は表面のイン
ジウム被膜に対して安定した状態に保たれ、この
インジウム被膜との間に合金反応はほとんど進行
せず、インジウム被膜の膜厚の減少や劣化が抑え
られる。したがつて、点灯初期に所望の光束立ち
上がり特性が得られるとともに、この立ち上がり
特性をランプ寿命末期まで良好に持続させること
ができる利点がある。
According to the present invention described in detail above, since the base itself has a high melting point, even if the auxiliary amalgam is heated to a high temperature due to the influence of heat from the electrodes during the lamp manufacturing process or during lamp lighting, the base It is maintained in a stable state with respect to the indium coating on the surface, and almost no alloying reaction occurs with the indium coating, thereby suppressing reduction in thickness and deterioration of the indium coating. Therefore, there is an advantage that a desired luminous flux rise characteristic can be obtained at the initial stage of lighting, and that this rise characteristic can be satisfactorily maintained until the end of the lamp life.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は照明
装置の断面図、第2図はけい光ランプを一部断面
した斜視図、第3図は管端部の断面図、第4図は
補助アマルガムの断面図、第5図は特性図であ
る。 8…発光管、17…電極(フイラメント)、1
9…主アマルガム、20…補助アマルガム、21
…基体、22…インジウム被膜。
The drawings show an embodiment of the present invention; FIG. 1 is a cross-sectional view of a lighting device, FIG. 2 is a partially cross-sectional perspective view of a fluorescent lamp, FIG. 3 is a cross-sectional view of a tube end, and FIG. 4 is a cross-sectional view of a lighting device. is a cross-sectional view of the auxiliary amalgam, and FIG. 5 is a characteristic diagram. 8... Arc tube, 17... Electrode (filament), 1
9...Main amalgam, 20...Auxiliary amalgam, 21
...Substrate, 22...Indium coating.

Claims (1)

【特許請求の範囲】 1 両端に電極を有し、かつ所定量の水銀を含む
可電離媒体を封入した発光管内に、上記電極より
も管端部側に位置して定常点灯時での管内水銀蒸
気圧を制御する主アマルガムを設けるとともに、
この主アマルガムよりも電極近傍の高温部に位置
して消灯時に発光管内の浮遊水銀を吸着し、かつ
始動時に上記吸着した水銀を放出する補助アマル
ガムを設けた低圧水銀蒸気放電灯において、上記
補助アマルガムは高融点金属材料からなる基体の
表面に、インジウムの被膜を被着してなることを
特徴とする低圧水銀蒸気放電灯。 2 上記主アマルガムは発光管の端部から導出さ
れた細管内に設置されていることを特徴とする特
許請求の範囲第1項記載の低圧水銀蒸気放電灯。
[Scope of Claims] 1. In an arc tube having electrodes at both ends and enclosing an ionizable medium containing a predetermined amount of mercury, the mercury inside the tube is located closer to the end of the tube than the electrodes, and the mercury inside the tube during steady lighting. In addition to providing a main amalgam to control vapor pressure,
In a low-pressure mercury vapor discharge lamp equipped with an auxiliary amalgam that is located in a higher temperature area near the electrode than the main amalgam and that adsorbs floating mercury in the arc tube when the lamp is turned off and releases the adsorbed mercury when the lamp is started, the auxiliary amalgam is a low-pressure mercury vapor discharge lamp characterized by having an indium coating applied to the surface of a base made of a high-melting point metal material. 2. The low-pressure mercury vapor discharge lamp according to claim 1, wherein the main amalgam is installed in a thin tube led out from the end of the arc tube.
JP7397384A 1984-04-13 1984-04-13 Low pressure mercury vapor electric-discharge lamp Granted JPS60218758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7397384A JPS60218758A (en) 1984-04-13 1984-04-13 Low pressure mercury vapor electric-discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7397384A JPS60218758A (en) 1984-04-13 1984-04-13 Low pressure mercury vapor electric-discharge lamp

Publications (2)

Publication Number Publication Date
JPS60218758A JPS60218758A (en) 1985-11-01
JPH0334187B2 true JPH0334187B2 (en) 1991-05-21

Family

ID=13533536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7397384A Granted JPS60218758A (en) 1984-04-13 1984-04-13 Low pressure mercury vapor electric-discharge lamp

Country Status (1)

Country Link
JP (1) JPS60218758A (en)

Also Published As

Publication number Publication date
JPS60218758A (en) 1985-11-01

Similar Documents

Publication Publication Date Title
JPH0334187B2 (en)
JPH0446366Y2 (en)
JPH0316737B2 (en)
JP3956040B2 (en) Fluorescent lamp and lighting device
JP2781394B2 (en) Light bulb type fluorescent lamp
JPS60193253A (en) Low pressure mercury vapor electric-discharge lamp
JPS60208043A (en) Lower pressure mercury vapor discharge lamp
JPH11233065A (en) Bulb type fluorescent lamp
JPH0574416A (en) Low pressure mercury vapor discharge lamp
JPS62211850A (en) Bulb type fluorescent lamp
JPH0719561B2 (en) Low pressure mercury vapor discharge lamp
JP3175274B2 (en) Low pressure mercury vapor discharge lamp
JPS60208023A (en) Manufacture of low pressure mercury discharge lamp
JPS60133649A (en) Low-pressure mercury vapor discharge lamp
JPH0582698B2 (en)
JPS6182654A (en) Discharge lamp of low pressure mercury vapor
JPS61277147A (en) Low pressure mercury vapor discharge lamp
JPS60202652A (en) Low pressure mercury vapor electric-discharge lamp
JPS60205957A (en) Low pressure mercury vapor discharge lamp
JPH0471305B2 (en)
JPH0528962A (en) Low pressure mercury vapor discharge lamp
JPH0574417A (en) Low pressure mercury vapor discharge lamp
JPH0515025B2 (en)
JPS60193252A (en) Low pressure mercury vapor electric-discharge lamp
JPH08273600A (en) Low-pressure mercury vapor discharge lamp and lighting system using same