JPH033327B2 - - Google Patents

Info

Publication number
JPH033327B2
JPH033327B2 JP57142388A JP14238882A JPH033327B2 JP H033327 B2 JPH033327 B2 JP H033327B2 JP 57142388 A JP57142388 A JP 57142388A JP 14238882 A JP14238882 A JP 14238882A JP H033327 B2 JPH033327 B2 JP H033327B2
Authority
JP
Japan
Prior art keywords
vacuum
signal
tank
disconnector
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57142388A
Other languages
Japanese (ja)
Other versions
JPS5933719A (en
Inventor
Shuzo Tanigaki
Masayuki Sakaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP14238882A priority Critical patent/JPS5933719A/en
Priority to US06/506,662 priority patent/US4553139A/en
Priority to DE8383106356T priority patent/DE3376164D1/en
Priority to EP83106356A priority patent/EP0098523B1/en
Priority to CA000431732A priority patent/CA1208337A/en
Publication of JPS5933719A publication Critical patent/JPS5933719A/en
Publication of JPH033327B2 publication Critical patent/JPH033327B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 本発明は真空しや断器の真空度監視装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vacuum level monitoring device for a vacuum shield breaker.

一般に真空しや断器はその真空度が10-4Torr
以下の圧力で正常なしや断能力を有しているが、
この真空度はしや断器内部からの放出ガスや溶接
およびろう付けなどの接合部からのスローリーク
などによつて劣化し、しや断能力が低下すること
がある。このため、真空しや断器の使用時におい
てはその真空度を監視することが性能保証上から
必要欠くべからざるものとなつている。
Generally, the vacuum degree of a vacuum disconnector is 10 -4 Torr.
It is normal or has the ability to break at pressures below,
This vacuum level may deteriorate due to gas released from inside the breaker or disconnector, or slow leakage from joints such as welding and brazing, resulting in a decrease in breaker ability. For this reason, when using a vacuum chamber or disconnector, it is essential to monitor the degree of vacuum in order to guarantee performance.

そこで従来においては、真空しや断器内部に放
電電極を設けるとともに別電源により高電圧を印
加し、この際の放電状態が真空度により変化する
ことを利用して真空度のチエツクを行なうなどし
ていたが、このような方法では真空しや断器の構
造が複雑になるとともに高電圧の別電源を用意し
なければならないため高価になつた。又、真空度
のチエツクに際しては真空しや断器を回路から切
離した場合は真空しや断器の可動電極を固定電極
から真空度劣化による放電し易い距離だけ開極し
て、別電源から高電圧を印加し、この際の放電状
態により真空度の良否を判定していた。この方法
では電源を止める必要もあり、非常に面倒であつ
た。
Therefore, in the past, a discharge electrode was installed inside the vacuum chamber or disconnector, and a high voltage was applied from a separate power source, and the degree of vacuum was checked by taking advantage of the fact that the discharge state at this time changed depending on the degree of vacuum. However, with this method, the structure of the vacuum shield and disconnector was complicated, and a separate high-voltage power source had to be provided, making it expensive. Also, when checking the degree of vacuum, if the vacuum shield or breaker is disconnected from the circuit, open the movable electrode of the vacuum shield or breaker from the fixed electrode by a distance that is likely to cause discharge due to vacuum deterioration, and connect the A voltage was applied, and the quality of the vacuum was judged based on the discharge state at this time. This method required turning off the power, which was very troublesome.

また、近年、縮小形変電設備が開発され、この
設備にも真空しや断器が使用されている。この設
備において真空しや断器の真空度のチエツクを行
なうには、設備内の絶縁媒体である油あるいはガ
スを抜き取り、真空しや断器を上記したように回
路から切離してチエツクする手段をとつていた。
このため、このチエツク手段には非常に時間がか
かる欠点があつた。さらに上記手段では人為的な
組立ミスによる事故の発生する可能性もあつた。
In addition, in recent years, compact substation equipment has been developed, and vacuum shields and disconnectors are also used in this equipment. In order to check the degree of vacuum in the vacuum shield or disconnector in this equipment, it is necessary to extract the oil or gas that is the insulating medium inside the equipment, disconnect the vacuum shield or disconnector from the circuit as described above, and then check. It was on.
For this reason, this checking means has the drawback of being very time consuming. Furthermore, with the above method, there was a possibility that accidents could occur due to human assembly errors.

