JPH0334116A - Magnetic recording medium and production thereof - Google Patents
Magnetic recording medium and production thereofInfo
- Publication number
- JPH0334116A JPH0334116A JP16666589A JP16666589A JPH0334116A JP H0334116 A JPH0334116 A JP H0334116A JP 16666589 A JP16666589 A JP 16666589A JP 16666589 A JP16666589 A JP 16666589A JP H0334116 A JPH0334116 A JP H0334116A
- Authority
- JP
- Japan
- Prior art keywords
- recording medium
- magnetic recording
- ion beam
- semiconductor
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000010410 layer Substances 0.000 claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 239000011241 protective layer Substances 0.000 claims abstract description 18
- 239000004065 semiconductor Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 150000001875 compounds Chemical class 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 6
- 230000001678 irradiating effect Effects 0.000 abstract 3
- 239000007769 metal material Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 46
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 239000007789 gas Substances 0.000 description 24
- 238000012360 testing method Methods 0.000 description 14
- 235000012239 silicon dioxide Nutrition 0.000 description 12
- 239000000377 silicon dioxide Substances 0.000 description 12
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 6
- 239000011295 pitch Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000006061 abrasive grain Substances 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 238000007772 electroless plating Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- 229910018487 Ni—Cr Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は磁気記録媒体、及び、その製造方法すこ係り、
特に、磁気記録装置に用いられる磁気記録媒体及びその
製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic recording medium and a method for manufacturing the same;
In particular, the present invention relates to a magnetic recording medium used in a magnetic recording device and a method for manufacturing the same.
〔従来の技術〕
近年、コンピュータシステムにおける外部記憶装置とし
ての磁気ディスクの重要性が増大し、その記憶密度は年
々著しい向上が図られている。従来、磁気記録媒体は、
針状γ−FezOs微粒子を有機バインダ中に分散した
粘性材料をアルミ合金基板上にスピン塗布後、焼成した
塗布型媒体の薄膜化を中心に開発が進められ、現在広く
用いられている。しかし、記憶密度のより高密度化を達
成するためには媒体の薄膜化が必要となるが、現在の塗
布型媒体では技術的に限界があると考えられ、これに代
わる高密度磁気ディスクとして、薄膜化が容易な金属磁
性薄膜媒体をもつ磁気ディスクが注目されている。この
金属磁性薄膜媒体はメツキ技術によって形成するメツキ
磁気ディスク、金属磁性膜(Go−Cr、Co−Niな
ど)、あるいは、金属酸化物磁性膜(γ−Fe20a等
)を用いたスパッタディスク等が開発され、記録密度を
大幅に増加しうるものと期待されている。[Prior Art] In recent years, the importance of magnetic disks as external storage devices in computer systems has increased, and the storage density thereof has been significantly improved year by year. Conventionally, magnetic recording media are
Development has been focused on the thinning of coated media in which a viscous material in which acicular γ-FezOs fine particles are dispersed in an organic binder is spin-coated onto an aluminum alloy substrate and then fired, and is currently widely used. However, in order to achieve higher storage density, it is necessary to make the media thinner, but current coated media are considered to have technical limitations, and as an alternative high-density magnetic disk, Magnetic disks with metal magnetic thin film media that can be easily made thin are attracting attention. These metal magnetic thin film media include plated magnetic disks formed by plating technology, metal magnetic films (Go-Cr, Co-Ni, etc.), or sputter disks using metal oxide magnetic films (γ-Fe20a, etc.). It is expected that the recording density will be significantly increased.
このような薄膜連続媒体を用いた磁気ディスクの一般的
な構造を以下に示す。すなわち、基板は高純度アルミニ
ウム合金が用いられ、その上に、非磁性の下地層が形成
される。下地層の上に磁性層が形成されるが、この二層
の間には、両者の密着性や磁性層の磁気特性向上を目的
として中間層が形成されることがある。磁性層の上には
、保護層、及び、潤滑層が形成される。The general structure of a magnetic disk using such a thin film continuous medium is shown below. That is, a high-purity aluminum alloy is used for the substrate, and a nonmagnetic underlayer is formed thereon. A magnetic layer is formed on the underlayer, but an intermediate layer may be formed between these two layers for the purpose of improving the adhesion between the two layers and the magnetic properties of the magnetic layer. A protective layer and a lubricating layer are formed on the magnetic layer.
この下地層は、磁性層の薄膜化を可能とし、低浮上量に
おける安定したヘッド浮揚状態を確保するために平坦性
、及び、平滑性が要求され、基板欠陥の著しい低減が必
要とされる。また、下地層には、機械的強度、加工性、
研磨性などの諸特性のほかに、例えば、特開昭59−4
5634号公報に開示されているように、磁性層、保護
層、または潤滑層の形成過程における熱処理によっても
下地層が帯磁しないことが要求される。This underlayer is required to have flatness and smoothness in order to enable the magnetic layer to be thinned, to ensure a stable head flying state at a low flying height, and to significantly reduce substrate defects. In addition, the base layer has mechanical strength, workability,
In addition to various properties such as polishability, for example, JP-A-59-4
As disclosed in Japanese Patent No. 5634, it is required that the underlayer is not magnetized even by heat treatment during the formation process of the magnetic layer, protective layer, or lubricating layer.
現在のディスク装置ではC、S S (Contact
5tartStop)方式が採用されており、装置停
止中は、磁気ヘッドとディスクとが接触しているが、起
動。Current disk devices use C, S S (Contact
5tartStop) method is adopted, and when the device is stopped, the magnetic head and disk are in contact with each other, but when the device starts up.
停止時には接触走行し、定常時には、気体膜を介して、
非接触走行する。このため、停止中の磁気ヘッドとディ
スク面の吸着防止や、起動、停止時の摩擦力低減が重要
な課題で、従来から一般的に下地層表面にテクスチャと
呼ばれている微細な溝が形成されている。下地層として
、一般的に、無電解メツキ法で形成したN1−P膜が用
いられており、テクスチャはN1−P膜の表面に研磨砥
粒とテープで形成する方法が広く用いられている。When stopped, it runs in contact, and when it is stationary, it runs through a gas film,
Drive without contact. For this reason, it is important to prevent the magnetic head from adhering to the disk surface when it is stopped, and to reduce the frictional force when starting and stopping. Conventionally, fine grooves called textures have been formed on the surface of the underlayer. has been done. An N1-P film formed by an electroless plating method is generally used as the base layer, and a method of forming the texture using abrasive grains and tape on the surface of the N1-P film is widely used.
