JPH0333210A - Detection of yarn breakage and equipment therefor - Google Patents

Detection of yarn breakage and equipment therefor

Info

Publication number
JPH0333210A
JPH0333210A JP1170392A JP17039289A JPH0333210A JP H0333210 A JPH0333210 A JP H0333210A JP 1170392 A JP1170392 A JP 1170392A JP 17039289 A JP17039289 A JP 17039289A JP H0333210 A JPH0333210 A JP H0333210A
Authority
JP
Japan
Prior art keywords
light
element group
filament
emitting elements
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1170392A
Other languages
Japanese (ja)
Inventor
Tatsuo Shinoda
辰夫 篠田
Yuji Fujiki
藤木 祐二
Motokimi Katsuoka
勝岡 求仁
Shogo Hatano
幡野 昭五
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taimei Chemicals Co Ltd
Original Assignee
Taimei Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taimei Chemicals Co Ltd filed Critical Taimei Chemicals Co Ltd
Priority to JP1170392A priority Critical patent/JPH0333210A/en
Publication of JPH0333210A publication Critical patent/JPH0333210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To sensitively detect yarn breakage by arranging plural light emitting elements on one side of the lower part of a spinneret having many nozzle holes and plural receptors facing thereto across filament yarns and detecting change of the amount of light received due to rounding of the broken end of a yarn. CONSTITUTION:A group of light emitting elements 20 composed of plural light emitting elements (P) and capable of radiating light to a through area of all the filaments extruded through nozzles 17 are arranged on one side of the lower part of a spinneret 10 having many nozzle holes 17 and a group of receptors 21 composed of plural receptors (R) capable of receiving light radiated from the light emitting elements (P) of the group of light emitting elements 20 and partly intercepted by the filaments are arranged facing to the above mentioned group of light emitting elements 20 across the filaments. When yarn breakage occurs, the broken end of a filament is spontaneously formed into a ball-shaped body 18 on the outlet side of the nozzle to intercept more amount of light from the light emitting elements. The reduction of the amount of light received by the receptors (R) due to the above mentioned interception is detected, thus detecting yarn breakage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は紡糸装置での糸切れ、特にフィラメント段階で
の糸切れを感度よく検出しうる糸切れ検出方法およびそ
の装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a yarn breakage detection method and apparatus capable of sensitively detecting yarn breakage in a spinning device, particularly yarn breakage at the filament stage.

(従来の技術) 紡糸装置における糸切れ検出方法ないしその装置は種々
のものが知られているが、その多くは光電式糸切れ検出
器を用いる非接触式のものである(例えば特開昭52−
88607号公報、特開昭53−6633号公報)。
(Prior Art) Various methods and devices for detecting yarn breakage in spinning devices are known, but most of them are non-contact methods using photoelectric yarn breakage detectors (for example, Japanese Patent Laid-Open No. 52 −
88607, JP-A-53-6633).

この従来の糸切れ検出装置は、いずれも紡糸口金から押
し出された多数本のフィラメントが集束されて糸条とな
った以後の個所での糸切れを検出するようにしている。
All of these conventional yarn breakage detection devices detect yarn breakage at a point after a large number of filaments extruded from a spinneret are bundled into yarn.

例えばゴデツトロール近傍、あるいは巻き取りローラ近
傍での糸条の切れの有無を検出するようにしている。
For example, the presence or absence of yarn breakage near the godet roll or near the take-up roller is detected.

(発明が解決しようとする課題) 上記従来の装置は有機合成繊維の紡糸の際の糸切れを検
出するものである。有機合成繊維の紡糸では、紡糸原液
の粘度が高く、また強度も高いことから、紡糸口金の近
傍でのフィラメント切れは生じにくく、テンシヨンの加
わるゴデツトロール近傍等で糸切れが生し易い。したが
ってゴデツトロール近傍等でのフィラメントが集束して
太くなった糸条の切れを検出すればよく、この検出は比
較的容易に行える。
(Problems to be Solved by the Invention) The conventional device described above detects yarn breakage during spinning of organic synthetic fibers. When spinning organic synthetic fibers, the spinning dope has a high viscosity and strength, so filament breakage is difficult to occur near the spinneret, but yarn breakage is likely to occur near the godet rolls where tension is applied. Therefore, it is only necessary to detect a break in the thread that has become thicker due to the filaments converging near the godet roll, and this detection can be performed relatively easily.