本発明は上記の欠点を除去して、放電々極や高
電圧の別電源を必要とせず、かつ接地電位に保た
れた筐体内に収納される真空しや断器を回路に接
続したままでその真空度のチエツクを行なうこと
ができるとともに真空度のチエツクを簡単かつ安
価に行なうことができる真空しや断器の真空度監
視装置を提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks, and eliminates the need for a separate electrical discharge pole or high-voltage power source, and allows the vacuum circuit breaker, which is housed in a case kept at ground potential, to remain connected to the circuit. It is an object of the present invention to provide a vacuum degree monitoring device for a vacuum chamber or disconnector which can check the degree of vacuum, and which can check the degree of vacuum simply and inexpensively.

以下図面を参照して本発明の一実施例を説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

まず、真空しや断器について述べると第1図に
おいて、1は真空しや断器で、真空しや断器1は
絶縁筒2の両端に金属製の端板3,4を取付けて
真空容器を形成し、端板3には固定リード5を挿
着するとともに端板4にはベローズ6を介して可
動リード7を移動可能に挿着し、固定リード5お
よび可動リード7の先端には夫々固定電極8およ
び可動電極9を取付ける。又、絶縁筒2の中間に
はしや断時電極8,9間に発生する金属蒸気が絶
縁筒2の内面に付着するのを防止するためのシー
ルド10を取付ける。11,12は補助シール
ド、13,14は外部接続導体、15は集電部で
ある。16は真空しや断器1から発生する電磁波
信号を伝達する高圧導体と電気的に結合された検
電端子に接触されるべき電磁波信号伝達部材、例
えば同軸ケーブルで、この同軸ケーブル16は検
出器17に接続されている。検出器17は分圧器
18、増幅器19、判定部20、電源部21、表
示部22、信号大小判定部40および切替部41
から構成されている。
First, let's talk about the vacuum shield disconnector. In Figure 1, 1 is a vacuum shield disconnector, and the vacuum shield disconnector 1 is a vacuum vessel with metal end plates 3 and 4 attached to both ends of an insulating cylinder 2. A fixed lead 5 is inserted into the end plate 3, and a movable lead 7 is movably inserted into the end plate 4 via a bellows 6. Attach the fixed electrode 8 and the movable electrode 9. Further, a shield 10 is installed in the middle of the insulating tube 2 to prevent metal vapor generated between the chopping electrodes 8 and 9 from adhering to the inner surface of the insulating tube 2. 11 and 12 are auxiliary shields, 13 and 14 are external connection conductors, and 15 is a current collector. Reference numeral 16 denotes an electromagnetic wave signal transmitting member, such as a coaxial cable, which is to be brought into contact with a voltage detection terminal electrically connected to a high voltage conductor that transmits the electromagnetic wave signal generated from the vacuum shield disconnector 1, and this coaxial cable 16 is connected to a detector. 17. The detector 17 includes a voltage divider 18, an amplifier 19, a determination section 20, a power supply section 21, a display section 22, a signal magnitude determination section 40, and a switching section 41.
It consists of

第2図Aは検出器17の詳細を示すブロツク図
で、前記同軸ケーブル16は後述する縮小形変電
設備の検電部に接触され、このケーブル16で検
出された信号は信号大小判定部40の判定結果に
より切替部41を作動させ、検出信号が大きいと
き(第2図Bに示すS0)には分圧器18を通し
て、また信号が小さいとき(第2図Bに示すS1
にはそのまま増幅するバツフアアンプ23に入力
される。24はアンプ23の出力信号(第2図B
に示すS1′)から2KHz〜20KHzの周波数成分のみ
を通過させるバンドパスフイルタである。
FIG. 2A is a block diagram showing the details of the detector 17. The coaxial cable 16 is brought into contact with a voltage detecting section of a compact substation equipment to be described later, and the signal detected by this cable 16 is sent to the signal magnitude determining section 40. Depending on the determination result, the switching unit 41 is activated, and when the detected signal is large (S 0 shown in FIG. 2B), the voltage is passed through the voltage divider 18, and when the signal is small (S 1 shown in FIG. 2B)
The signal is input to the buffer amplifier 23 where it is amplified as it is. 24 is the output signal of the amplifier 23 (Fig. 2B
This is a bandpass filter that passes only the frequency components from 2KHz to 20KHz from S 1 ') shown in .