テクスチャ形成後、多量の純水で洗浄、乾燥後、真空反
応装置により中間層、磁性層、及び、保護層が形成され
る。After forming the texture, washing with a large amount of pure water and drying, an intermediate layer, a magnetic layer, and a protective layer are formed using a vacuum reactor.
上記従来技術は、基板上に非磁性下地層、例えば、N1
−Pめつき層を形成した後、めっき層表面を研磨砥粒と
テープによる物理的な加工法で作成しているため1表面
に付着している研磨粉を洗浄除去する必要性から多量の
純水を用いている。The above-mentioned prior art has a non-magnetic underlayer on the substrate, for example, N1.
- After forming the P plating layer, the surface of the plating layer is created using a physical processing method using abrasive grains and tape, so it is necessary to wash and remove the abrasive powder adhering to the surface. It uses water.
従って、加工過程の時間が長く、また、コストも非常に
高くなるという問題があった。さらに、磁性層等の形成
が、一般的に、真空反応装置内で行うのにたいして、こ
の前処理加工は、大気中で行つているため、磁気記録媒
体全体の製造プロセスが複雑であるという問題があった
。Therefore, there are problems in that the processing time is long and the cost is also very high. Furthermore, while the magnetic layer is generally formed in a vacuum reactor, this pretreatment is performed in the atmosphere, which poses the problem of complicating the overall manufacturing process of the magnetic recording medium. there were.
本発明の目的は、磁気ヘッドと磁気記録媒体との摩擦係
数が小さく、さらに、耐摺動性に優れた磁気記録媒体、
および、その効率的な製造方法を提供することにある。An object of the present invention is to provide a magnetic recording medium that has a small coefficient of friction between a magnetic head and a magnetic recording medium, and has excellent sliding resistance.
and to provide an efficient manufacturing method thereof.
上記目的は、半導体あるいは金属元素を含んだ原料物質
を、水素結合、あるいは、フアンデアワールス結合状態
で基板上に形成した非磁性下地層、あるいは、保護層の
表面上に、半導体、あるいは、金属物質と化合する性質
をもつ元素を含むイオンビームを前記原料物質層に照射
し、前記原料物質内で化学反応を起こさせ、前記半導体
あるいは前記金属元素と照射イオン元素とからなる化合
物を。The above purpose is to apply a raw material containing a semiconductor or a metal element to the surface of a non-magnetic underlayer or a protective layer formed on a substrate in a hydrogen bond or Van der Waals bond state. The source material layer is irradiated with an ion beam containing an element that has the property of combining with a substance, causing a chemical reaction within the source material to form a compound consisting of the semiconductor or the metal element and the irradiated ion element.
前記非磁性下地層あるいは前記保護層上のイオンビーム
照射領域に局所的に形成することで遠戚される。This can be achieved by locally forming the ion beam irradiation area on the non-magnetic underlayer or the protective layer.
第2図は非磁性下地膜を形成した基板1上に二酸化シリ
コン酸化膜2を、局所的に付着させる方法を模式的に表
したものである。フアンデアワールス結合状態にある厚
みが100μmのモノシランガスの固化物3に、イオン
ビーム径50μmの酸素イオンビーム4を、加速エネル
ギ5 keVで照射し、イオンビーム4が照射された固
化物質3内で化学反応を起こさせ、シリコン元素と酸素
元素との化合物である二酸化シリコン2を、局所的に付
着させることができる。FIG. 2 schematically shows a method of locally depositing a silicon dioxide oxide film 2 on a substrate 1 on which a nonmagnetic base film is formed. An oxygen ion beam 4 with an ion beam diameter of 50 μm is irradiated to a solidified material 3 of monosilane gas with a thickness of 100 μm in a Van der Waals bond state at an acceleration energy of 5 keV, and chemical reaction occurs within the solidified material 3 irradiated with the ion beam 4. By causing a reaction, silicon dioxide 2, which is a compound of silicon element and oxygen element, can be locally deposited.
〈実施例1〉
磁気記録媒体の基板として直径5.25 インチのAf
1合金(M g v約4wt%含有)を用い、この基板
に通常の無電解メツキ法によりN i −P膜を12μ
m形成したのち、研磨加工して、面粗さRa(中心線平
均粗さ)5nm、膜厚10μmのN1−P膜付基板1を
得た。第1図に示すように。<Example 1> An Af substrate with a diameter of 5.25 inches was used as a substrate for a magnetic recording medium.
1 alloy (containing about 4 wt% Mgv), a 12 μm Ni-P film was applied to this substrate by the usual electroless plating method.
After forming the N1-P film, a substrate 1 with a N1-P film having a surface roughness Ra (center line average roughness) of 5 nm and a film thickness of 10 μm was obtained by polishing. As shown in Figure 1.
冷凍機5を備えた真空容器6内に搬送し、温度を一20
0℃に保持した直径200mmの円盤状冷却ヘッド7の
上に固定した。It is transported into a vacuum container 6 equipped with a refrigerator 5, and the temperature is lowered to -20°C.
It was fixed on a disc-shaped cooling head 7 with a diameter of 200 mm that was maintained at 0°C.
N1−P膜付基板1の温度を一190℃に保持し、冷却
ヘッド7を、回転数1Orpmで回転しながら、モノシ
ランガス(融点−185℃)3を。While maintaining the temperature of the N1-P film coated substrate 1 at -190°C and rotating the cooling head 7 at a rotation speed of 1 Orpm, monosilane gas (melting point -185°C) 3 was applied.
