JPH0334153B2 - - Google Patents

Info

Publication number
JPH0334153B2
JPH0334153B2 JP59188941A JP18894184A JPH0334153B2 JP H0334153 B2 JPH0334153 B2 JP H0334153B2 JP 59188941 A JP59188941 A JP 59188941A JP 18894184 A JP18894184 A JP 18894184A JP H0334153 B2 JPH0334153 B2 JP H0334153B2
Authority
JP
Japan
Prior art keywords
superconductor
magnetic flux
current
quanta
abrikosov
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59188941A
Other languages
Japanese (ja)
Other versions
JPS6168799A (en
Inventor
Kazunori Myahara
Masashi Mukoda
Koji Takaragawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59188941A priority Critical patent/JPS6168799A/en
Publication of JPS6168799A publication Critical patent/JPS6168799A/en
Publication of JPH0334153B2 publication Critical patent/JPH0334153B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は少なくとも一つの情報をアブリコソフ
磁束量子(以下磁束量子と略称する)の形で超伝
導体内に記憶する超伝導記憶回路に関する。更に
特定すれば本発明は、情報の書き込みを磁束量子
を超伝導体内に侵入(あるいは放出)させること
によつて行なう超伝導記憶回路に関するものであ
る。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a superconducting memory circuit that stores at least one piece of information in the form of Abrikosov flux quanta (hereinafter abbreviated as flux quanta) in a superconductor. More specifically, the present invention relates to a superconducting memory circuit in which information is written by causing magnetic flux quanta to enter (or emit) into a superconductor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

アブリコソフ磁束量子記憶回路は、例えばアプ
ライドフイジツクスレター誌(Applied Physics
Letters)Vol・39No.12December1981.pp.992〜
993を参照すればわかるように、公知である。
The Abrikosov flux quantum memory circuit has been published, for example, in Applied Physics Letters.
Letters) Vol・39No.12December1981.pp.992〜
993, it is known.

第3図はアブリコソフ磁束量子記憶回路の従来
例の一つである。この例では磁束量子を保持する
ための膜厚のうすい超伝導体1と該超伝導体1の
一部を下部電極とし、超伝導体2を上部電極とす
る磁束量子検出用ジヨセフソン接合(以下検出接
合と略称する)3と超伝導体1の端5近くに設け
られた磁束量子書き込み用制御線4で構成されて
いる。Aは磁束量子である。上記アブリコソフ磁
束量子記憶回路において、制御線4に電流を流す
ことで磁界を発生し、超伝導体1に磁束量子を侵
入させて「1」書き込みを行ない、また制御線4
に逆向きの電流を流し、超伝導体1に逆向きの磁
束量子を侵入させ、順方向の磁束量子と対消滅さ
せて「0」書き込みを行なう。また記憶状態の検
出は、検出接合3の近傍に磁束量子が存在すると
該検出接合3のジヨセフソン電流値が低下するこ
とを利用し、該検出接合3にバイアス電流を印加
し、接合が有限電圧に転移するか否かで行なう。
FIG. 3 shows one of the conventional examples of the Abrikosov magnetic flux quantum memory circuit. In this example, a superconductor 1 with a thin film thickness for holding magnetic flux quanta, a part of the superconductor 1 as a lower electrode, and a Josephson junction for magnetic flux quantum detection (hereinafter referred to as a detection (abbreviated as junction) 3 and a magnetic flux quantum writing control line 4 provided near the end 5 of the superconductor 1. A is a magnetic flux quantum. In the Abrikosov magnetic flux quantum memory circuit described above, a magnetic field is generated by passing a current through the control line 4, magnetic flux quanta enter the superconductor 1 to write "1", and the control line 4
A current in the opposite direction is applied to the superconductor 1 to cause magnetic flux quanta in the opposite direction to enter the superconductor 1 and annihilate them with the forward direction magnetic flux quanta, thereby writing "0". In addition, the storage state is detected by applying a bias current to the detection junction 3, making use of the fact that the Josephson current value of the detection junction 3 decreases when magnetic flux quanta exist near the detection junction 3, so that the junction reaches a finite voltage. Depends on whether it metastasizes or not.

