JPH03337A - Pneumatic spring - Google Patents

Pneumatic spring

Info

Publication number
JPH03337A
JPH03337A JP1131426A JP13142689A JPH03337A JP H03337 A JPH03337 A JP H03337A JP 1131426 A JP1131426 A JP 1131426A JP 13142689 A JP13142689 A JP 13142689A JP H03337 A JPH03337 A JP H03337A
Authority
JP
Japan
Prior art keywords
cord
nylon
hysteresis loss
aramid
diaphragm body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1131426A
Other languages
Japanese (ja)
Inventor
Kazuji Takamizawa
高見沢 和次
Fumio Chiba
千葉 二三雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP1131426A priority Critical patent/JPH03337A/en
Publication of JPH03337A publication Critical patent/JPH03337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diaphragms And Bellows (AREA)
  • Fluid-Damping Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To reduce hysteresis loss to increase anti-fatigue property and give excellent driving comfortableness by making a reinforcement layer of a complex cord in which nylon fiber is twined with aramid fiber, and covering the complex cord with a protection layer of flexible material. CONSTITUTION:The reinforcing layer 10 of the diaphragm body 5 of a pneumatic spring is made of a complex cord W in which nylon fiber N and aramid fiber A are twined, and the both surfaces of the cord W are coated with a protection layer of flexible material such as rubber, etc., to form the diaphragm body 5. Also, the diaphragm body 5 is constructed of two layers and a cord layer is positioned at some angle relative to an axis X-X. Since a hysteresis loss is produced by increasing and decreasing air pressure sealed in the diaphragm body 5, the aramid fiber A is twined integrally with the nylon N to reduce the hysteresis loss of the nylon remarkably. In the hybrid cord of aramid/ nylon, the nylon acts as a cushion material when the diaphragm body is bent to damp and absorb a stress due to bending, tension, and compression applied to the rigid aramid fiber.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、車両用懸架装置に用いられる空気バネに係
わり、更に詳しくは従来の空気バネのもつヒステリシス
ロスを改良すると共に高負荷の使用に耐え得る空気バネ
用膜体に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an air spring used in a vehicle suspension system, and more specifically, to improve the hysteresis loss of conventional air springs and to withstand high load use. The present invention relates to a membrane body for air springs.

〔従来の技術〕[Conventional technology]

車両用懸架装置等に用いられる空気バネ装置膜体1は、
第5図及び第6図に示すように、−般に補強コード2を
埋設したゴム等の可撓性材料を略円筒形状やベローズ型
形状に成形加硫し、その両端部に空気バネ装置への取付
部3を装着し、内部に圧縮空気を封入して、振動や衝撃
の緩和及び車高調整等の目的に用いられるものである。
The air spring device membrane 1 used for vehicle suspension systems, etc.
As shown in FIGS. 5 and 6, generally, a flexible material such as rubber with a reinforcing cord 2 embedded therein is molded and vulcanized into a substantially cylindrical or bellows shape, and air spring devices are attached to both ends of the flexible material such as rubber. The mounting portion 3 is attached to the vehicle, and compressed air is sealed inside the vehicle, which is used for purposes such as alleviating vibrations and shocks and adjusting vehicle height.

第7図及び第8回は、空気バネ装置膜体1の使用例であ
り、第7図は車両用懸架装置のピストン4の先端に、膜
体5の一端側を締付はリング6aを介して固定すると共
に、他端側は、締付はリング6bを介してキャップ7に
締付は固定させている。
Figures 7 and 8 show examples of how the air spring device membrane 1 is used. In Figure 7, one end of the membrane 5 is fastened to the tip of the piston 4 of a vehicle suspension system through a ring 6a. At the same time, the other end side is tightened and fixed to the cap 7 via a tightening ring 6b.

また、第8図の場合には、ベローズ型形状に形成された
膜体5の中央部に中間リング8を嵌め込み、膜体5の両
端には、面板9a、9bが気密的に嵌着させである。
In the case of FIG. 8, an intermediate ring 8 is fitted into the center of the membrane body 5 formed in a bellows shape, and face plates 9a and 9b are hermetically fitted to both ends of the membrane body 5. be.