ところが、熱機織雑用の紡糸原液はその性質上粘度があ
まり高くなく、また焼成前の前駆体繊維ではその強度も
弱いことから紡糸口金の直下でのフィラメント段階で糸
切れを生じることが多い。
However, the viscosity of the spinning dope used for thermal weaving is not very high due to its nature, and the strength of the precursor fiber before firing is weak, so yarn breakage often occurs at the filament stage directly below the spinneret.

また炭素繊維の場合にあっても同様にフィラメント段階
での糸切れが生じ易い。このように糸切れが生じると、
紡糸口金から突出する側のフィラメント切断端に、紡糸
原液の粘土が低いことから紡糸原液が流下し、次第に粒
状に成長し、やがては落下して下方に集束している糸条
に付着するなどして悪影響を与える。
Furthermore, even in the case of carbon fiber, thread breakage is likely to occur at the filament stage. When thread breakage occurs like this,
Due to the low clay content of the spinning dope, the spinning dope flows down to the cut end of the filament on the side that protrudes from the spinneret, gradually grows into grains, and eventually falls and adheres to the threads that are bunched downward. have a negative impact.

したがって早期に糸切れを検出して必要な処理を行う必
要がある。
Therefore, it is necessary to detect thread breakage at an early stage and take necessary actions.

ところがフィラメントはその太さが極めて細いことから
、光学式検出装置では容易に糸切れを検出できないとい
う問題点がある。
However, since the filament is extremely thin, there is a problem in that optical detection devices cannot easily detect thread breakage.

そこで本発明は上記問題点を解消すべくなされたもので
あり、その目的とするところは、フィラメント段階での
糸切れを感度よく、かつ早期に検出しうる糸切れ検出方
法およびその装置を提供するにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a yarn breakage detection method and apparatus that can detect yarn breakage at an early stage with high sensitivity at the filament stage. It is in.

(課題を解決するための手段) 上記目的による本発明では、多数の紡糸ノズルが開口さ
れている紡糸口金の下方一側に、複数の発光素子から構
成され、前記紡糸ノズルから押し出される全フィラメン
トの通過領域に光を照射可能な発光素子群を配置し、該
発光素子群とフィラメントを挟んで対向させて、発光素
子群の発光素子から発せられフィラメントにより一部遮
断される光を受光する複数の受光素子からなる受光素子
群を配置し、フィラメントの糸切れが生じ、紡糸ノズル
から突出する側のフィラメントの切断端が粒状になり、
この粒状体が発光素子からの光をより多く遮断すること
による受光素子での受光量の減少を検出して糸切れと判
別することを特徴とする。
(Means for Solving the Problems) In the present invention according to the above-mentioned object, a plurality of light emitting elements are provided on one lower side of a spinneret in which a large number of spinning nozzles are opened. A plurality of light emitting elements capable of emitting light are disposed in a passage area, and are opposed to the light emitting element group with a filament in between to receive light emitted from the light emitting elements of the light emitting element group and partially blocked by the filament. A light-receiving element group consisting of light-receiving elements is arranged, and the filament breaks, and the cut end of the filament on the side protruding from the spinning nozzle becomes granular.
This method is characterized in that a decrease in the amount of light received by the light-receiving element due to the granules blocking more light from the light-emitting element is detected and a thread breakage is determined.