しかし上記アブリコソフ磁束量子記憶回路で
は、超伝導体1に局在した超伝導性の弱い部分、
即ちピンセンタが存在すると、ここに磁束量子が
捕獲される。このため「1」書き込みのとき超伝
導体1の端5から侵入した磁束量子がピンセンタ
に捕獲され、検出接合3の近傍に到達しない。こ
の磁束量子を検出接合3の近傍まで移動させるに
は、「1」書き込み制御線4に更に大きな電流を
流し、超伝導体1に大量の磁束量子を侵入させ、
同極性磁束量子間の反撥力を利用して、移動させ
なければならない。このため該アブリコソフ磁束
量子記憶回路では、「1」書き込み時に、他の信
号レベルに比較して2桁以上も大きな書き込み電
流を必要とするという重要な欠点を有していた。
However, in the Abrikosov magnetic flux quantum memory circuit described above, the weak superconductivity localized in superconductor 1,
That is, when a pin center exists, magnetic flux quanta are captured there. Therefore, when writing "1", the magnetic flux quantum that enters from the end 5 of the superconductor 1 is captured by the pin center and does not reach the vicinity of the detection junction 3. In order to move this magnetic flux quantum to the vicinity of the detection junction 3, a larger current is applied to the "1" write control line 4, and a large amount of magnetic flux quantum enters the superconductor 1.
It must be moved using the repulsive force between magnetic flux quanta of the same polarity. For this reason, the Abrikosov magnetic flux quantum memory circuit has an important drawback in that when writing "1", a writing current that is two orders of magnitude larger than that for other signal levels is required.

更に超伝導体1内を磁束量子が移動するとき粘
性抵抗が働き、これによつて移動速度が制限され
る。故に上記の磁束量子相互の反撥力で磁束量子
を駆動する方式では駆動力が小さいので移動速度
は小さく、したがつて「1」書き込みに要する時
間が長くなる。これは「1」書き込みアクセス時
間が長くなるという欠点を生じる。
Furthermore, when magnetic flux quanta move within the superconductor 1, viscous resistance acts, which limits the moving speed. Therefore, in the method of driving the magnetic flux quanta by the repulsion between the magnetic flux quanta, the driving force is small, so the moving speed is low, and therefore the time required to write "1" becomes long. This has the disadvantage of increasing the "1" write access time.

更に上記の磁束量子相互の反撥力による駆動方
式では、磁束量子を検出接合近傍に向つて駆動す
る力が弱いので磁束量子と検出接合が十分に接近
しない。たのため磁束量子と検出接合の相互作用
が弱く読み出し時における検出接合の磁束量子検
出感度が低い。その結果、大量の磁束量子を情報
担体として用いなければならないという重大な欠
点があつた。
Furthermore, in the above-mentioned driving method using the repulsive force between the magnetic flux quanta, the force for driving the magnetic flux quanta toward the vicinity of the detection junction is weak, so the magnetic flux quanta and the detection junction do not come sufficiently close to each other. Therefore, the interaction between the magnetic flux quantum and the detection junction is weak, and the detection sensitivity of the magnetic flux quantum of the detection junction during readout is low. As a result, a major drawback was that a large amount of magnetic flux quanta had to be used as information carriers.

〔発明の目的〕[Purpose of the invention]