また、上記のような従来の空気バネ装置用膜体1は、第
5図及び第6図に示すように、補強コード層が通常内側
と外側に二層埋設されており、しかもコードは膜体の軸
線X−Xに対して相互に角度をもって交差せしめて配置
されている。
Furthermore, as shown in FIGS. 5 and 6, the conventional membrane body 1 for an air spring device as described above usually has two reinforcing cord layers embedded inside and outside the membrane body, and the cords are embedded inside and outside the membrane body. are arranged so as to intersect with each other at an angle with respect to the axis X--X.

〔発明が解決しようとする問題点] ところが、空気バネに使用される補強コード2は、耐屈
曲疲労性を極度に要求されることから、第9図に示すよ
うな二本撚り合わせたナイロンN(6ナイロンや66ナ
イロン等)が通常用いられているが、ナイロンNは耐屈
曲疲労性に優れる反面、伸び及びヒステリシスロスが大
きく、故にコード層と接着しているコード層間のゴムの
変形も大きくなる。
[Problems to be Solved by the Invention] However, since the reinforcing cord 2 used in the air spring is required to have extremely high bending fatigue resistance, two strands of nylon N as shown in Fig. 9 are used. Nylon N (6 nylon, 66 nylon, etc.) is usually used, but while nylon N has excellent bending fatigue resistance, it has large elongation and hysteresis loss, and therefore the rubber deformation between the cord layer and the bonded cord layer is also large. Become.

この為、ナイロンNのヒステリシスロスとコF 層間の
ゴムのヒステリシスロスが重なり合って、空気バネ自体
のヒステリシスロス(懸架装置としてのフリクション)
が大きくなり、膜壁にかかる応力に対する歪に位相差が
生じ、振動や衝撃の吸収、緩和に支障をきたす。
For this reason, the hysteresis loss of the nylon N and the hysteresis loss of the rubber between the layers overlap, resulting in the hysteresis loss of the air spring itself (friction as a suspension device).
increases, and a phase difference occurs in the strain relative to the stress applied to the membrane wall, which impedes absorption and mitigation of vibrations and shocks.

即ち、振動や衝撃の未吸収、不緩和又は共振現象等が生
じ、車両の乗り心地性能へ悪影響を与えている。
That is, vibrations and shocks are not absorbed, unrelaxed, or resonate, which adversely affects the ride comfort of the vehicle.

また一方、最近の特に車両用空気バネは、従来の銅鉄ス
プリングと併用されてきたが、軽量化と車両性能改善の
ために、空気バネのみを用いる方向にあり、必然的に高
負荷空気バネの必要性が生じてきている。
On the other hand, recent air springs, especially for vehicles, have been used in combination with conventional copper-iron springs, but in order to reduce weight and improve vehicle performance, there is a trend toward using only air springs, and it is inevitable that high-load air springs will be used. The need has arisen.

従って、今後ヒステリシスロスを小さくし、且つ高負荷
に耐える空気バネの開発が必須となるものである。
Therefore, it will be essential in the future to develop air springs that can reduce hysteresis loss and withstand high loads.

これらの改良法として、ゴムに於ける高モジユラス化、
低伸び化が考えられているが、膜体の曲げ剛性が増大し
、ヒステリシスロスの低下は余り効果がないばかりか、
眉間の剥離やキレツが早まり実用的でない。
These improvement methods include increasing the modulus of rubber,
Although lower elongation has been considered, the bending rigidity of the membrane increases, and the reduction in hysteresis loss is not only ineffective, but also
It is not practical as it causes premature peeling and irritation between the eyebrows.

またコード面からは、低ヒステリシスロス、低伸び且つ
高モジュラス、高強力の材質、例えば、アラミド繊維等
も検討されているが、この種の繊維はナイロンと比べ極
端に屈曲疲労性に劣るため、コード寿命が早まり空気ハ
ネの破壊を生じせしめる。
In addition, from a cord perspective, materials with low hysteresis loss, low elongation, high modulus, and high strength, such as aramid fiber, are being considered, but this type of fiber has extremely poor bending fatigue resistance compared to nylon. This shortens the life of the cord and causes damage to the air springs.