ガス吹き出し管8より、lcc/min 、の流入速度
で10分間供給し、膜厚5μmのモノシランガスの固化
物3を基板1の表面に作成した。The gas was supplied from the gas blowing pipe 8 at an inflow rate of 1cc/min for 10 minutes to form a solidified monosilane gas 3 having a film thickness of 5 μm on the surface of the substrate 1.
次に、イオン源9より、酸素イオンビーム4を50ke
Vの加速エネルギで引出し、第1図に示すように、モノ
シランガスの固化N3に照射した。Next, an oxygen ion beam 4 of 50 ke is emitted from the ion source 9.
It was extracted with an acceleration energy of V, and the solidified N3 of monosilane gas was irradiated as shown in FIG.
その時の酸素イオンビーム4の電流密度は、lOμA/
atで、イオンビーム4の照射領域の大きさは10μm
径であった。The current density of the oxygen ion beam 4 at that time is lOμA/
At, the size of the irradiation area of ion beam 4 is 10 μm
It was the diameter.
その結果、イオンビーム4が照射されたモノシランガス
の固化層3の内部ではシリコンと酸素との化学反応が起
こり、二酸化シリコン9が形成された。冷却ヘッド7を
、回転数1100rpで回転し、かつ、酸素イオンビー
ム4を半径方向に移動しながら断続して、モノシランガ
スの固化層3に照射した。その結果、N1−P膜付基板
1上に二酸化シリコン2の直径約10μm、高さ1〇−
20nmの凸部を同心円状でピッチ約5μm間隔で全面
に形成させることができた。次に、基板の温度を室温に
戻すと、酸素イオンビームを照射しなかった部分に形成
されていたモノシランガスの固化層3は蒸発して、消滅
した。そして、蒸発したモノシランガスは真空ポンプに
より排気された。As a result, a chemical reaction between silicon and oxygen occurred inside the solidified layer 3 of monosilane gas irradiated with the ion beam 4, and silicon dioxide 9 was formed. The cooling head 7 was rotated at a rotational speed of 1100 rpm, and the solidified layer 3 of monosilane gas was irradiated with the oxygen ion beam 4 intermittently while moving in the radial direction. As a result, the silicon dioxide 2 was placed on the N1-P film coated substrate 1 with a diameter of about 10 μm and a height of 10-
It was possible to form convex portions of 20 nm in concentric circles at a pitch of about 5 μm over the entire surface. Next, when the temperature of the substrate was returned to room temperature, the solidified layer 3 of monosilane gas that had been formed in the portions not irradiated with the oxygen ion beam evaporated and disappeared. The evaporated monosilane gas was then exhausted by a vacuum pump.
第3図に示すように、基板1を直流二極スパッタ装置(
図示せず)内に搬送し、連続的に中間層(Cr)11.
磁性層(Co−Ni−Cr)12および、保護層(C)
13を形成させた。スパッタ時の圧力はアルゴン圧力5
mTorr、 D C出力2kWで、それぞれの層の
厚さは、各々0.2μm。As shown in FIG.
(not shown) and continuously transport the intermediate layer (Cr) 11.
Magnetic layer (Co-Ni-Cr) 12 and protective layer (C)
13 was formed. The pressure during sputtering is argon pressure 5
mTorr, DC output of 2 kW, and the thickness of each layer was 0.2 μm.
50nm、及び、50nmであった。この工程の後、液
体潤滑剤を塗布して磁気記録媒体14を製造した。50 nm and 50 nm. After this step, a liquid lubricant was applied to manufacture the magnetic recording medium 14.
磁気記録媒体14を用いて、サファイアの球面摺動子に
10gf荷重を印加し、線速度10m/Sで摺動試験を
行った結果、摩擦係数は0.15以下で、また摩擦係数
も、一方間の試験後もほとんど上昇せず、耐摺動性に優
れた磁気記録媒体であることが判明した。Using the magnetic recording medium 14, a 10 gf load was applied to the sapphire spherical slider and a sliding test was performed at a linear velocity of 10 m/s. As a result, the friction coefficient was 0.15 or less, and the friction coefficient was also There was almost no increase after the test, and it was found that the magnetic recording medium had excellent sliding resistance.
さらに、記録媒体の摺動性を磁気ヘッドとしてM n
−Z nフェライトヘッドを用いて通常のC8S試験に
より評価したが、約三万回のC8S試験後にも、磁気記
録媒体の表面にはなんらのきずも認められなかった。Furthermore, the sliding property of the recording medium is M n
A normal C8S test was performed using a -Zn ferrite head, and no flaws were observed on the surface of the magnetic recording medium even after approximately 30,000 C8S tests.
上記のように、本実施例で形成した磁気記録媒体は、N
1−P膜上に研磨砥粒とテープによる加工でテクスチャ
を形成したのち、磁性層などを形成した従来の記録媒体
と比較しても耐摺動性はまったく遜色ないものであった
。As mentioned above, the magnetic recording medium formed in this example has N
The sliding resistance was comparable to that of conventional recording media in which a magnetic layer was formed after forming a texture on the 1-P film by processing with abrasive grains and tape.
さらに、本実”流側のテクスチャ加工法は従来の方法と
は異なり、加工後の純水による洗浄も不用で、また、テ
クスチャの形状も制御して加工できるため1歩留まりも
良く、品質管理も容易である。Furthermore, unlike conventional methods, Honjitsu's texture processing method does not require washing with pure water after processing, and the shape of the texture can be controlled and processed, resulting in good yields and easy quality control. It's easy.
〈実施例2〉
実施例1と同様に、磁気記録媒体の基板として直径5.
25インチのAf1合金(M g を約4wt%含有)
を用い、基板に通常の無電極メツキ法によりN i −
P膜を12μm形成したのち、研磨加工して、面粗さR
a (中心線平均粗さ)5nm、膜厚10μmのN1−
P膜付基板上を得、第1図に示すように、冷凍機5を備
えた真空容器6内に搬送し、温度を一55℃に保持した
直径200mmの円盤状冷却ヘッド7の上に固定した。<Example 2> As in Example 1, a substrate of a magnetic recording medium with a diameter of 5.5mm was used.