このバンドパスフイルタ24の出力信号(第2
図Bに示すS2)はアンプ25により増幅され、こ
の増幅出力信号(第2図Bに示すS3)は第1の比
較器(ヒステリシスコンパレータ)26に入力さ
れて予め設定した基準電圧と比較される。このと
き前記増幅出力信号S3が基準電圧を越えるときに
比較器26から信号が出力されるが、その出力信
号S4は第2図Bに示す如く、比較器26のヒステ
リシス特性によつて信号の立ち下がり時刻が若干
遅延されたものとなる。次に第1の比較器26の
出力信号S4は積分器27で積分され、この積分出
力信号(第2図Bに示すS5)は第2の比較器(ヒ
ステリシスコンパレータ)28に入力されて予め
設定した基準電圧と比較される。そして第2の比
較器28からは第2図Bに示すS6の信号が送出さ
れる。この信号は警報及び表示信号となる。
The output signal of this bandpass filter 24 (second
S 2 ) shown in Figure B is amplified by an amplifier 25, and this amplified output signal (S 3 shown in Figure 2 B) is input to a first comparator (hysteresis comparator) 26 and compared with a preset reference voltage. be done. At this time, when the amplified output signal S3 exceeds the reference voltage, a signal is output from the comparator 26, but the output signal S4 is a signal due to the hysteresis characteristic of the comparator 26, as shown in FIG. 2B. The falling time of the signal is slightly delayed. Next, the output signal S 4 of the first comparator 26 is integrated by an integrator 27, and this integrated output signal (S 5 shown in FIG. 2B) is input to a second comparator (hysteresis comparator) 28. It is compared with a preset reference voltage. Then, the second comparator 28 outputs a signal S6 shown in FIG. 2B. This signal becomes an alarm and display signal.

上記構成において、真空しや断器1は図示しな
い操作装置により可動リード7を動かし、電極
8,9を接離して投入、しや断を行うが真空しや
断器1のしや断状態における等価回路図を第3図
に示す。図において、29a〜29bは夫々真空
しや断器1の設置された回路の電源および負荷、
30,31は夫々固定リード5の真空容器内の部
分および固定電極8とシールド10間の抵抗およ
び静電容量、32,33は夫々可動リード7の真
空容器内の部分および可動電極9とシールド10
間の抵抗および静電容量、34a,34bは夫々
絶縁筒2の抵抗、35はシールド10と接地電位
の真空しや断器と収納タンク壁間の静電容量、3
6,37は夫々しや断状態における電極8,9間
の抵抗および静電容量である。真空しや断器1の
内部の真空度が劣化した場合即ち内部圧力が上昇
した場合、真空中の誘電率と大気中の誘電率がほ
ぼ等しいために静電容量31,33,37はほと
んど変化しないが、抵抗30,32,36はパツ
シエンの法則により著しく低下する。このため、
絶縁筒2により固定側および可動側のいずれとも
絶縁され、浮遊電位を有するシールド10と各電
極8,9との間においては投入状態およびしや断
状態にかかわらずグロー放電が生じ、又電極8,
9間においてはしや断状態においてのみグロー放
電が生じる。この放電は負荷側に同軸ケーブル
(静電容量)接続、誘導負荷線あるいは真空しや
断器のリードの静電容量によつて変化する。
In the above configuration, the vacuum sheath breaker 1 moves the movable lead 7 by an operating device (not shown) and connects and separates the electrodes 8 and 9 for input and disconnection. An equivalent circuit diagram is shown in FIG. In the figure, 29a to 29b are the power supply and load of the circuit in which the vacuum shield breaker 1 is installed, respectively;
30 and 31 are the portion of the fixed lead 5 inside the vacuum container and the resistance and capacitance between the fixed electrode 8 and the shield 10, respectively; 32 and 33 are the portion of the movable lead 7 inside the vacuum container and the movable electrode 9 and the shield 10, respectively.
34a and 34b are the resistances of the insulating cylinder 2, respectively, 35 is the capacitance between the shield 10 and the vacuum shield at ground potential, the disconnector and the wall of the storage tank, 3
6 and 37 are the resistance and capacitance between the electrodes 8 and 9, respectively, in the off state. When the degree of vacuum inside the vacuum shield breaker 1 deteriorates, that is, when the internal pressure increases, the capacitances 31, 33, and 37 hardly change because the dielectric constant in vacuum and the dielectric constant in the atmosphere are almost equal. However, the resistances 30, 32, and 36 are significantly reduced due to Patsien's law. For this reason,
Glow discharge occurs between the shield 10, which is insulated from both the fixed side and the movable side by the insulating cylinder 2 and has a floating potential, and each electrode 8, 9, regardless of whether it is in the closed state or the shrunk state. ,
Between 9 and 9, glow discharge occurs only in the cut-off state. This discharge changes depending on the coaxial cable (capacitance) connection on the load side, the inductive load line, or the capacitance of the vacuum shield or disconnector lead.