他方、ナイロンコードを太くして高負荷化に対応する方
法も考えられるが、これは膜体の厚さを増大させ、ヒス
テリシスロスを一層大きくさせることになり、有効な手
段ではない。
On the other hand, it is possible to make the nylon cord thicker to handle higher loads, but this increases the thickness of the membrane and further increases the hysteresis loss, which is not an effective means.

これ故に、低ヒステリシスロス、高モジュラス、高強力
且つ耐屈曲性に優れたコード材が要望されている。
Therefore, there is a demand for a cord material with low hysteresis loss, high modulus, high strength, and excellent bending resistance.

〔発明の目的〕[Purpose of the invention]

この発明は、上述した問題を解決すべく本願発明者等が
鋭意研究を重ねた結果、見出したものであり、従来の空
気バネのヒステリシスロスを低減せしめ、アラミド繊維
の最大の欠点である耐疲労性を向上させ、特に車両用懸
架装置においては極めて良好な乗心地を与えると共に高
圧、高負荷で使用される空気バネの膜壁の厚さを変える
事なく、要求性能を満足させる事が可能となる理想的な
空気バネを提供することを目的とするものである。
This invention was discovered as a result of intensive research by the inventors of the present invention in order to solve the above-mentioned problems.It reduces the hysteresis loss of conventional air springs and improves fatigue resistance, which is the biggest drawback of aramid fibers. This improves performance and provides extremely good ride comfort, especially in vehicle suspension systems, and also makes it possible to satisfy required performance without changing the thickness of the membrane wall of air springs used under high pressure and high load. The purpose is to provide an ideal air spring.

〔発明の構成〕[Structure of the invention]

この発明は上記目的を達成するため、従来のナイロン繊
維のみからなるコードに代え、6ナイロン繊維とアラミ
ド繊維とを撚り合わせたハイブリッド(複合)コードを
用い、膜壁の厚さを変えずにヒステリシスロスを減少さ
せ、耐高負荷性及び耐疲労性を付与させた空気バネ装置
用の膜体をその要旨とする。
In order to achieve the above object, this invention uses a hybrid (composite) cord made by twisting 6 nylon fibers and aramid fibers instead of the conventional cord made only of nylon fibers, and uses a hysteresis cord without changing the thickness of the membrane wall. The gist is a membrane body for air spring devices that reduces loss and provides high load resistance and fatigue resistance.

〔発明の作用] この発明は、上記のように構成され、アラミド繊維のヒ
ステリシスロス特性に注目し、アラミドとナイロンとを
撚り合わせて一体化させ、ナイロンのヒステリシスロス
を大幅に低減させるものである。
[Operation of the invention] This invention is constructed as described above, focuses on the hysteresis loss characteristics of aramid fibers, and twists and integrates aramid and nylon to significantly reduce the hysteresis loss of nylon. .

なお、以下の説明で従来例と同一構成要素は、同−図面
及び同一符号を付して説明は省略する。
In the following description, the same components as those in the conventional example are denoted by the same drawings and the same reference numerals, and the description thereof will be omitted.

第1図はこの発明を実施した空気バネの膜体5を構成す
る補強層10を示し、この補強層10は、ナイロン繊維
Nとアラミド繊維Aとを撚り合わせた複合コードWに構
成している。
FIG. 1 shows a reinforcing layer 10 constituting a membrane body 5 of an air spring according to the present invention, and this reinforcing layer 10 is constructed into a composite cord W made by twisting nylon fibers N and aramid fibers A. .

そして、この複合コードWの両面に、ゴム等の可撓性材
料から成る保護層を被覆して膜体5を構成するものであ
る。
Then, both surfaces of the composite cord W are coated with a protective layer made of a flexible material such as rubber to form the membrane body 5.

前記、膜体5は第5図及び第6図に示すように二枚重ね
て構成され、そしてコード層は軸線X−Xに対して角度
をもって配置されている。
The membrane body 5 is constructed by stacking two layers as shown in FIGS. 5 and 6, and the cord layer is arranged at an angle with respect to the axis XX.