また、複数の発光素子から構成され、多数の紡糸ノズル
が開口されている紡糸口金の下方一側に配置されて、前
記紡糸ノズルから押し出される全フィラメントの通過領
域に光を照射可能な発光素子群と、該発光素子群とフィ
ラメントを挟んで対向して配置され、発光素子群の発光
素子から発せられフィラメントにより一部遮断される光
を受光する複数の受光素子から成る受光素子群と、該受
光素子群の単一もしくは所定の複数の受光素子からの受
光信号が入力され、この受光信号を複数回サンプリング
して、前記受光素子での平均の受光量を基準値として算
出すると共に、該算出された基準値からあらかじめ定め
られた大きさの許容値を減算して設定値を求める演算手
段と、該演算手段により算出された設定値を記憶する第
1のメモリーと、前記受光素子群の単一もしくは所定の
複数の受光素子によって受光された受光量を記憶する第
2のメモリーと、前記第1のメモリーと第2のメモリー
の内容を比較する比較手段と、該比較手段によって比較
された際、第2のメモリーに記憶されている受光量の方
が前記設定値よりも小さいときに糸切れと判断して警報
手段を作動させる制御手段とを具備することを特徴とし
ている。
Further, a group of light emitting elements, which is composed of a plurality of light emitting elements, is arranged at one side below a spinneret in which a large number of spinning nozzles are opened, and is capable of irradiating light to a passage area of all the filaments extruded from the spinning nozzles. a light-receiving element group consisting of a plurality of light-receiving elements arranged to face the light-emitting element group with a filament in between and receiving light emitted from the light-emitting elements of the light-emitting element group and partially blocked by the filament; A light reception signal from a single light receiving element or a predetermined plurality of light receiving elements of the element group is input, and this light reception signal is sampled multiple times to calculate the average amount of light received by the light receiving elements as a reference value. a first memory for storing the set value calculated by the calculating means; and a first memory for storing the set value calculated by the calculating means; or a second memory that stores the amount of light received by a plurality of predetermined light receiving elements, a comparison means that compares the contents of the first memory and the second memory, and when compared by the comparison means, The present invention is characterized by comprising a control means that determines that thread breakage has occurred and activates an alarm means when the amount of received light stored in the second memory is smaller than the set value.

また、発光素子群、受光素子群を縦横方向に各一対配置
するようにすると好適である。
Further, it is preferable to arrange one pair of light emitting element groups and one pair of light receiving element groups in the vertical and horizontal directions.

(作用) 本発明では、フィラメントそのものに注目するのでなく
、フィラメント切れが生じた際、紡糸ノズル側のフィラ
メント切断端に紡糸原液が流下して粒状に成長すること
から、この粒状体に注目し、粒状体による光の遮断を検
出することにより、感度よく糸切れを検出することがで
きるようになった。
(Function) In the present invention, instead of focusing on the filament itself, when filament breakage occurs, the spinning stock solution flows down to the cut end of the filament on the spinning nozzle side and grows in granules, so we focus on this granular body, By detecting the blockage of light by granules, yarn breakage can now be detected with high sensitivity.

発光素子群、受光素子群を縦横の両方向に配置すれば、
糸切れの生じた紡糸ノズル位置をも検出することができ
、早期に糸切れに対する必要な処理を行うことができる
If the light emitting element group and the light receiving element group are arranged both vertically and horizontally,
It is also possible to detect the position of the spinning nozzle where yarn breakage has occurred, and necessary processing for yarn breakage can be carried out at an early stage.

(実施例) 以下本発明の好適な一実施例を添付図面を参照して詳細
に説明する。
(Embodiment) Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図は紡糸装置の概略図を示し、IOは紡糸口金であ
り、500本程度の紡糸ノズルを有し、各紡糸ノズルか
ら紡糸原液がフィラメント状に押し出され、これらフィ
ラメントが集束されて、ゴデツトロール12.14を経
て巻き取りロール16に糸条として巻き取られる。
FIG. 1 shows a schematic diagram of the spinning device. IO is a spinneret, which has about 500 spinning nozzles, from each spinning nozzle the spinning dope is extruded in the form of filaments, and these filaments are bundled into a godet roll. 12 and 14, and is wound up as a thread onto a winding roll 16.

紡糸原液組成物として、無機繊維の場合には、水、水溶
性金属化合物、および水溶性有機重合体の混合物を用い
る。この紡糸原液を紡糸口金から押出し、乾式紡糸によ
って無機繊維の前駆体を得る。この前駆体を焼成して、
金属化合物、有機重合体を分解させることによって無機
繊維とすることができる。
In the case of inorganic fibers, a mixture of water, a water-soluble metal compound, and a water-soluble organic polymer is used as the spinning dope composition. This spinning dope is extruded from a spinneret, and an inorganic fiber precursor is obtained by dry spinning. By firing this precursor,
Inorganic fibers can be obtained by decomposing metal compounds and organic polymers.