本発明はこれらの欠点を除去するため、磁束量
子にローレンツ相互作用による駆動力を印加し、
書き込み電流の低減と書き込み時間の短縮と検出
接合の高感度化を図つたもので以下図面を用いて
詳細に説明する。
In order to eliminate these drawbacks, the present invention applies a driving force due to Lorentz interaction to magnetic flux quanta,
This is intended to reduce the write current, shorten the write time, and increase the sensitivity of the detection junction, and will be explained in detail below with reference to the drawings.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の第1の実施例であつて、ア
ブリコソフ磁束量子が侵入でき、該磁束量子が保
持され得る膜厚のうすい第二種の超伝導体1で情
報記憶領域が構成され、該超伝導体1の一部を下
部電極とし、超伝導体2の一部を上部電極とし
て、侵入した磁束量子に付随する磁界を検出する
記憶状態検出用ジヨセフソン接合(検出接合)3
が、少なくともひとつ構成され、超伝導体1の端
5の近傍に少なくとも1本の超伝導体よりなる磁
束量子書き込み用制御線4が配置され、さらに超
伝導体1の一端に磁束量子駆動電流を超伝導体1
に供給するための超伝導体で構成された電流端子
6を有し、超伝導体1の端5を除く他端に超伝導
体1に較べて磁束量子が侵入し難い膜厚の厚い超
伝導体7を磁束量子排出防止用として配置した構
成をしている。Aは磁束量子、Iは駆動電流、P
は駆動力である。
FIG. 1 shows a first embodiment of the present invention, in which an information storage area is constructed of a second type superconductor 1 with a thin film thickness into which Abrikosov magnetic flux quanta can penetrate and which can retain the magnetic flux quanta. , a Josephson junction (detection junction) 3 for memory state detection that uses a part of the superconductor 1 as a lower electrode and a part of the superconductor 2 as an upper electrode to detect the magnetic field accompanying the penetrating magnetic flux quantum.
A magnetic flux quantum writing control line 4 made of at least one superconductor is arranged near the end 5 of the superconductor 1, and a magnetic flux quantum drive current is applied to one end of the superconductor 1. superconductor 1
It has a current terminal 6 made of a superconductor for supplying current to the superconductor 1, and the other end of the superconductor 1 except for the end 5 has a thick superconductor film that is difficult for magnetic flux quantum to penetrate compared to the superconductor 1. The structure is such that the body 7 is arranged to prevent magnetic flux quantum emission. A is the magnetic flux quantum, I is the driving current, P
is the driving force.

本実施例において記憶回路動作の「1」書き込
みは、磁束量子書き込み用制御線4に電流を流
し、超伝導体1内に磁束量子を侵入させ、さらに
電流端子6から磁束量子駆動用電流を超伝導体1
に流すことにより、磁束量子に電流とのローレン
ツ相互作用によつて検出接合3の方向に向つて駆
動力を働らかせ、検出接合3近傍まで移動させる
ことによつて行なう。「0」書き込みは、磁束量
子書き込み用制御線4に「1」書き込みの時と逆
向きに電流を流し、超伝導体1内に「1」書き込
み時とは逆向きの磁束量子を侵入させ、さらに電
流端子6から「1」書き込み時とは逆向きの磁束
量子駆動用電流を流すことにより、逆向きの磁束
量子をローレンツ力によつて検出接合3近傍まで
移動させ、順方向に磁束量子と対消減させる方法
で行なうか、あるいは電流端子6から「1」書き
込み時とは逆向きの磁束量子駆動用電流を流し、
超伝導体1内に保持されている順方向の磁束量子
を検出接合3から超伝導体1の端5に向つて駆動
し、さらに超伝導体1の外へ排出させることによ
つて「0」書き込みを行なう。また記憶状態の読
み出しは、検出接合3の近傍に磁束量子が存在す
ると該検出接合3のジヨセフソン電流値が低下す
ることを利用し、該検出接合に所定のバイアス電
流を印加し、そのバイアス値で接合が有限電圧に
転移するか否かで行なう。本実施例においては、
「1」書き込みに要する制御電流値は磁束量子を
超伝導体1の端5近くに侵入させるために必要な
磁界を発生する電流値であり、この値は、従来例
の「1」書き込み制御電流値の1/10以下である。
磁束量子が、侵入した後は電流端子6から流す電
流による駆動力によつて検出接合3まで駆動され
る。この効果は、逆向きの磁束量子を超伝導体1
内に書き込んで対消減させる「0」書き込み法に
おいても同様である。
In this embodiment, writing "1" in the memory circuit operation involves passing a current through the magnetic flux quantum writing control line 4, causing magnetic flux quanta to enter the superconductor 1, and then passing the magnetic flux quantum driving current from the current terminal 6. conductor 1
This is done by causing the magnetic flux quanta to exert a driving force in the direction of the detection junction 3 by Lorentz interaction with the current, and to move the magnetic flux quanta to the vicinity of the detection junction 3. To write "0", a current is passed through the magnetic flux quantum writing control line 4 in the opposite direction to that when writing "1", and magnetic flux quantum in the opposite direction to that when writing "1" enters into the superconductor 1. Furthermore, by flowing a magnetic flux quantum driving current in the opposite direction to that when writing "1" from the current terminal 6, the magnetic flux quantum in the opposite direction is moved to the vicinity of the detection junction 3 by the Lorentz force, and becomes a magnetic flux quantum in the forward direction. This can be done by a method of reducing or eliminating the magnetic flux, or by passing a magnetic flux quantum driving current in the opposite direction to that when writing "1" from the current terminal 6.
"0" by driving forward magnetic flux quanta held in the superconductor 1 from the detection junction 3 toward the end 5 of the superconductor 1 and then expelling them out of the superconductor 1. Write. To read the memory state, a predetermined bias current is applied to the detection junction 3 by utilizing the fact that the Josephson current value of the detection junction 3 decreases when magnetic flux quanta exist near the detection junction 3, and the bias value is set at that bias value. This is determined by whether the junction transitions to a finite voltage. In this example,
The control current value required for writing "1" is the current value that generates the magnetic field necessary to cause the magnetic flux quantum to enter near the edge 5 of the superconductor 1, and this value is different from the "1" write control current in the conventional example. It is less than 1/10 of the value.
After the magnetic flux quantum enters, it is driven to the detection junction 3 by the driving force caused by the current flowing from the current terminal 6. This effect causes oppositely directed magnetic flux quanta to flow through the superconductor 1
The same holds true for the "0" write method in which data is written within the memory and the number is reduced.