そして、このように構成した膜体5を、第7図及び第8
図に示すような空気バネ装置に取付けて使用する場合、
膜体5には圧縮空気が封入され、外部からの応力に対応
して膜体5に封入された空気圧が増減し、そして、空気
圧が増加した時には複合コードWにかかる応力は高くな
り、逆に減少した時には応力は低くなり、これらの繰り
返しの過程で、従来のナイロン繊維Nを単独に用いた膜
体5の場合には、ゴム、コードに疲労(劣化)現象が起
こることになる。またこの繰り返しはゴムやコードの如
き粘弾性特性を有する材料に変形に対する位相差をもた
らし、ここにヒステリシスロスという現象を発生させる
。このヒステリシスロスの発生は前述した通り振動や衝
撃の未吸収、不緩和、共振現象として外部に現われ車両
の乗心地性能に悪影響を与えている。
Then, the membrane body 5 constructed in this way is shown in FIGS. 7 and 8.
When used with an air spring device as shown in the figure,
Compressed air is sealed in the membrane body 5, and the air pressure sealed in the membrane body 5 increases or decreases in response to external stress.When the air pressure increases, the stress applied to the composite cord W increases, and vice versa. When the stress decreases, the stress becomes low, and in the process of repeating these steps, in the case of the conventional membrane body 5 using only nylon fibers N, fatigue (deterioration) phenomenon occurs in the rubber and cord. Moreover, this repetition causes a phase difference with respect to deformation in a material having viscoelastic properties such as rubber or cord, causing a phenomenon called hysteresis loss. As mentioned above, the occurrence of this hysteresis loss appears externally as unabsorbed or unrelaxed vibration or shock, or as a resonance phenomenon, and adversely affects the ride comfort of the vehicle.

従って、これらの支障を低減させる事は、このヒステリ
シスロスを如何に小さくするかにかかってくる。ところ
が、従来のナイロン繊維はヒステリシスロスが大きく、
特に高温領域(80−140”C)で、tanδが0.
02〜0.08と大きく変動し増大する。
Therefore, reducing these problems depends on how to reduce this hysteresis loss. However, conventional nylon fibers have large hysteresis loss,
Especially in the high temperature range (80-140"C), tan δ is 0.
It fluctuates greatly and increases from 0.02 to 0.08.

一方、アラミドのヒステリシスロスは温度依存性が極め
て小さく、tan δの値も0.01〜0゜02と総て
の温度領域で安定している。
On the other hand, the hysteresis loss of aramid has extremely low temperature dependence, and the value of tan δ is stable in the entire temperature range of 0.01 to 0°02.

この発明では、上記アラミド繊維Aのヒステリシスロス
特性に注目し、アラミド繊維AとナイロンNとを撚り合
わせ、一体化させ、ナイロンのヒステリシスロスを大幅
に低減させるものである。
This invention focuses on the hysteresis loss characteristic of the aramid fiber A, and twists and integrates the aramid fiber A and nylon N to significantly reduce the hysteresis loss of nylon.

ここで、ナイロン繊維としては6ナイロン、66ナイロ
ン、46ナイロン、11ナイロン等があげられ、所謂脂
肪族の主鎖にアミド結合を有する繊維量てを含む。
Here, nylon fibers include nylon 6, nylon 66, nylon 46, nylon 11, etc., and include fibers having an amide bond in the so-called aliphatic main chain.

又、アラミド繊維としては、デュポン社のKeular
” 、  アクゾ社の”TWARON”に代表されるポ
リ−パラフェニレンテレフタルアミドや帝人社の“TE
C)INORA”に代表されるポリパラフェニレン−3
,4ジフエニルエーテル・テレフタルアミド、更にデュ
ポン社の“NOMEX″、帝人社の′“C0NEX”に
代表されるポリメタフェニレンイソフタルアミドがあげ
られる。
Also, as aramid fiber, DuPont's Keular
", poly-paraphenylene terephthalamide represented by Akzo's "TWARON" and Teijin's "TE"
C) Polyparaphenylene-3 represented by "INORA"
, 4 diphenyl ether terephthalamide, and polymetaphenylene isophthalamide represented by DuPont's "NOMEX" and Teijin's "CONEX".

次に屈曲疲労性について述べる。Next, we will discuss bending fatigue properties.