25 inch Af1 alloy (contains about 4 wt% M g )
Ni-
After forming a P film with a thickness of 12 μm, polishing was performed to improve the surface roughness R.
a (center line average roughness) 5 nm, film thickness 10 μm N1-
A substrate with a P film was obtained, and as shown in FIG. 1, it was transported into a vacuum container 6 equipped with a refrigerator 5 and fixed on a disk-shaped cooling head 7 with a diameter of 200 mm whose temperature was maintained at -55°C. did.
N1−P膜付基板1の温度を0℃に保持し、冷却ヘッド
7を、回転数1Orpmで回転しながら、トリメチルア
ルミニウムガス((CHs)3AQ、融点15.2℃)
を、ガス吹き出し口8より、1cc/win 、の流入
速度で10分間供給し、膜厚5μmのトリメチルアルミ
ニウムガスの固化物を基板lの表面に作成した。While maintaining the temperature of the N1-P film coated substrate 1 at 0°C and rotating the cooling head 7 at a rotational speed of 1 Orpm, trimethylaluminum gas ((CHs)3AQ, melting point 15.2°C) was heated.
was supplied from the gas outlet 8 at an inflow rate of 1 cc/win for 10 minutes to form a solidified trimethylaluminum gas having a film thickness of 5 μm on the surface of the substrate 1.
次に、イオン源9より、酸素イオンビーム4を3 ke
Vの加速エネルギで引出し、第2図に示すように、トリ
メチルアルミニウムガスの固化層に照射した。その時の
酸素イオンビーム4の電流密度は、10μA/−で、イ
オンビーム4の照射領域の大きさは10μm径であった
。Next, the oxygen ion beam 4 is emitted from the ion source 9 at 3 ke
It was extracted with an acceleration energy of V, and the solidified layer of trimethylaluminum gas was irradiated as shown in FIG. The current density of the oxygen ion beam 4 at that time was 10 μA/−, and the size of the irradiation area of the ion beam 4 was 10 μm in diameter.
その結果、イオンビーム4が照射されたトリメチルアル
ミニウムガスの固化層の内部ではアルミニウムと酸素と
の化学反応が起こり、酸化アルミニウムが形成された。As a result, a chemical reaction between aluminum and oxygen occurred inside the solidified layer of trimethylaluminum gas irradiated with the ion beam 4, and aluminum oxide was formed.
トリメチルアルミニウムに含まれるカーボンと水素元素
は、それぞれ、−酸化炭素と水となって真空排気された
。前述の実施例と同様に、冷却ヘッド7を、回転数1
rpmで回転し、かつ、酸素イオンビーム4を半径方向
に移動しながら断続して5 トリメチルアルミニウムガ
スの固化層に照射した。その結果、N1−P膜付基板1
上に酸化アルミニウムの直径約10μm、高さ10 2
0nmの凸部を同心円状でピッチ約5μm間隔で全面に
形成させることができた。Carbon and hydrogen elements contained in trimethylaluminum became carbon oxide and water, respectively, and were evacuated. As in the previous embodiment, the cooling head 7 is rotated at a rotational speed of 1
The solidified layer of 5 trimethylaluminum gas was irradiated with the oxygen ion beam 4 intermittently while rotating at rpm and moving in the radial direction. As a result, the N1-P film coated substrate 1
Approximately 10 μm in diameter and 10 2 in height of aluminum oxide on top
It was possible to form convex portions of 0 nm in concentric circles at a pitch of about 5 μm over the entire surface.
基板1を直流二極スパッタ装置(図示せず)内に搬送し
、連続的に中間層(Cr)11.磁性層(Co−Ni−
Cr)12および、保護層(C)13を形成させた。ス
パッタ時の圧力はアルゴン圧力5 mTorr、 D
C出力2kWで、それぞれの層の厚さは、各々、0.2
μm、50nm、及び、50nmであった。この工程の
後、液体潤滑剤を塗布して磁気記録媒体14を製造した
。The substrate 1 is transferred into a DC two-pole sputtering device (not shown), and an intermediate layer (Cr) 11. Magnetic layer (Co-Ni-
Cr) 12 and a protective layer (C) 13 were formed. The pressure during sputtering was argon pressure 5 mTorr, D
At a C output of 2 kW, the thickness of each layer is 0.2
They were μm, 50 nm, and 50 nm. After this step, a liquid lubricant was applied to manufacture the magnetic recording medium 14.
磁気記録媒体14を用いて、サファイアの球面摺動子に
10gf荷重を印加し、線速度10m/Sで摺動試験を
行った結果、摩擦係数は0.15以下で、また摩擦係数
も、一方間の試験後もほとんど上昇せず、耐摺動性に優
れた磁気記録媒体であることが判明した。Using the magnetic recording medium 14, a 10 gf load was applied to the sapphire spherical slider and a sliding test was performed at a linear velocity of 10 m/s. As a result, the friction coefficient was 0.15 or less, and the friction coefficient was also There was almost no increase after the test, and it was found that the magnetic recording medium had excellent sliding resistance.
さらに、記録媒体の摺動特性を磁気ヘッドとしてM n
−Z nフェライトヘッドを用いて通常のC8S試験
により評価したが、約三万回のC8S試験後にも、磁気
記録媒体の表面にはなんらのきずも認められなかった。Furthermore, M n
A normal C8S test was performed using a -Zn ferrite head, and no flaws were observed on the surface of the magnetic recording medium even after approximately 30,000 C8S tests.
このように1本実施例で形成した磁気記録媒体は、N1
−P膜上に研磨砥粒とテープによる加工でテクスチャを
形成したのち、磁性層などを形成した従来の記録媒体と
比較しても耐摺動性はまったく遜色ないものであった。As described above, the magnetic recording medium formed in this example has an N1
The sliding resistance was comparable to that of conventional recording media in which a magnetic layer was formed after forming a texture on the -P film using abrasive grains and tape.