また本実施例においては、書き込み時に磁束量
子にローレンツ駆動力が働くため、磁束量子の移
動速度ははやく、磁束量子が超伝導体1の端5に
侵入してから検出接合3に達するのに要する時間
が短くなり、書き込みアクセス時間を大幅に短縮
できる。
In addition, in this embodiment, since the Lorentz driving force acts on the magnetic flux quantum during writing, the moving speed of the magnetic flux quantum is fast, and it takes a long time for the magnetic flux quantum to enter the edge 5 of the superconductor 1 and reach the detection junction 3. The write access time can be significantly reduced.

また本実施例では、読み出し時にも、磁束量子
駆動用電流端子6から超伝導体1に電流を流すこ
とにより、保持されている磁束量子を検出接合3
の近傍に集めることができる。これにより磁束量
子の磁界は有効に検出接合3に印加されるので、
検出接合の検出感度は大幅に向上する。これは、
情報担体として保持されるべき磁束量子数の少量
化を可能とし、記憶セルの小形化、低消費電力化
に非常に有効である。
In addition, in this embodiment, even at the time of reading, by flowing a current from the magnetic flux quantum drive current terminal 6 to the superconductor 1, the retained magnetic flux quantum is detected by the junction 3.
can be gathered near. As a result, the magnetic field of the magnetic flux quantum is effectively applied to the detection junction 3, so that
The detection sensitivity of the detection junction is greatly improved. this is,
This makes it possible to reduce the number of magnetic flux quanta to be held as an information carrier, and is very effective in reducing the size and power consumption of memory cells.

なお、第1図において、電流端子6から流入し
た電流はすべて超伝導体1の左下方向に流出し、
従つて、検出接合3を逆向きに流れ、最大ジヨセ
フソン電流値に逆バイアスとして作用しないこと
が必要である。このためには、超伝導体2の上流
に抵抗(バイアス)が設けられている必要があ
る。
In addition, in FIG. 1, all the current flowing in from the current terminal 6 flows out to the lower left direction of the superconductor 1,
Therefore, it is necessary that the current flows in the opposite direction through the detection junction 3 and does not act as a reverse bias on the maximum Josephson current value. For this purpose, it is necessary to provide a resistance (bias) upstream of the superconductor 2.