ナイロンの耐屈曲疲労性は周知の如く、現在市販されて
いる繊維の中で最も優れた部類に属するが、前述したア
ラミド/ナイロンのハイブリッドコードは耐屈曲疲労性
に劣るアラミド繊維の欠点をナイロンで補うものである
As is well known, nylon's bending fatigue resistance is among the best among fibers currently on the market, but the aramid/nylon hybrid cord mentioned above uses nylon to overcome the drawbacks of aramid fibers, which have poor bending fatigue resistance. It is a supplement.

特に車両用の空気バネは過酷な条件下で使用されるため
、アラミド繊維のみから構成されるコードより、ハイブ
リッドコードは優れた耐疲労性を示す。
In particular, air springs for vehicles are used under harsh conditions, so hybrid cords exhibit superior fatigue resistance than cords made only of aramid fibers.

即ち、アラミド/ナイロンのハイブリッドコードは、膜
体が屈曲(コードの屈曲)された時にナイロンが一種の
緩衝材として働くものと考えられ、剛直なアラミド繊維
に加えられた曲げや伸長−圧縮による応力を緩和、吸収
する。
In other words, in aramid/nylon hybrid cords, when the membrane body is bent (cord bending), the nylon is thought to act as a kind of buffer material, and the stress due to bending, stretching, and compression applied to the rigid aramid fibers is reduced. Relax and absorb.

従って、アラミド/ナイロンの比率を考えた場合、ナイ
ロンの比率が高くなる程、疲労性が向上することになる
が、前述のヒステリシスロスが増加することになる為、
この比率が重要な要素となる。
Therefore, when considering the aramid/nylon ratio, the higher the nylon ratio, the better the fatigue resistance, but the above-mentioned hysteresis loss will increase.
This ratio is an important factor.

また、アラミド単体のコードの撚り数を多くせしめ、該
疲労性を改善する方法も考えられるが、撚り数の増加は
効果も薄く、強力低下を招(ので得策ではない。
It is also possible to increase the number of twists in a single aramid cord to improve its fatigue properties, but increasing the number of twists is less effective and leads to a decrease in strength (so it is not a good idea).

空気バネの高負荷化に対応する手段は応力を負担するコ
ードの高強力化にあるが、単純にコードの繊維量を増や
し、コード径を太くするのみでは他の特性、例えば耐屈
曲疲労性、ヒステリシスロス特性が損われる。
The means to cope with higher loads on air springs is to increase the strength of the cord that bears the stress, but simply increasing the amount of fiber in the cord and increasing the diameter of the cord will not improve other properties, such as bending fatigue resistance, Hysteresis loss characteristics are impaired.

この発明は、コードの高強力についても研究した結果、
上記アラミド/ナイロンのハイブリッド糸が非常に高い
強力を示すことを見出した。
This invention was developed as a result of research into the high strength of the cord.
It has been found that the aramid/nylon hybrid yarn described above exhibits very high tenacity.

通常、アラミド繊維とナイロン繊維は前者の切断伸びが
3〜5%、後者が15〜23%と大きく異なることから
、両者を撚り合わせた場合、アラミドとナイロンが個々
に切断し、期待した破断強力が得られない事が多い。
Normally, aramid fibers and nylon fibers have significantly different elongations at break, 3-5% for the former and 15-23% for the latter, so when they are twisted together, the aramid and nylon cut individually, resulting in the expected breaking strength. is often not obtained.

この発明では、この知見を踏まえ、アラミド繊維とナイ
ロン繊維のデニール(正量繊度)を可能な限り近ずけ、
諸撚り構造としたところ、極めて強力効率の良いコード
を得ることに成功した。
In this invention, based on this knowledge, the denier (positive fineness) of aramid fiber and nylon fiber is made as close as possible,
By using a plied structure, we succeeded in obtaining an extremely strong and efficient cord.

一般に、空気バネ膜体用補強コードは同一デニールの繊
維を2本撚り合わせた構造となっているので(例えば2
10d/2)、ナイロン繊維のデニールに近いアラミド
繊維をナイロン繊維と撚り合わせることにより、高強力
のコードがあられるばかりか、コード径を大きくするこ
とのない優れたコードを得ることができる。
In general, reinforcement cords for air spring membranes have a structure in which two fibers of the same denier are twisted together (for example, 2
10d/2), by twisting aramid fibers with a denier similar to that of nylon fibers with nylon fibers, not only can a cord with high strength be obtained, but also an excellent cord can be obtained without increasing the cord diameter.