第4図Aは真空しや断器1の真空度が正常なと
きの電極間電圧を示し、第4図Bは同軸ケーブル
16による受信信号を示す。すなわち真空度が正
常なときは、第4図Aに示すように電極8,9間
の電圧波形は正弦波であり、同軸ケーブル16に
は真空しや断器以外の回転機、変圧器、計器など
から発生すると思われる2KHz以下の高調波を含
む信号が入力される。第5図AおよびBは真空し
や断器1の真空度が劣化した場合の極間電圧およ
び同軸ケーブル16の受信信号を示し、電極8と
9間の極間電圧は、放電が始まると、第5図Aに
示すようにある電圧以上には上昇せずリツプルす
る。このリツプル開始時に第5図Bに示すように
2〜20KHzの高周波を含む電磁波信号が発生し、
この信号を検出し、判定することにより真空しや
断器1の真空度劣化を検知できる。この場合、極
間および真空しや断器以外の他の部分でコロナ放
電が発生しても信号波形は異なるため検出特性に
は何ら影響がない。
FIG. 4A shows the voltage between the electrodes when the degree of vacuum in the vacuum shield breaker 1 is normal, and FIG. 4B shows the signal received by the coaxial cable 16. That is, when the degree of vacuum is normal, the voltage waveform between the electrodes 8 and 9 is a sine wave as shown in FIG. A signal containing harmonics of 2KHz or less, which are likely to be generated from sources such as the following, is input. FIGS. 5A and 5B show the interelectrode voltage and the received signal of the coaxial cable 16 when the vacuum degree of the vacuum shield breaker 1 deteriorates, and the interelectrode voltage between the electrodes 8 and 9 changes as the discharge starts. As shown in FIG. 5A, the voltage does not rise above a certain level and ripples. At the start of this ripple, an electromagnetic wave signal containing a high frequency of 2 to 20 KHz is generated as shown in Figure 5B.
By detecting and determining this signal, deterioration in the degree of vacuum of the vacuum shield breaker 1 can be detected. In this case, even if corona discharge occurs in other parts than the gap between the poles and the vacuum shield or the disconnector, the signal waveform is different, so there is no effect on the detection characteristics.