第2図は、本発明の第2の実施例であつて、ア
ブリコソフ磁束量子が侵入でき該磁束量子が保持
され得る膜厚のうすい第二種の超伝導体1で情報
記憶領域が構成され、該超伝導体1の一部を下部
電極とし、超伝導体2の一部を上部電極として、
侵入した磁束量子に付随する磁界を検出する記憶
状態検出用ジヨセフソン接合(検出接合)3が少
なくともひとつ構成され、超伝導体1の端5の近
傍に少なくとも1本の磁束量子書き込み用制御線
4が配置され、超伝導体1の端5を除く他端に超
伝導体1に較べて磁束量子が侵入し難い膜厚の厚
い超伝導体7が磁束量子排出防止用として配置さ
れ、該超伝導体7の一部8が、磁束量子に駆動力
が印加されたときに、磁束量子が検出接合に向つ
て駆動されるような分力が発生するように、配置
された構造をしている。すなわち、第2図に示す
ように、うすい超伝導体1及び、これを取り囲む
厚い超伝導体7の一部8が書き込み用制御線4に
対し、平行、垂直でない所定の角度(好ましくは
45゜)をなすように配置される。本実施例におけ
る記憶回路動作は、第1の実施例の場合と同様で
ある。しかし本実施例においては、磁束量子駆動
用電流は超伝導体2から検出接合3を通つて超伝
導体1に供給される。この場合、超伝導体7の一
部8が、磁束量子が検出接合3に向つて移動する
ように分力が加わるように配置されているので、
電流が検出接合3から供給されるにもかかわらず
磁束量子は検出接合3に向つて駆動される。本実
施例によれば、ローレンツ力印加用電流線が検出
接合バイアス線と兼用されるため電流供給線が1
本少なくて済む。またこの記憶セルを縦続接続す
ること即ち検出接合3の縦続接続することが可能
となり、メモリセルマトリクスを容易に構成でき
る様になる。また本発明の第1および第2の実施
例において、「0」書き込みを行なう時に、「1」
書き込みの時と逆向きの磁束量子を超伝導体1内
に書き込んで対消減させる方法では、順方向と逆
方向の磁束量子の数が一致しない時には、対消減
が完全に行なわれずどちらかの磁束量子が残つて
しまい、これが動作マージンの低下を引きおこす
が、それに較べて、「0」書き込みを行なうのに、
「1」書き込み時とは逆向きの磁束量子駆動電流
を流し磁束量子を超伝導体1から排出させる方法
を用いると、磁束量子が超伝導体1の内部に残る
ことがないので動作マージンの低下がないという
利点がある。
FIG. 2 shows a second embodiment of the present invention, in which an information storage area is constructed of a thin second type superconductor 1 that allows Abrikosov magnetic flux quanta to penetrate and retain the magnetic flux quanta, A part of the superconductor 1 is used as a lower electrode, a part of the superconductor 2 is used as an upper electrode,
At least one Josephson junction (detection junction) 3 for memory state detection is configured to detect the magnetic field associated with the intruding magnetic flux quantum, and at least one control line 4 for magnetic flux quantum writing is provided near the end 5 of the superconductor 1. At the other end of the superconductor 1 except for the end 5, a thicker superconductor 7, which is more difficult for magnetic flux quantum to penetrate than the superconductor 1, is disposed for preventing magnetic flux quantum emission. A portion 8 of 7 is arranged such that when a driving force is applied to the flux quantum, a force component is generated such that the flux quantum is driven towards the sensing junction. That is, as shown in FIG. 2, the thin superconductor 1 and the part 8 of the thick superconductor 7 surrounding it are at a predetermined angle (preferably
45°). The memory circuit operation in this embodiment is similar to that in the first embodiment. However, in this embodiment, the magnetic flux quantum driving current is supplied from the superconductor 2 to the superconductor 1 through the detection junction 3. In this case, since the part 8 of the superconductor 7 is arranged so that a component force is applied such that the magnetic flux quantum moves towards the detection junction 3,
Although the current is supplied from the sensing junction 3, the magnetic flux quanta are driven towards the sensing junction 3. According to this embodiment, since the current line for applying Lorentz force is also used as the detection junction bias line, the current supply line is one
I need fewer books. Furthermore, it becomes possible to connect the memory cells in cascade, that is, to connect the detection junctions 3 in cascade, and it becomes possible to easily configure a memory cell matrix. Furthermore, in the first and second embodiments of the present invention, when writing "0", "1"
In the method of writing magnetic flux quanta in the opposite direction to the writing into the superconductor 1 and reducing the pairing, if the number of magnetic flux quanta in the forward direction and the reverse direction do not match, the pairing is not completely eliminated and one of the magnetic fluxes Quantum remains, which causes a decrease in operating margin, but compared to that, when writing "0",
If a method is used in which a magnetic flux quantum drive current is applied in the opposite direction to that when writing "1" and the magnetic flux quanta are ejected from the superconductor 1, the operating margin is reduced because the magnetic flux quanta do not remain inside the superconductor 1. It has the advantage of not having