これは即ち、膜体の厚さを増加させることなく、高負荷
用空気バネを提供することができることを意味し、その
技術的価値は大きい。
This means that it is possible to provide a high-load air spring without increasing the thickness of the membrane, which has great technical value.

以下、実施例で効果を詳述する。The effects will be explained in detail in Examples below.

〔実施例1] デュポン社製゛ケブラー“°タイプ964200デニー
ルと旭化成工業社製66ナイロン210dを撚り合わせ
て下記仕様のハイブリッドコードを作製した。
[Example 1] A hybrid cord having the following specifications was prepared by twisting Kevlar type 964200 denier manufactured by DuPont and 66 nylon 210d manufactured by Asahi Kasei Corporation.

該コードを先ずエポキシ水溶液に浸漬した後235°C
で60秒ヒートセットをし、次にRFL(レゾルテン−
フォルマリン−ラテックス)に浸漬し、230°Cで6
0秒ヒートセットを実施し、接着処理コードとした。
The cord was first immersed in an epoxy aqueous solution and then heated to 235°C.
Heat set for 60 seconds with
formalin-latex) and heated at 230°C for 6 hours.
A 0-second heat set was performed to obtain an adhesive-treated cord.

該処理コード富津製作所製オートグラフにて、強力及び
伸びを測定し、第4図の応力−歪曲線を得た。又これと
同時にケブラーコード(200d/2 下撚50回/ 
10 cm、上撚50回/10cm);66ナイロンコ
一ド2種(210d/2 下撚、上撚共に50回710
 cm ; 210d/3  下撚50回/l0CII
、上撚41回/IQcm)も同様に測定した。
Tensile strength and elongation were measured using an Autograph manufactured by Futtsu Seisakusho Co., Ltd., and the stress-strain curve shown in FIG. 4 was obtained. At the same time, Kevlar cord (200d/2, 50 twists/
10 cm, first twist 50 times/10cm); 2 types of 66 nylon cord (210d/2, both first twist and first twist 50 times 710
cm; 210d/3 first twist 50 times/l0CII
, 41 twists/IQcm) were similarly measured.

第2図にみる通り、ケブラー/66ナイロンハイブリツ
ドコードは、ケブラーの挙動に近く、破断強力もナイロ
ンコード2 L Od/3とほぼ同等であった。
As shown in FIG. 2, the behavior of the Kevlar/66 nylon hybrid cord was similar to that of Kevlar, and the breaking strength was almost the same as that of the nylon cord 2 L Od/3.

因にコードゲージは次の通りであった。Incidentally, the cord gauge was as follows.

この様にハイブリッドコードはコード径を小さ(出来、
且つ高い破断強力が得られる。
In this way, the hybrid cord has a small cord diameter (possible,
Moreover, high breaking strength can be obtained.

〔実施例2〕 実施例1のコードを5 cm間に130本等間隔に並べ
、これに0.16皿の厚さのクロロプレンゴム配合物の
シートを作り、コード層の両側をザンドイッチ状にはさ
み、コード入りゴムシートを2枚作製し、膜体成型機を
使い成型した後150°C30分間加硫して第5図及び
第6図の如き空気バネ用膜体を作製した。
[Example 2] 130 cords from Example 1 were arranged at equal intervals of 5 cm, a sheet of chloroprene rubber compound with a thickness of 0.16 plates was made from this, and both sides of the cord layer were sandwiched in a sandwich shape. Two corded rubber sheets were prepared, molded using a membrane molding machine, and then vulcanized at 150° C. for 30 minutes to produce membrane bodies for air springs as shown in FIGS. 5 and 6.

しかる後、該膜体のヒステリシスロス特性を測定し、第
3図の曲線を得た。
Thereafter, the hysteresis loss characteristics of the membrane were measured, and the curve shown in FIG. 3 was obtained.