炭素繊維の場合には、紡糸原液組成物としてピッチを用
いる。
In the case of carbon fibers, pitch is used as the spinning dope composition.

上記の無機繊維あるいは炭素繊維用の紡糸原液を押し出
して前駆体を得る場合、有機合成繊維に比して弾性率、
強度共に低く、前記したように糸切れは紡糸口金10の
下方直近で生じやすい。このような糸切れが生じた場合
、第2図に示すように、紡糸ノズル17から突出するフ
ィラメントの切断端は、次第に1〜5mmφ程度の粒状
体18に成長する。
When obtaining a precursor by extruding the above-mentioned spinning dope for inorganic fibers or carbon fibers, the elastic modulus is lower than that of organic synthetic fibers.
Both strength is low, and as described above, thread breakage tends to occur immediately below the spinneret 10. When such yarn breakage occurs, the cut end of the filament protruding from the spinning nozzle 17 gradually grows into a granular body 18 with a diameter of about 1 to 5 mm, as shown in FIG.

本発明では上記現象に注目し、紡糸口金10直下のフィ
ラメントの状態を光学的に監視し、糸切れを検知するよ
うにした。
In the present invention, paying attention to the above phenomenon, the state of the filaments directly under the spinneret 10 is optically monitored to detect yarn breakage.

そのために第3図に示すように、紡糸口金10の下方一
側に、全フィラメントの通過領域をカバーしうる光電式
糸切れ検出器を配置する。
To this end, as shown in FIG. 3, a photoelectric yarn breakage detector is placed on one side of the lower side of the spinneret 10, which can cover the entire filament passage area.

この光電式検出器は、全フィラメントの通過領域の一側
に配置されるLED等の発光素子が列置された発光素子
群20と、この発光素子群20と対向して、前記領域外
の他側に配置されたフォトダイオード等の受光素子が列
置された受光素子群21とから成る。
This photoelectric detector includes a light emitting element group 20 in which light emitting elements such as LEDs are arranged in a row, which is arranged on one side of a passage area of all the filaments, and a light emitting element group 20, in which light emitting elements such as LEDs are arranged in a row, and a It consists of a light receiving element group 21 in which light receiving elements such as photodiodes are arranged on the side.

したがってフィラメントの糸切れが発生ずると、第3図
(a)に明確なように、紡糸ノズル17の下方に、フィ
ラメントに比して極めて大径の粒状体18が成長するか
ら、これにより光が遮断されて受光素子での受光量が滅
し9、糸切れを感度よく検知しうる。
Therefore, when filament breakage occurs, granules 18 with an extremely large diameter compared to the filament grow below the spinning nozzle 17, as shown in FIG. As a result, the amount of light received by the light-receiving element decreases, allowing thread breakage to be detected with high sensitivity.

第4図は紡糸口金10に対する上記発光素子群20と受
光素子群21の配置例を示す。この実施例では・紡糸ノ
ズル17は紡糸口金10に同心状に配置されている。
FIG. 4 shows an example of the arrangement of the light emitting element group 20 and the light receiving element group 21 with respect to the spinneret 10. In this embodiment, the spinning nozzle 17 is arranged concentrically with the spinneret 10.

発光素子群20の発光素子Pと受光素子群21の受光素
子Rとは同数であり5、それぞれ対向して配置されてい
る。図示の例では各々11個配置されている。
The light-emitting elements P of the light-emitting element group 20 and the light-receiving elements R of the light-receiving element group 21 are the same in number, 5, and are arranged facing each other. In the illustrated example, 11 each are arranged.