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によつて、磁束量子を
電流によるローレンツ力で駆動することで、書き
込み電流値を低減することができ、書き込みアク
セス時間を短縮でき、更に検出感度向上により記
憶セルに保持する磁束量子の数を低減し、セルの
小形化、低消費電力化が実現できるという大きな
利点を生じる。また「0」書き込み法として、電
流による磁束量子駆動力により磁束量子を超伝導
体から排除する方法を用いると磁束量子消去不完
全による動作マージンの低下を防止することがで
きる。
As explained above, according to the present invention, by driving the magnetic flux quantum with the Lorentz force caused by the current, it is possible to reduce the write current value, shorten the write access time, and further improve the detection sensitivity to retain data in the memory cell. This has the great advantage of reducing the number of magnetic flux quanta that occur, resulting in smaller cells and lower power consumption. Furthermore, if a method of eliminating magnetic flux quanta from a superconductor by a magnetic flux quantum driving force caused by an electric current is used as a "0" writing method, it is possible to prevent a decrease in the operating margin due to incomplete magnetic flux quantum erasure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による第1の実施例の記憶回路
構造図、第2図は本発明による第2の実施例の記
憶回路構造図、第3図は従来のアブリコソフ磁束
量子記憶回路の記憶回路構造図を示す。 1……磁束量子を保持する膜のうすい超伝導
体、2……超伝導体、3……検出接合、4……書
き込み用制御線、5……磁束量子が侵入する超伝
導体1の端、6……磁束量子駆動電流供給用電流
端子、7……磁束量子排出防止用の膜厚の厚い超
伝導体、8……超伝導体7の一部。
FIG. 1 is a memory circuit structure diagram of a first embodiment according to the present invention, FIG. 2 is a memory circuit structure diagram of a second embodiment according to the present invention, and FIG. 3 is a memory circuit of a conventional Abrikosov magnetic flux quantum memory circuit. A structural diagram is shown. 1... Superconductor with a thin film that holds magnetic flux quanta, 2... Superconductor, 3... Detection junction, 4... Control line for writing, 5... End of superconductor 1 into which magnetic flux quanta enter , 6... Current terminal for supplying magnetic flux quantum drive current, 7... Thick superconductor for preventing magnetic flux quantum emission, 8... Part of superconductor 7.