ナイロンコードを補強材とする膜体は210d/2及び
210 d/3共にヒステリシスロスは大きく、しかも
コード径の大きい210d/3の方がロスはより大きい
。これはコード径が太くなるとロスが増加する事を意味
しており、コード径がヒステリシスロスに大きく関与し
ている事が判る。一方、ハイブリッドコードを補強層と
する膜体はナイロンコードのものよりロスが逼かに小さ
く良好な結果を示している。
Both 210d/2 and 210d/3 membranes using nylon cord as a reinforcing material have large hysteresis loss, and 210d/3, which has a larger cord diameter, has a larger loss. This means that the loss increases as the cord diameter becomes thicker, and it can be seen that the cord diameter is greatly involved in the hysteresis loss. On the other hand, membranes with hybrid cord as a reinforcing layer show better results with much smaller loss than those with nylon cords.

〔実施例3〕 実施例2の膜体を下記条件下で耐久テストを実施し、し
かる後コードを取り出し、コードの残存強力を測定し、
第4図の結果を得た。
[Example 3] The membrane of Example 2 was subjected to a durability test under the following conditions, and then the cord was taken out and the remaining strength of the cord was measured.
The results shown in Figure 4 were obtained.

屈曲サイクル:3.0ヘルツ ストローク :±50M 内    圧  : 7.5 kgf  /cnl温 
 度 :室温 耐久回数 =200万回 グラフにみる通り、ハイブリッドコードはナイロンコー
ドよりやや耐屈曲疲労性に劣るが、ケブラーコードの約
2倍の強力保持率を有しており、ケブラー単体より大幅
に改善されている。
Bending cycle: 3.0 Hz Stroke: ±50M Internal pressure: 7.5 kgf/cnl temperature
Degree: Room temperature durability number = 2 million times As shown in the graph, the hybrid cord has slightly lower bending fatigue resistance than the nylon cord, but it has about twice the strength retention rate of the Kevlar cord, and is significantly stronger than the Kevlar alone. It has been improved.

〔発明の効果〕〔Effect of the invention〕

この発明は、上記のように補強コードをゴム等の可撓性
材料に平行に埋設した空気バネ用膜体の補強層において
、前記補強層をナイロン繊維とアラミド繊維とを撚り合
わせた複合コードに構成し、この複合コードを可撓性材
料から成る保護層で被覆して構成したので、以下のよう
な優れた効果を奏するものである。
This invention provides a reinforcing layer for an air spring membrane body in which a reinforcing cord is embedded parallel to a flexible material such as rubber as described above, in which the reinforcing layer is a composite cord made by twisting nylon fibers and aramid fibers. Since this composite cord is constructed by covering it with a protective layer made of a flexible material, the following excellent effects can be achieved.

(1)  ヒステリシスロス特性が向上する。(1) Hysteresis loss characteristics are improved.

(2)  コード径(芯体層)を厚くすることなく、高
負荷用空気バネが得られる。
(2) A high-load air spring can be obtained without increasing the cord diameter (core layer).

(3)耐屈曲疲労性と高強力を兼備した空気バネが得ら
れる。
(3) An air spring having both bending fatigue resistance and high strength can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明を実施した補強層を構成するナイロ
ン繊維とアラミド繊維とを撚り合わせた複合コードの説
明図、第2図はこの発明の実施例に於ける応カー歪み曲
線の説明図、第3図はこの発明の実施例に於けるヒステ
リシス特性を示す説明図、第4図はこの発明の実施例に
於ける耐久テスト後のコード強力保持率のグラフ説明図
、第5図及び第6図は空気バネの説明図、第7図及び第
8図は空気ハネの使用例を示す説明図、第9図は従来の
ナイロン補強コードの説明図である。 l・・・空気バネ装置膜体、2・・・補強コード、3・
・・取付部、5・・・膜体、10・・・補強層、工1・
・・コード層、N・・・ナイロン繊維、A・・・アラミ
ド繊維、W・・・複合コード。
Fig. 1 is an explanatory diagram of a composite cord made by twisting nylon fibers and aramid fibers constituting a reinforcing layer according to the present invention, and Fig. 2 is an explanatory diagram of stress strain curves in an embodiment of the present invention. , FIG. 3 is an explanatory diagram showing the hysteresis characteristics in the embodiment of this invention, FIG. 4 is a graph explanatory diagram of the cord strength retention rate after the durability test in the embodiment of this invention, and FIGS. FIG. 6 is an explanatory diagram of an air spring, FIGS. 7 and 8 are explanatory diagrams showing examples of the use of air springs, and FIG. 9 is an explanatory diagram of a conventional nylon reinforcing cord. l...Air spring device membrane body, 2...Reinforcement cord, 3.
... Mounting part, 5... Membrane body, 10... Reinforcement layer, Work 1.
... Cord layer, N... Nylon fiber, A... Aramid fiber, W... Composite cord.