第6図は検出部17内に収納された信号大小判
定部40と切替部41の詳細を示す概略的な回路
構成図で、第6図において、40aは高入力イン
ピーダンスのバツフアアンプで、このアンプ40
aの入力端に前記同軸ケーブル16が接続され
る。アンプ40aの出力は比較回路部40bに入
力される。比較回路部40bは同軸ケーブル16
で検出された信号の大小を判定し、設定値より検
出信号が大きいときだけ比較出力を送出する。そ
の比較出力はトランジスタ41aのベースに入力
され、トランジスタ41aがオンとなる。これに
よりトランジスタ41aのコレクタ回路に設けら
れているリレー41bが動作し、リレー接点部4
1cの接点が切換えられる。このため、大きい信
号レベルのときには分圧器18を介してアンプ2
3に検出信号が入力される。
FIG. 6 is a schematic circuit configuration diagram showing details of the signal magnitude determination section 40 and switching section 41 housed in the detection section 17. In FIG. 6, 40a is a buffer amplifier with high input impedance;
The coaxial cable 16 is connected to the input end of a. The output of the amplifier 40a is input to the comparison circuit section 40b. The comparison circuit section 40b is connected to the coaxial cable 16
The magnitude of the detected signal is determined, and a comparison output is sent out only when the detected signal is greater than the set value. The comparison output is input to the base of transistor 41a, and transistor 41a is turned on. As a result, the relay 41b provided in the collector circuit of the transistor 41a operates, and the relay contact portion 4
The contact 1c is switched. Therefore, when the signal level is large, the amplifier 2
A detection signal is input to 3.

次に前記同軸ケーブル16が接触される検電端
子を備えた縮小形変電設備について第7図および
第8図を参照して述べる。第7図は前記変電設備
を単線結線で(通常三相で使用される)示す概略
構成図で、第7図において、51は真空しや断器
1が収納される第1タンクで、52は第1タンク
51に接続ダクト101を介して連結され、電源
側ケーブル53a及び負荷側ケーブル53bへの
接続導体53c,53dが収納された第2タン
ク、54は第2タンク52に接続ダクト101を
介して連結され、断路器55が収納された第3タ
ンクである。各タンク51,52,54およびダ
クト101は金属体で形成されているとともに接
地電位に保たれている。なお、各タンク51,5
2,54およびダクト101内には絶縁媒体が収
納され、各タンクおよびダクトは夫々絶縁スペー
サ102によつて気密に仕切られている。
Next, a compact substation equipment equipped with a voltage detection terminal to which the coaxial cable 16 comes into contact will be described with reference to FIGS. 7 and 8. FIG. 7 is a schematic configuration diagram showing the above-mentioned substation equipment in a single wire connection (usually used in three-phase). In FIG. A second tank 54 is connected to the first tank 51 via a connection duct 101 and houses connection conductors 53c and 53d to the power supply side cable 53a and load side cable 53b. This is a third tank that is connected to the third tank and houses a disconnector 55. Each tank 51, 52, 54 and duct 101 are made of metal and are kept at ground potential. In addition, each tank 51, 5
An insulating medium is stored in the tanks 2 and 54 and the duct 101, and each tank and duct are airtightly partitioned by an insulating spacer 102, respectively.

前記第2タンク52には詳細を第8図に示すコ
ンデンサ結合体56を用いた検電端子57が設け
られている。第8図において、この端子57はコ
ンデンサ結合体56の一端を前記接続導体53c
に接続し、その他端を第2タンク52の外壁52
aに固着された絶縁碍子58を介して外部に導出
させるようにして設けられる。
The second tank 52 is provided with a voltage detection terminal 57 using a capacitor combination 56 whose details are shown in FIG. In FIG. 8, this terminal 57 connects one end of the capacitor combination 56 to the connecting conductor 53c.
and connect the other end to the outer wall 52 of the second tank 52.
It is provided so as to be led out to the outside via an insulator 58 fixed to a.