〈実施例3〉
実施例1,2におけるモノシランガス、トリメチルアル
ミニウムガスの代わりに、四塩化チタン(T i CQ
a、融点−25℃)の固化層を基板1の表面に作威し
、実施例1,2と同様の装置、方法を用い、酸素イオン
ビーム4を固化層に照射し、酸化チタン(TiO2)の
凸部を同心円状でピッチ約5μm間隔で該基板1の表面
に全面に形成させることができた。酸化チタンを付着し
た上記の基板1の表面に連続的に中間1(Cr)11.
磁性層(Co −N i Cr ) 12および、保
護層(C)13を形成させた後、液体潤滑剤を塗布して
磁気記録媒体14を製造した。<Example 3> Instead of monosilane gas and trimethylaluminum gas in Examples 1 and 2, titanium tetrachloride (T i CQ
a, melting point -25°C) is formed on the surface of the substrate 1, and using the same apparatus and method as in Examples 1 and 2, the solidified layer is irradiated with an oxygen ion beam 4 to form titanium oxide (TiO2). It was possible to form convex portions on the entire surface of the substrate 1 in concentric circles with a pitch of about 5 μm. Intermediate 1 (Cr) 11.
After forming the magnetic layer (Co-NiCr) 12 and the protective layer (C) 13, a liquid lubricant was applied to manufacture the magnetic recording medium 14.
この磁気記録媒体14も耐摺動性に優れた磁気記録媒体
で、従来の記録媒体と比較しても耐摺動性はまったく遜
色ないものであった。This magnetic recording medium 14 is also a magnetic recording medium with excellent sliding resistance, and its sliding resistance is comparable to that of conventional recording media.
〈実施例4〉
磁気記録媒体の下地層は、N1−P膜に限られることは
なく、非磁性の材料、例えば、金属窒化物、炭化物、酸
化物、及び、硼化物膜も用いることができる。<Example 4> The underlayer of the magnetic recording medium is not limited to the N1-P film, and nonmagnetic materials such as metal nitride, carbide, oxide, and boride films can also be used. .
基板として、直径5.25 インチのAQ合金を用い、
基板上にマグネトロンスーパツタ法により金属Tiをタ
ーゲットにして、A r + N z中で高周波出力2
kWで、TiN膜を2μm形成した。基板1上に実施例
1と同様な方法で、5iOzの微少凸部を形成し、磁性
層などを形成して、磁気記録媒体を作成した。本実施例
で作成した磁気記録媒体を実施例1と同様に耐摺動性を
評価した結果、はぼ、同等の性能をもつことがわかった
。AQ alloy with a diameter of 5.25 inches was used as the substrate,
A high frequency output of 2 was generated in Ar + Nz using a metal Ti as a target on the substrate using the magnetron superstructure method.
kW to form a 2 μm TiN film. A minute convex portion of 5 iOz was formed on the substrate 1 in the same manner as in Example 1, and a magnetic layer and the like were formed to produce a magnetic recording medium. The sliding resistance of the magnetic recording medium prepared in this example was evaluated in the same manner as in Example 1, and it was found that the magnetic recording medium had substantially the same performance.
〈実施例5〉
磁気記録媒体用の基板として、直径3.5 インチのA
Q合金基基板2を用い、基板20上に、無電解メツキ法
で12μmの厚みのN1−P膜21を形成した後、表面
を研磨加工して、N1−P膜厚10μm、表面粗さ(R
a4nm)の基板を作成した。<Example 5> A 3.5-inch diameter substrate was used as a substrate for a magnetic recording medium.
Using the Q alloy base substrate 2, an N1-P film 21 with a thickness of 12 μm was formed on the substrate 20 by an electroless plating method, and the surface was polished to obtain a N1-P film thickness of 10 μm and a surface roughness ( R
A4 nm) substrate was created.
この基板に実施例1と同じ条件で、中間層11(Cr)
、磁性層12 (Go−Ni−Cr)及び、保護層13
(C)をスパッタ法で形成した。各層の膜厚はそれぞれ
、0.25 μm、 40 nm、50nmであった。An intermediate layer 11 (Cr) was formed on this substrate under the same conditions as in Example 1.
, magnetic layer 12 (Go-Ni-Cr), and protective layer 13
(C) was formed by sputtering. The thickness of each layer was 0.25 μm, 40 nm, and 50 nm, respectively.
これらの各層を形成した基板を用いて、実施例1と同じ
装置により、保護膜13上に二酸化シリコンの凸状物2
を形成した。Using the same device as in Example 1, using the substrate on which each of these layers was formed, a convex shape of silicon dioxide 2 was formed on the protective film 13.
was formed.
本実施例で形成させた二酸化シリコンの凸部の形状は、
直径約10μm、高さ10nm以下であり、また、はぼ
面内に均一に分布するように形成させた。The shape of the convex portion of silicon dioxide formed in this example is as follows:
The particles had a diameter of about 10 μm and a height of 10 nm or less, and were formed so as to be uniformly distributed within the warp surface.
この凸部の形成法は、例えば、円板の円周方向に規則的
なピッチで形成してもよく、また、円板面に、はぼ、ラ
ンダムに分布するようにしても構わない。The convex portions may be formed, for example, at regular pitches in the circumferential direction of the disk, or may be randomly distributed on the disk surface.
この円板上に液体潤滑剤をスピンコード法により、約5
nmの膜厚で塗布して、磁気記録媒体を形成した。Approximately 50% of liquid lubricant was applied onto this disk by spin code
A magnetic recording medium was formed by coating with a film thickness of nm.
磁気記録媒体を用いて、サファイアの球面摺動子に10
gf荷重を印加し、線速度10m/sの条件で摺動試験
を行った結果、摩擦係数は約0.2以下であり、この値
は約一方間の測定後にも、はぼ同じ値であった。さらに
、AQzOa TiC系の磁気ヘッドを用いて、C8
S試験を行った結果、約三方間のCSS試験後も、磁気
記録媒体表面にはきすの発生は認められず、耐摺動性に
優れた磁気記録媒体であることがわかった。10 on a sapphire spherical slider using a magnetic recording medium.