Claims (1)

【特許請求の範囲】[Claims] 補強コードをゴム等の可撓性材料で被覆した空気バネ用
膜体の補強層において、前記補強層をナイロン繊維とア
ラミド繊維とを撚り合わせた複合コードに構成し、この
複合コードの両面に可撓性材料から成る保護層を積層し
て構成したことを特徴とする空気バネ。
In a reinforcing layer of an air spring membrane body in which a reinforcing cord is covered with a flexible material such as rubber, the reinforcing layer is a composite cord made of twisted nylon fibers and aramid fibers, and flexible material is applied to both sides of the composite cord. An air spring characterized by being constructed by laminating protective layers made of flexible materials.
JP1131426A 1989-05-26 1989-05-26 Pneumatic spring Pending JPH03337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1131426A JPH03337A (en) 1989-05-26 1989-05-26 Pneumatic spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131426A JPH03337A (en) 1989-05-26 1989-05-26 Pneumatic spring

Publications (1)

Publication Number Publication Date
JPH03337A true JPH03337A (en) 1991-01-07

Family

ID=15057685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131426A Pending JPH03337A (en) 1989-05-26 1989-05-26 Pneumatic spring

Country Status (1)

Country Link
JP (1) JPH03337A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253344A1 (en) * 2001-04-27 2002-10-30 ContiTech Luftfedersysteme GmbH Air spring rolling lobe
US10968546B2 (en) 2016-10-19 2021-04-06 Firestone Fibers & Textiles Company, Llc Hybrid twisted cord

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253344A1 (en) * 2001-04-27 2002-10-30 ContiTech Luftfedersysteme GmbH Air spring rolling lobe
WO2002088571A1 (en) * 2001-04-27 2002-11-07 Contitech Luftfedersysteme Gmbh Pneumatic bellow
US7063308B2 (en) 2001-04-27 2006-06-20 Contitech Luftfedersysteme Gmbh Air spring resilient member
KR100879645B1 (en) * 2001-04-27 2009-01-20 콘티테크 루프트페더지스테메 게엠베하 Pneumatic bellow
US10968546B2 (en) 2016-10-19 2021-04-06 Firestone Fibers & Textiles Company, Llc Hybrid twisted cord

Similar Documents

Publication Publication Date Title
EP2221413B1 (en) Reinforcing cord and rubber product using the same
US5566929A (en) Rolling-lobe air spring having a flexible member made of elastomeric material
US5364061A (en) Torque take-up link for a vehicle engine
JP2017190127A (en) Shear band and non-pneumatic tire
WO2003080907A1 (en) Hybrid cord for reinforcing rubber and rubber product
US7926794B2 (en) Air spring rolling-lobe flexible member made of elastomeric material
JPH11336957A (en) Fiber reinforced molding
JPH03337A (en) Pneumatic spring
KR20130006688A (en) Air spring
JPH0617387A (en) Reinforcing cord for elastic product
JPH0796720A (en) Bead core structure in tire
JPH0478703A (en) Pneumatic tire
JP2001012525A (en) Diaphragm for air spring
JPH0583776B2 (en)
JPS6117733A (en) Pneumatic spring
CN214736359U (en) Enhanced elastic composite silk thread
US20050218572A1 (en) Closed end type coiled spring with reduced initial deflection
JPH03336A (en) Pneumatic spring
CN210859102U (en) Vibration damping piece, compressor and air conditioner
CN210423579U (en) High and low temperature resistant ethylene propylene diene monomer V belt
KR20060102982A (en) Capply hybrid cord of pneumatic tire
CN210164838U (en) Vehicle damper assembly and vehicle
US10391829B2 (en) Assembly consisting of a frame element, a connecting element and a part secured to the connecting element
US20040170791A1 (en) Power steering hose
KR20200051328A (en) Miniaturization air suspension