各発光素子Pの前方には内面が遮光された筒23が配置
され、該筒23の前端にはレンズ(図示せず)が嵌挿さ
れて、発光素子Pから発せられる光が筒23前端から所
定の角度範囲内で広がって発せられるようになっている
。図示の例では、1つの発光素子Pから発せられた光が
、対向して配置された3つの受光素子Rにより受光され
る関係になっている。このようにして、発光素子群20
全体から発光される光は、紡糸ノズル17から押し出さ
れる全フィラメントの通過範囲を照射しうるように設定
され、また受光素子群2工では、全フィラメントに対し
て、発光素子群20から発せられた光がフィラメントに
より遮光されるのを検知しうるようになっている。
A tube 23 whose inner surface is shielded from light is arranged in front of each light emitting element P, and a lens (not shown) is inserted into the front end of the tube 23 so that the light emitted from the light emitting element P is transmitted from the front end of the tube 23. It is designed to spread and emit within a predetermined angular range. In the illustrated example, light emitted from one light emitting element P is received by three light receiving elements R arranged facing each other. In this way, the light emitting element group 20
The light emitted from the whole is set so as to irradiate the passage range of all the filaments extruded from the spinning nozzle 17, and in the light receiving element group 2, the light emitted from the light emitting element group 20 is set to irradiate all the filaments extruded from the spinning nozzle 17. It is possible to detect when light is blocked by the filament.

受光素子群21では、各受光素子Rで検知される受光量
に応じた電気信号が受光回路24を経て、かつA/D交
換されてCPtJ25に入力される。
In the light-receiving element group 21, an electric signal corresponding to the amount of light received by each light-receiving element R is passed through the light-receiving circuit 24, A/D exchanged, and input to the CPtJ 25.

CPU25ではあらかじめ組み込まれている命令によっ
て次の処理がなされる。
The CPU 25 performs the following processing according to pre-installed instructions.

まず紡糸が開始された開始信号が入力されると、CPU
25では、あらかじめ定められた時間間隔毎に、R−1
・2・3、R−2・3・4、R,−3・4・5・・・・
・・R−7・8・9、R−8・9・10、R−9・1O
−11(数字は受光素子の順番を示す)というように、
1つずつずれた3つの受光素子群毎に、トータルの受光
量をサンプリングし、数回、例えば5回のサンプリング
値の平均値をもって、各3つの受光素子群の受光量の基
準値を設定し、この基′$値をメモリーに記憶する。こ
の基準値は、3つの受光素子群毎に受けもつフィラメン
ト数が通常は異なるから、各3つの受光素子群毎に異な
る数値となろう。次に、この基準値からあらかじめ決め
られた所定の大きさの許容値を滅じた値を各3つの受光
素子群毎の受光量の設定値とし、これをメモリーに記憶
する。
First, when a start signal to start spinning is input, the CPU
In 25, at each predetermined time interval, R-1
・2・3, R-2・3・4, R, -3・4・5...
・・R-7・8・9, R-8・9・10, R-9・1O
-11 (the number indicates the order of the light receiving elements),
The total amount of light received is sampled for each of the three light-receiving element groups that are shifted by one, and the reference value for the amount of light received by each of the three light-receiving element groups is set using the average value of the sampled values several times, for example, five times. , store this base ′$ value in memory. This reference value will be a different value for each of the three light-receiving element groups, since the number of filaments that each of the three light-receiving element groups has is usually different. Next, a value obtained by subtracting a predetermined tolerance value from this reference value is set as a set value for the amount of light received for each of the three light receiving element groups, and is stored in the memory.

上記の許容値の設定は、通常、正常運転の際にも、紡糸
原液の粘度、周囲温度などの変動によって、検知すべき
位置のフィラメントの径が変動するので、フィラメント
の径が大きくなって遮光量が大きくなった際、糸切れが
生じていないのに糸切れと誤判断するのを防止するため
である。
The setting of the above tolerance value is necessary because the diameter of the filament at the position to be detected usually changes due to fluctuations in the viscosity of the spinning solution, ambient temperature, etc. even during normal operation, so the diameter of the filament increases and blocks light. This is to prevent erroneous judgment that thread breakage has occurred even though no thread breakage has occurred when the amount becomes large.