As a result of applying a gf load and performing a sliding test under the conditions of a linear velocity of 10 m/s, the friction coefficient was approximately 0.2 or less, and this value remained approximately the same even after approximately one-way measurement. Ta. Furthermore, using an AQzOa TiC-based magnetic head, C8
As a result of conducting the S test, no scratches were observed on the surface of the magnetic recording medium even after the CSS test from about three sides, and it was found that the magnetic recording medium had excellent sliding resistance.
〈実施例6〉
実施剥土と同様に、磁気記録媒体の基板として直径5.
25 インチのAQ合金(M g y約4wt%含有)
20を用い、基板20に通常の無電解メツキ法によりN
1−P膜を12μmの厚さ形成したのち、研磨加工して
、面粗さRa(中心線平均粗さ)5nm、膜厚10μm
のN1−P膜2■を作成し、その上に実施例1と同じ条
件で、第4図に示すように、中間層11(Cr)、磁性
J112(Co−Ni−Cr)及び、保護層13(C)
をスパッタ法で形成した。各層の膜厚はそれぞれ、0.
25 μm、410nm、50nmであった。<Example 6> Similar to the actual stripping, a substrate with a diameter of 5 mm was used as a substrate for a magnetic recording medium.
25 inch AQ alloy (contains about 4wt% M g y)
20, and the substrate 20 is coated with N by the usual electroless plating method.
After forming a 1-P film with a thickness of 12 μm, it was polished to a surface roughness Ra (center line average roughness) of 5 nm and a film thickness of 10 μm.
An intermediate layer 11 (Cr), a magnetic J112 (Co-Ni-Cr), and a protective layer were formed on it under the same conditions as in Example 1, as shown in FIG. 13(C)
was formed by sputtering. The thickness of each layer is 0.
They were 25 μm, 410 nm, and 50 nm.
この各層を形成した基板を、第工図に示すように、冷凍
機5を備えた真空容器6内に搬送し、温度を一55℃に
保持した直径200naの円盤状冷却ヘッド7の上に固
定した。As shown in the construction drawing, the substrate on which each layer has been formed is transported into a vacuum container 6 equipped with a refrigerator 5 and fixed on a disk-shaped cooling head 7 with a diameter of 200 na kept at a temperature of -55°C. did.
N1−P膜付基板の温度を一100℃に保持し、冷却ヘ
ッド7を、回転数1Orpmで回転しながら、ガス吹き
出し管8より、四塩化シリコンガス(S i CQ4、
融点−70℃)をO、lee/ffl1n、の流入速度
で10分間供給し、膜厚1μmの四塩化シリコンガスの
固化物21を保護層13の表面に均一に形成した。While maintaining the temperature of the N1-P film coated substrate at -100°C and rotating the cooling head 7 at a rotational speed of 1 Orpm, silicon tetrachloride gas (S i CQ4,
(melting point -70° C.) was supplied for 10 minutes at an inflow rate of O, lee/ffl1n, to uniformly form a solidified silicon tetrachloride gas 21 with a film thickness of 1 μm on the surface of the protective layer 13.
次に、真空容器3に接続した集束イオンビーム発生装置
9より、加速エネルギ5 keVで酸素イオンビーム4
を、保護層の表面に二次元的に走査して照射した。Next, an oxygen ion beam 4 is generated with an acceleration energy of 5 keV from a focused ion beam generator 9 connected to the vacuum container 3.
was scanned and irradiated onto the surface of the protective layer in a two-dimensional manner.
集束酸素イオンビームの電流密度分布は、第5図(a)
に示すように、中心部で直径50nmの領域で102A
/ln、その周囲に直径300nmの領域で50μA/
(1#であった。−ケ所あたりのイオンビーム照射時間
は1/100秒であった。The current density distribution of the focused oxygen ion beam is shown in Figure 5(a).
102A in a region with a diameter of 50 nm at the center as shown in
/ln, 50μA/ln in a 300nm diameter area around it.
(It was 1#.) The ion beam irradiation time per location was 1/100 second.
集束酸素イオンビームが照射された部分では、四塩化シ
リコンガス(SiCQi)とイオン打ち込みされた酸素
元素(○)とで化学反応が起こり、二酸化シリコン酸化
膜(SiO2)が形成された。In the area irradiated with the focused oxygen ion beam, a chemical reaction occurred between silicon tetrachloride gas (SiCQi) and the ion-implanted oxygen element (○), and a silicon dioxide oxide film (SiO2) was formed.
その膜厚分布は、第5図(b)に示すように、直径50
nmの中心部領域で高さ10nmで、その外側で高さが
2nm以下の領域が直径50μmにわたる凸部領域であ
った。The film thickness distribution is as shown in Figure 5(b), with a diameter of 50 mm.
The convex region had a height of 10 nm in the central region of 10 nm, and the region outside the central region with a height of 2 nm or less had a diameter of 50 μm.
イオンビーム走査電極22への印加電圧を変化させて、
円盤状冷却ヘッド7を、回転数1 rpmで回転しなが
ら、パルス的にイオンビーム4の走査位置を制御するこ
とにより、この凸部をスパイラル状でピッチ約5μm間
隔で保護層13の表面全体に形成した。By changing the voltage applied to the ion beam scanning electrode 22,
By controlling the scanning position of the ion beam 4 in a pulsed manner while rotating the disc-shaped cooling head 7 at a rotational speed of 1 rpm, the convex portions are formed in a spiral pattern over the entire surface of the protective layer 13 at intervals of approximately 5 μm. Formed.
この凸部の形成法は集束イオンビームの走査方法を制御
することにより、例えば、円板の円周方向に規則的なピ
ッチで形成してもよく、また、円板面に、はぼ、ランダ
ムに分布するようにしても構わない。By controlling the scanning method of the focused ion beam, the convex portions may be formed at regular pitches in the circumferential direction of the disk, or they may be formed on the disk surface at irregular or random pitches. It does not matter if it is distributed as follows.
この円板上に液体潤滑剤をスピンコード法により、約5
nmの膜厚で塗布して、磁気記録媒体を形成した。Approximately 50% of liquid lubricant was applied onto this disk by spin code
A magnetic recording medium was formed by coating with a film thickness of nm.