Claims (1)

【特許請求の範囲】 1 アブリコソフ磁束量子が侵入でき、該磁束量
子が保持され得る第1の超伝導体で情報記憶領域
が構成され、該情報記憶領域にアブリコソフ磁束
量子を侵入させる手段を有し、該磁束量子に付随
する磁界を検出する記憶状態検出用ジヨセフソン
接合を有し、情報記憶領域にアブリコソフ磁束量
子が保持されている状態と保持されていない状態
を情報の「1」,「0」に対応させ、情報の書き込
み時と読み出し時の両方あるいはどちらか一方の
時に、第1の超伝導体に電流を流し、該第1の超
伝導体内に存在する磁束量子に該電流との相互作
用による駆動力を働かせることを特徴とする超伝
導記憶回路。 2 アブリコソフ磁束量子が侵入でき、該磁束量
子が保持され得る第1の超伝導体で情報記憶領域
が構成され、該第1の超伝導体の一部を下部電極
とし、第2の超伝導体の一部を上部電極として、
侵入した磁束量子に付随する磁界を検出する記憶
状態検出用ジヨセフソン接合が少なくともひとつ
構成され、少なくともひとつの第3の超伝導体が
第1の超伝導体の端近傍にアブリコソフ磁束量子
書き込み用制御線として配置され、第1の超伝導
体の一端にアブリコソフ磁束量子駆動電流を第1
の超伝導体に供給するための第4の超伝導体で構
成された電流端子を有し、第1の超伝導体の端の
うち磁束量子が書き込まれる一端を除く他端に磁
束量子排出防止用の第5の超伝導体を配置した構
造を有する特許請求の範囲第1項記載の超伝導記
憶回路。 3 特許請求の範囲第2項記載の超伝導記憶回路
において、第4の超伝導体で構成された電流端子
から磁束量子駆動電流を供給する代りに第2の超
伝導体から検出用ジヨセフソン接合を介して第1
の超伝導体に磁束量子駆動電流を供給し、磁束量
子が検出用接合に向つて駆動される分力が発生す
るようにうすい第1の超伝導体の周囲にアブリコ
ソフ磁束量子が第1の超伝導体に較べて侵入し難
い第1の超伝導体より厚い膜の第6の超伝導体
を、アブリコソフ磁束量子書き込み用制御線に対
し、平行、垂直でない所定の角度をなすように配
置したことを特徴とする超伝導記憶回路。 4 特許請求の範囲第1項ないし第3項のいずれ
かに記載の超伝導記憶回路において、第1の超伝
導体内に保持されているアブリコソフ磁束量子を
消去する方法として、第3の超伝導体で構成され
た磁束量子書き込み用制御線に、書き込み時とは
逆向きの電流を流して、第1の超伝導体に逆向き
の磁束量子を侵入させ、順方向の磁束量子と対消
滅させて磁束量子を消去することを特徴とする超
伝導記憶回路。 5 特許請求の範囲第1項ないし第3項のいずれ
かに記載の超伝導記憶回路において、第1の超伝
導体内に保持されているアブリコソフ磁束量子を
消去する方法として、磁束量子を第1の超伝導体
の外に排出する方向に駆動力を働かせるように第
1の超伝導体に磁束量子駆動電流を流して、磁束
量子消去を行なうことを特徴とする超伝導記憶回
路。
[Scope of Claims] 1. An information storage region is formed of a first superconductor into which Abrikosov magnetic flux quanta can penetrate and in which the magnetic flux quanta can be retained, and the information storage region has means for intruding Abrikosov magnetic flux quanta into the information storage region. , has a storage state detection Josephson junction that detects the magnetic field associated with the magnetic flux quantum, and indicates the state in which the Abrikosov magnetic flux quantum is held in the information storage area and the state in which it is not held as information "1" or "0". When writing and/or reading information, a current is caused to flow through the first superconductor, and the magnetic flux quanta existing within the first superconductor interact with the current. A superconducting memory circuit characterized by exerting a driving force by 2. An information storage region is constituted by a first superconductor into which Abrikosov magnetic flux quanta can enter and in which the magnetic flux quanta can be retained, a part of the first superconductor is used as a lower electrode, and a second superconductor As part of the upper electrode,
At least one Josephson junction for memory state detection is configured to detect the magnetic field associated with the intruding magnetic flux quantum, and at least one third superconductor has an Abrikosov magnetic flux quantum writing control line near the end of the first superconductor. The Abrikosov flux quantum driving current is placed at one end of the first superconductor as the first superconductor.
It has a current terminal configured of a fourth superconductor for supplying the current to the superconductor, and has a current terminal configured of a fourth superconductor to prevent magnetic flux quantum emission at one end of the first superconductor except for one end where magnetic flux quanta are written. The superconducting memory circuit according to claim 1, having a structure in which a fifth superconductor is arranged. 3. In the superconducting memory circuit according to claim 2, instead of supplying the magnetic flux quantum drive current from the current terminal made of the fourth superconductor, a Josephson junction for detection is provided from the second superconductor. 1st through
A flux quantum driving current is supplied to the superconductor, and Abrikosov flux quanta are placed around the thin first superconductor to generate a component force that drives the flux quanta toward the detection junction. The sixth superconductor, which has a thicker film than the first superconductor and which is more difficult to penetrate than a conductor, is arranged so as to form a predetermined angle that is neither parallel nor perpendicular to the Abrikosov magnetic flux quantum writing control line. A superconducting memory circuit featuring: 4. In the superconducting memory circuit according to any one of claims 1 to 3, as a method for erasing Abrikosov magnetic flux quanta held in the first superconductor, a third superconductor A current in the opposite direction to that during writing is passed through the control line for magnetic flux quantum writing, which is made up of A superconducting memory circuit characterized by erasing magnetic flux quanta. 5. In the superconducting memory circuit according to any one of claims 1 to 3, as a method for erasing Abrikosov magnetic flux quanta held in the first superconductor, magnetic flux quanta are removed from the first superconductor. A superconducting memory circuit characterized in that a magnetic flux quantum drive current is caused to flow through a first superconductor so as to exert a driving force in the direction of discharging the superconductor to the outside of the superconductor to perform magnetic flux quantum erasure.
JP59188941A 1984-09-11 1984-09-11 Superconduction storage circuit Granted JPS6168799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59188941A JPS6168799A (en) 1984-09-11 1984-09-11 Superconduction storage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59188941A JPS6168799A (en) 1984-09-11 1984-09-11 Superconduction storage circuit