以上述べたように、本発明によれば、真空しや
断器の真空度低下時に内部放電が生じ、その放電
による電磁波信号を検電端子に接触させる同軸ケ
ーブルで検出し、検出された信号レベルが大きい
ときには分圧器を介して、また、それが小さいと
きには直接、2KHz〜20KHzの周波数成分のみを
通過させるバンドパスフイルタを有する検出器に
供給するようにしたので、真空しや断器の真空度
劣化が確実に検出することができるばかりでなく
外部の電気的ノイズにも影響されないで確実に検
出できる。また、真空度劣化の検出に際して真空
しや断器を回路から取外す必要がないとともに真
空しや断器の構造を変えたり高電圧の別電源を設
けたりする必要がなく、簡単かつ安価に真空度劣
化を正確に検出することができる。
As described above, according to the present invention, internal discharge occurs when the vacuum level of the vacuum shield breaker decreases, and the electromagnetic wave signal caused by the discharge is detected by the coaxial cable that contacts the voltage detection terminal, and the detected signal level is When it is large, it is supplied via a voltage divider, and when it is small, it is supplied directly to a detector with a bandpass filter that passes only the frequency components of 2KHz to 20KHz. Not only can deterioration be detected reliably, but it can also be reliably detected without being affected by external electrical noise. In addition, when detecting vacuum deterioration, there is no need to remove the vacuum shield or disconnector from the circuit, there is no need to change the structure of the vacuum shield or disconnector, or to install a separate high-voltage power supply. Deterioration can be detected accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は真空度監視装置を備えた真空しや断器
の縦断正面図、第2図Aは真空度監視装置に使用
される検出部の詳細を示すブロツク図、第2図B
は第2図Aにおける各部の出力波形図、第3図は
第1図に示した真空しや断器のしや断状態におけ
る等価回路図、第4図A,Bおよび第5図A,B
は第1図に示した真空しや断器の動作波形図、第
6図は信号大小判定部と切替部の詳細を示す概略
的な回路図、第7図は本発明の一実施例を示す縮
小形変電設備の概略構成図、第8図は第7図のA
部の拡大図である。 1……真空しや断器、16……同軸ケーブル、
17……検出部、24……バンドパスフイルタ、
18……分圧器、40……信号大小判定部、41
……切替部、57……検電端子。
Fig. 1 is a longitudinal sectional front view of a vacuum breaker equipped with a vacuum monitoring device, Fig. 2A is a block diagram showing details of the detection section used in the vacuum monitoring device, and Fig. 2B
2A is an output waveform diagram of each part in FIG. 2A, FIG. 3 is an equivalent circuit diagram of the vacuum shield breaker shown in FIG.
1 is an operating waveform diagram of the vacuum shield breaker shown in FIG. 1, FIG. 6 is a schematic circuit diagram showing details of the signal magnitude determination section and switching section, and FIG. 7 is an embodiment of the present invention. A schematic diagram of the compact substation equipment, Figure 8 is A in Figure 7.
FIG. 1... Vacuum shield disconnector, 16... Coaxial cable,
17...Detection unit, 24...Band pass filter,
18... Voltage divider, 40... Signal magnitude determination section, 41
...Switching section, 57...Voltage detection terminal.

Claims (1)