磁気記録媒体を用いて、サファイアの球面摺動子に10
gf荷重を印加し、線速度10m/sの条件で摺動試験
を行った結果、摩擦係数は約0.2以下であり、この値
は約一方図の測定後にも、はぼ同じ値であった。さらに
、AnzOs TiC系の磁気ヘッドを用いて、C8
S試験を行った結果、約三方間のCSS試験後も、磁気
記録媒体表面にはキズの発生は認められず、耐摺動性に
優れた磁気記録媒体であることがわかった。10 on a sapphire spherical slider using a magnetic recording medium.
As a result of applying a gf load and performing a sliding test under the conditions of a linear velocity of 10 m/s, the friction coefficient was approximately 0.2 or less, and this value remained approximately the same even after the measurements in the figure. Ta. Furthermore, using an AnzOs TiC magnetic head, C8
As a result of conducting the S test, no scratches were observed on the surface of the magnetic recording medium even after the CSS test on about three sides, and it was found that the magnetic recording medium had excellent sliding resistance.
〈実施例7〉
実施例5では、磁気記録媒体の保護膜はスパッタ法で形
成したカーボンの例を用いたが、本発明はそれに限定さ
れることはない。保護膜材料としてカーボンを用いる場
合にはプラズマCVD法。Example 7 In Example 5, the protective film of the magnetic recording medium was made of carbon formed by sputtering, but the present invention is not limited thereto. Plasma CVD method when carbon is used as the protective film material.
イオンビームスパッタ法、光CVD法などで形成された
硬質炭素膜でも、実施例と同様の凸部を表面に形成する
ことができる。Even with a hard carbon film formed by ion beam sputtering, photo-CVD, etc., convex portions similar to those in the embodiment can be formed on the surface.
また、保護膜材料もカーボンに限定されることはなく、
金属、あるいは、半導体の窒化物、炭化物、酸化物、及
び、硼化物膜でも構わない。Furthermore, the protective film material is not limited to carbon;
A metal or semiconductor nitride, carbide, oxide, or boride film may be used.
さらに、実施例5に示した保護膜上に凸部を形成させる
材料も、二酸化シリコンに限定されることはなく、A
Q 、 T i等の酸化物でも同様の効果が得られる。Furthermore, the material for forming the convex portions on the protective film shown in Example 5 is not limited to silicon dioxide, and
Similar effects can be obtained with oxides such as Q and Ti.
また、実施例5に示したように、保護膜上に二酸化シリ
コン膜の凸部を形成した後、テープ等によるバニッシン
グやイオンビームシャワーなどで、表面の異常凸部(平
均的な凸部より高い個所)を削り落したのち、液体潤滑
剤を塗布して磁気記録媒体を形成してもよい。In addition, as shown in Example 5, after forming the convex portions of the silicon dioxide film on the protective film, abnormal convex portions (higher than average convex portions) on the surface were removed by burnishing with tape or the like or with an ion beam shower. A magnetic recording medium may be formed by applying a liquid lubricant after scraping off the magnetic recording medium.
本発明によれば、ドライ雰囲気でテクスチャ構造物質を
制御性良く形成することができる。さらに、テクスチャ
構造物質の膜厚分布がちょうどイオンビームの強度分布
に比例するので、コーナ部が丸−いテクスチャ構造を容
易に作成することができる。According to the present invention, a texture structure material can be formed with good controllability in a dry atmosphere. Furthermore, since the thickness distribution of the texture structure material is exactly proportional to the intensity distribution of the ion beam, a texture structure with rounded corners can be easily created.
第1図は本発明を示す一実施例の説明図、第2図は本発
明の基本原理の説明図、第3図は、磁気記録媒体の断面
図、第4図は磁気記録媒体へ凸状物を形成するための説
明図、第5図(a)は集束イオンビームの電流密度分布
図、第5図(b)は形成された二酸化シリコンの膜厚分
布図である。
1・・・非磁性下地膜付き基板、2・・・二酸化シリコ
ン。
3・・・モノシランガス、4・・・酸素イオンビーム、
5・・冷凍機、
6・・・真空容器、
7・・・円盤状冷却ヘッド、
8・・・ガス吹きだし管、
9・・・イオン源、
22・・・イオ
第
図
第2図
第
図
4
第
図
第
図
−150−100−50050100f50.71□中
lビFig. 1 is an explanatory diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the basic principle of the invention, Fig. 3 is a sectional view of a magnetic recording medium, and Fig. 4 is a convex shape on the magnetic recording medium. An explanatory diagram for forming an object, FIG. 5(a) is a current density distribution diagram of a focused ion beam, and FIG. 5(b) is a film thickness distribution diagram of formed silicon dioxide. 1...Substrate with non-magnetic base film, 2...Silicon dioxide. 3... Monosilane gas, 4... Oxygen ion beam,
5... Refrigerator, 6... Vacuum container, 7... Disc-shaped cooling head, 8... Gas outlet tube, 9... Ion source, 22... Io diagram, Figure 2, Figure 4 Figure Figure -150-100-50050100f50.71□Middle Bi
Claims (1)
性下地層の上に磁性層及び保護層を形成させた磁気記録
媒体の製造方法において、 前記非磁性下地層上に半導体あるいは金属元素を含む化
合物を、水素結合、あるいは、フアンデアワールス結合
状態で形成させたのち、前記半導体あるいは金属と化合
する性質をもつ元素を含むイオンビームを照射し、前記
水素結合あるいはフアンデアワールス結合状態物質内で
化学反応を起こさせ、前記半導体あるいは前記金属元素
と照射イオン元素との化合物を、前記イオンビームの照
射領域に局所的に付着させたのち、付着層の上に、前記
磁性層及び前記保護層を形成させたことを特徴とする磁
気記録媒体の製造方法。 2、請求項1に記載の磁気記録媒体の製造方法において
、前記基板上に、前記非磁性下地層、前記磁性層、及び
、前記保護層を形成した上に、前記半導体あるいは前記
金属元素を含む化合物を、前記水素結合あるいはフアン
デアワールス結合状態で形成させたのち、前記半導体あ
るいは金属と化合する性質をもつ元素を含むイオンビー
ムを照射し、前記水素結合あるいはフアンデアワールス
結合状態物質内で化学反応を起こさせ、前記半導体ある
いは金属元素と照射イオン元素との化合物を、前記イオ
ンビーム照射領域に局所的に付着させたことを特徴とす
る磁気記録媒体の製造方法。 3、請求項1、2に記載の前記半導体あるいは前記金属
元素を含む化合物の水素結合あるいはフアンデアワール
ス結合状態の生成方法として、前記半導体あるいは前記
金属元素を含む化合物で常温、常圧下で液体、あるいは
、気体状の物質を真空中で固化させた層を形成させるこ
とを特徴とする磁気記録媒体の製造方法。 4、請求項1または2に記載の前記イオンビームによつ
て形成された化合物が、前記基板の片面、あるいは、両
面に、同心円状、あるいは、スパイラル状に形成されて
いることを特徴とする磁気記録媒体の製造方法。 5、請求項、2、3または4に記載の磁気記録媒体の製
造方法において、酸素、窒素、炭素、硼素元素を含むイ
オンビームを用いることを特徴とする磁気記録媒体製造
方法。 6、請求項1、2、3、4または5に記載の磁気記録媒
体の製造方法において、集束イオンビームを用いること
を特徴とする磁気記録媒体製造方法。 7、請求項1または2に記載の磁気記録媒体を組み込ん