Publications (2)

Publication Number Publication Date
JPS6168799A JPS6168799A (en) 1986-04-09
JPH0334153B2 true JPH0334153B2 (en) 1991-05-21

Family

ID=16232582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59188941A Granted JPS6168799A (en) 1984-09-11 1984-09-11 Superconduction storage circuit

Country Status (1)

Country Link
JP (1) JPS6168799A (en)

Also Published As

Publication number Publication date
JPS6168799A (en) 1986-04-09

Similar Documents

Publication Publication Date Title
TWI224335B (en) Thin-film magnetic memory device
US5396455A (en) Magnetic non-volatile random access memory
EP1204976B1 (en) Method and apparatus for reading a magnetoresistive memory
CN1345069A (en) Method and device for reading memory cell of resistance crossover point array
US5515314A (en) Storage device
US3094685A (en) Non-destructive readout system
JPS60253091A (en) Semiconductor storage device
JPH10247382A (en) Multi-piece cell, and magnetic random access memory array including the cell
US4764898A (en) Vortex memory device
JPH0334153B2 (en)
US7489589B2 (en) MRAM internal clock pulse generation with an ATD circuit and the method thereof
Uehara et al. Trapped vortex memory cells
US3201765A (en) Apparatus without moving parts, for moving a storage area along a storage medium
US3196408A (en) Superconductive storage circuits
US3381283A (en) Open flux memory with sensing plane
US4587636A (en) Y-domain magnetic memory system
JPS58159294A (en) Semiconductor storage device
EP0685849B1 (en) Storage device
US3303478A (en) Information coupling arrangement for cryogenic systems
US3495224A (en) Thin film memory system
JPH0352679B2 (en)
JPH0219982B2 (en)
SU1064318A1 (en) Storage element for random-access memory
Burns et al. Continuous sheet superconductive memory
GB1062465A (en) Cryogenic memory apparatus