【特許請求の範囲】 1 接地電位に保たれるとともに、真空しや断器
が収納される第1タンクと、 接地電位に保たれた接続ダクトを介して前記第
1タンクに連結された第2タンクと、 前記第1タンク、接続ダクトおよび第2タンク
に収納されるとともに、前記真空しや断器の固定
リード、可動リードに各々接続された接続導体
と、 一端が前記第2タンク内の接続導体に電気的に
結合され、他端が、前記第2タンクに固着された
絶縁碍子を介してタンク外へ導出される検電端子
と、 前記真空しや断器の内部グロー放電により生じ
る電磁波信号を前記検電端子に接触させた同軸ケ
ーブルで検出し、該検出された信号を信号大小判
定部で判定し、その判定結果から信号が大きいと
きは分圧器を介して、また信号が小さいときには
直接、2KHzから20KHzの周波数成分のみを通過
させるバンドパスフイルタに供給し、該フイルタ
を通過した信号と予め設定した基準信号のレベル
を比較した結果に基づいて真空度の良否を判定す
る検出器とを備えたことを特徴とする真空しや断
器の真空度監視装置。
[Scope of Claims] 1. A first tank that is maintained at ground potential and houses a vacuum shield and disconnector; and a second tank that is connected to the first tank via a connection duct that is maintained at ground potential. a tank; a connecting conductor housed in the first tank, the connecting duct, and the second tank and connected to the fixed lead and the movable lead of the vacuum shield disconnector; and one end connected to the second tank; a voltage detection terminal electrically coupled to a conductor, the other end of which is led out of the tank via an insulator fixed to the second tank; and an electromagnetic wave signal generated by internal glow discharge of the vacuum shield and disconnector. is detected by a coaxial cable that is in contact with the voltage detection terminal, and the detected signal is judged by a signal size judgment section. Based on the judgment result, if the signal is large, it is sent through a voltage divider, or if the signal is small, it is sent directly. , a detector that supplies the signal to a bandpass filter that passes only frequency components from 2KHz to 20KHz, and determines whether the degree of vacuum is good or bad based on the result of comparing the level of the signal that has passed through the filter with a preset reference signal. A vacuum level monitoring device for a vacuum shield and disconnector.
JP14238882A 1982-07-05 1982-08-17 Vacuum degree monitor for vacuum breaker Granted JPS5933719A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14238882A JPS5933719A (en) 1982-08-17 1982-08-17 Vacuum degree monitor for vacuum breaker
US06/506,662 US4553139A (en) 1982-07-05 1983-06-22 Vacuum monitor for vacuum interrupter
DE8383106356T DE3376164D1 (en) 1982-07-05 1983-06-29 Vacuum monitor for vacuum interrupter
EP83106356A EP0098523B1 (en) 1982-07-05 1983-06-29 Vacuum monitor for vacuum interrupter
CA000431732A CA1208337A (en) 1982-07-05 1983-07-04 Vacuum monitor for vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14238882A JPS5933719A (en) 1982-08-17 1982-08-17 Vacuum degree monitor for vacuum breaker

Publications (2)

Publication Number Publication Date
JPS5933719A JPS5933719A (en) 1984-02-23
JPH033327B2 true JPH033327B2 (en) 1991-01-18

Family

ID=15314199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14238882A Granted JPS5933719A (en) 1982-07-05 1982-08-17 Vacuum degree monitor for vacuum breaker

Country Status (1)

Country Link
JP (1) JPS5933719A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686555B2 (en) * 2008-01-09 2011-05-25 株式会社日立製作所 Vacuum switchgear

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516349A (en) * 1974-07-06 1976-01-19 Katsushi Myaki Jaguchioryoshita kyusuijidoteishisochi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516349A (en) * 1974-07-06 1976-01-19 Katsushi Myaki Jaguchioryoshita kyusuijidoteishisochi

Also Published As

Publication number Publication date
JPS5933719A (en) 1984-02-23

Similar Documents

Publication Publication Date Title
US4547769A (en) Vacuum monitor device and method for vacuum interrupter
US5399973A (en) Method and apparatus for detecting a reduction in the degree of vacuum of a vacuum valve while in operation
US4163130A (en) Vacuum interrupter with pressure monitoring means
KR100496660B1 (en) Method and apparatus for monitoring degree of vacuum in vacuum interrupter
JP4255105B2 (en) Electricity detection and deterioration diagnosis device
US4491704A (en) Vacuum circuit interrupter having vacuum monitoring apparatus
JPH033327B2 (en)
JPS6349845B2 (en)
JP2885233B2 (en) Vacuum drop detector for vacuum valve type switchgear
JPS645648B2 (en)
JPH0432488B2 (en)
JPH033328B2 (en)
KR860001784B1 (en) Vacuum rate monitor for vacuum circuit breaker
JPH0787653B2 (en) Abnormality detection device for reduction type switchgear
JPS6349844B2 (en)
JPH07318447A (en) Vacuum degree monitor
JPH1172532A (en) Insulation degradation detector and voltage detector
JPH0894700A (en) Portable partial discharge detector for gas insulation device
JPS59175524A (en) Vacuum degree monitor of vacuum breaker
JPS6116532Y2 (en)
JP3774605B2 (en) Gas insulated switchgear
JP2547195Y2 (en) Vacuum detector
JPH0470568A (en) Surge voltage sensor
JPH0629751Y2 (en) Abnormality detection device for electrical equipment
JP2002082138A (en) Lightning detection sensor and distribution line service entrance device