なお、紡糸ノズル17から押し出されるフィラメントの
径は、紡糸ノズル直近では200μm程度である。した
がって、発光素子P側から見て、複数本のフィラメント
が重ならず、その全幅が粒状体18の径の1〜5mrn
と大差がない場合には有効な許容値が設定しえなくなる
。この場合には発光素子群20と受光素子群21を紡糸
口金10からかなり下方に下げた位置に配設するように
する。このように紡糸口金10からかなり下方の位置で
は、フィラメントの径がかなり細くなるので、フィラメ
ントの全幅と粒状体18の径、1〜5mmとで有為差が
でてくる。
Note that the diameter of the filament extruded from the spinning nozzle 17 is about 200 μm in the vicinity of the spinning nozzle. Therefore, when viewed from the light emitting element P side, the plurality of filaments do not overlap, and the total width thereof is 1 to 5 mrn of the diameter of the granular body 18.
If there is no significant difference between the two values, it will not be possible to set an effective tolerance value. In this case, the light emitting element group 20 and the light receiving element group 21 are arranged at a position considerably lower than the spinneret 10. In this manner, the diameter of the filament becomes considerably thinner at a position far below the spinneret 10, so there is a significant difference between the total width of the filament and the diameter of the granular material 18, which is 1 to 5 mm.

上記のように設定値を設定したのち、通常運転に入った
際、糸切れを次のようにして検知しうる。
After setting the set values as described above, when normal operation is started, thread breakage can be detected as follows.

すなわち、CPU25では適当な監視時間間隔毎に各3
つの受光素子群毎のトータル受光量を信号として取り込
んでメモリーに記憶させ、これを上記メモリー内の設定
値と比較し、受光量が設定値よりも低いときに、糸切れ
が生じたと判断し、例えば警報ランプあるいはブザー等
の警報手段を作動させるよう制御して異常を報知するの
である。
That is, in the CPU 25, each 3
The total amount of light received by each light receiving element group is captured as a signal and stored in the memory, this is compared with the set value in the memory, and when the amount of light received is lower than the set value, it is determined that thread breakage has occurred, For example, an abnormality is reported by controlling an alarm means such as an alarm lamp or a buzzer to be activated.

なお、上記の基準値、したがって設定値はその都度更新
するようにしてもよいことはもちろんである。
Note that it goes without saying that the above reference value, and therefore the set value, may be updated each time.

また上記実施例において、受光素子を1つずつずらした
3つの受光素子群毎に受光量を検出するようにしたのは
次の理由による。
Further, in the above embodiment, the amount of received light is detected for each of three groups of light receiving elements shifted one by one for the following reason.

第6図に示すように、領域Aに属するフィラメント(黒
丸印)は、1つの発光素子P−4から出た光を遮断し、
3つの受光素子R−3、R−4、R−5の受光量に影響
を与える。領域Bに属するフィラメント(△印)は、2
つの発光素子P−3、P〜4から出た光をそれぞれ遮断
し、2つの受光素子R−3、R−4の受光量に影響を与
える。また領域Cに属するフィラメント(白丸印)は3
つの発光素子P−2、P−3、P−4から出た光をそれ
ぞれ遮断し、1つの受光素子R−3の受光量に影響を与
える。したがって領域Aに属するフィラメントが3つの
受光素子の受ける受光量を遮断するトータル量、領域B
に属するフィラメントが2つの受光素子の受ける受光量
を遮断するトータル量、および領域Cに属するフィラメ
ントが1つの受光素子の受ける受光量を遮断する量とは
それぞれほぼ同一となる。したかって領域Aに属するフ
ィラメントを考慮して、3つの受光素子群毎にトータル
の受光量を検出すればよい。例えば1つの受光素子毎に
受光量を検出するとすれば、領域Aで糸切れが生じた場
合、これによる遮断受光量は3つの受光素子に分配され
てしまうから、各領域毎で遮断光量が変化し、制御が難
かしくなり、領域Aの糸切れは判断し難くなる。
As shown in FIG. 6, the filament (marked with a black circle) belonging to region A blocks the light emitted from one light emitting element P-4,
This affects the amount of light received by the three light receiving elements R-3, R-4, and R-5. The filament belonging to region B (marked △) is 2
It blocks the light emitted from the two light emitting elements P-3 and P to P4, respectively, and affects the amount of light received by the two light receiving elements R-3 and R-4. Also, the filament belonging to area C (white circle) is 3
The light emitted from each of the light emitting elements P-2, P-3, and P-4 is blocked, thereby affecting the amount of light received by the single light receiving element R-3. Therefore, the total amount that the filament belonging to area A blocks the amount of light received by the three light receiving elements, area B
The total amount by which the filament belonging to region C blocks the amount of light received by two light receiving elements and the amount by which the filament belonging to region C blocks the amount of light received by one light receiving element are approximately the same. Therefore, it is sufficient to consider the filament belonging to region A and detect the total amount of light received for each of the three light receiving element groups. For example, if the amount of light received is detected for each light-receiving element, if thread breakage occurs in area A, the amount of intercepted light received will be distributed to three light-receiving elements, so the amount of intercepted light will change for each area. However, control becomes difficult and yarn breakage in area A becomes difficult to judge.