だ磁気記録装置、及び、光磁気記録装置。[Claims] 1. A method for manufacturing a magnetic recording medium, in which a nonmagnetic underlayer is formed on a substrate, and then a magnetic layer and a protective layer are formed on the nonmagnetic underlayer, comprising: After forming a compound containing a semiconductor or a metal element on a geological layer in a hydrogen bond or Van der Waals bond state, an ion beam containing an element that has the property of combining with the semiconductor or metal is irradiated to remove the hydrogen bond. Alternatively, a chemical reaction is caused within the Van der Waals bond state material, and a compound of the semiconductor or the metal element and the irradiated ion element is locally deposited on the ion beam irradiation area, and then the compound is deposited on the deposited layer. . A method of manufacturing a magnetic recording medium, characterized in that the magnetic layer and the protective layer are formed. 2. The method for manufacturing a magnetic recording medium according to claim 1, wherein the non-magnetic underlayer, the magnetic layer, and the protective layer are formed on the substrate, and the semiconductor or the metal element is further formed on the substrate. After a compound is formed in the hydrogen bond or van der Waals bond state, an ion beam containing an element that has the property of combining with the semiconductor or metal is irradiated to form a chemical compound in the hydrogen bond or van der Waals bond state. A method for manufacturing a magnetic recording medium, characterized in that a reaction is caused and a compound of the semiconductor or metal element and the irradiated ion element is locally attached to the ion beam irradiation area. 3. A method for producing a hydrogen bond or a Van der Waals bond state in the semiconductor or a compound containing the metal element according to claims 1 and 2, wherein the semiconductor or the compound containing the metal element is liquid at room temperature and pressure; Alternatively, a method for manufacturing a magnetic recording medium characterized by forming a layer made of a gaseous substance solidified in a vacuum. 4. A magnetic compound characterized in that the compound formed by the ion beam according to claim 1 or 2 is formed on one side or both sides of the substrate in a concentric or spiral shape. A method for manufacturing a recording medium. 5. A method for manufacturing a magnetic recording medium according to claim 2, 3 or 4, characterized in that an ion beam containing oxygen, nitrogen, carbon, and boron elements is used. 6. A method for manufacturing a magnetic recording medium according to claim 1, 2, 3, 4 or 5, characterized in that a focused ion beam is used. 7. A magnetic recording device and a magneto-optical recording device incorporating the magnetic recording medium according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16666589A JPH0334116A (en) | 1989-06-30 | 1989-06-30 | Magnetic recording medium and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16666589A JPH0334116A (en) | 1989-06-30 | 1989-06-30 | Magnetic recording medium and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0334116A true JPH0334116A (en) | 1991-02-14 |
Family
ID=15835462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16666589A Pending JPH0334116A (en) | 1989-06-30 | 1989-06-30 | Magnetic recording medium and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0334116A (en) |
-
1989
- 1989-06-30 JP JP16666589A patent/JPH0334116A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0373419A (en) | Magnetic disk substrate and magnetic recording medium using it | |
US5223304A (en) | Process for fabricating magnetic disks | |
JPH0334116A (en) | Magnetic recording medium and production thereof | |
JP2006085889A (en) | Magnetic recording medium and production method therefor | |
JP2000212738A (en) | Magnetron sputtering method and production of magnetic recording medium | |
JP2625169B2 (en) | Method of manufacturing magnetic disk medium | |
JP2000057564A (en) | Manufacture of magnetic recording medium | |
JPH01271908A (en) | Magnetic storage body and magnetic storage device and its manufacture | |
JPS6038720A (en) | Substrate for magnetic disk | |
JP3649416B2 (en) | Method for manufacturing magnetic recording medium | |
JPH07225943A (en) | Magnetic recording medium | |
JPS61115229A (en) | Magnetic recording medium | |
JPS62134826A (en) | Production of magnetic memory body | |
JPH05325164A (en) | Magnetic recording medium and its manufacture | |
JPS59171031A (en) | Magnetic disk | |
JP3020245B2 (en) | Magnetron sputtering method and method for manufacturing magnetic recording medium | |
JPH0289216A (en) | Magnetic recording medium | |
JPS62120470A (en) | Manufacture of specular magnetic disk | |
JPH06325342A (en) | Magnetic recording medium | |
JPH01303601A (en) | Magnetic recording medium and device | |
JP2001209932A (en) | Method for manufacturing information recording medium | |
JPH03125322A (en) | Magnetic recording medium | |
JPH0417116A (en) | Magnetic recording medium | |
JPH01122028A (en) | Production of magnetic disk | |
JPS63239602A (en) | Magnetic recording method |