したがって、発光素子Pからの光がn個の受光素子Rに
受光されるよう設定した場合、1つずつずらしたn個の
受光素子群毎のトータルの受光量を検出するようにする
とよい。
Therefore, when the light from the light-emitting element P is set to be received by n light-receiving elements R, it is preferable to detect the total amount of light received by each group of n light-receiving elements shifted by one.

第5図に示す実施例では紡糸口金10の紡糸ノズル17
を同心状でなく格子状となるように配置している。モし
て各対の発光素子Pと受光素子Rとを紡糸ノズル17の
各横列に対応するよう配置し、各列に存する(重なって
)フィラメントにより一部遮断される光を受光素子Rで
受光するようにしている。この場合には、各発光素子P
から発光する光が対応する1つの受光素子Rにのみ受光
されるように、発光素子としては、コヒーレント光を発
する、例えばレーザーダイオードを用いるようにする。
In the embodiment shown in FIG. 5, the spinning nozzle 17 of the spinneret 10
are arranged in a grid pattern rather than concentrically. Each pair of light-emitting element P and light-receiving element R is arranged to correspond to each row of the spinning nozzle 17, and the light-receiving element R receives light that is partially blocked by the filaments existing (overlapping) in each row. I try to do that. In this case, each light emitting element P
As the light emitting element, for example, a laser diode that emits coherent light is used so that the light emitted from the light receiving element R is received only by one corresponding light receiving element R.

各横列におけるフィラメントが糸切れした場合、前記と
同じように切断したフィラメント先端に粒状体が成長す
るから、各受光素子での受光量が滅し、糸切れを判別し
うる。この場合の設定値の設定は発光素子と受光素子の
各封缶に行えばよいから、処理手順は容易となる。
When the filaments in each row break, granules grow on the tips of the cut filaments in the same manner as described above, so the amount of light received by each light receiving element decreases, making it possible to determine whether the filaments are broken. In this case, the setting value can be set for each can of the light-emitting element and the light-receiving element, so the processing procedure becomes easy.

他の実施例としては、紡糸ノズルの横列のみならず、縦
列(斜列でもよい。この斜列も縦列の概念に含める。)
側にも、両側方に発光素子と受光素子とを配置して糸切
れを検出するようにすれば、横列と縦列の糸切れ情報か
ら、紡糸口金10のどの位置の紡糸ノズル17からのフ
ィラメントが糸切れしたか判別でき、糸切れに対する処
置を直ちに行うことができる。この場合、どの錘のどの
位置の紡糸ノズルからのフィラメントが糸切れしたかを
CPU25により算出し、適当な表示装置に出力して表
示するようにすると好都合である。なお紡糸ノズルの配
置が千鳥状であっても縦横列での検出が可能である。
As another example, the spinning nozzles may be arranged not only in horizontal rows but also in vertical rows (diagonal rows are also acceptable. This diagonal row is also included in the concept of vertical rows).
By arranging a light emitting element and a light receiving element on both sides to detect yarn breakage, it is possible to determine which position of the spinning nozzle 17 of the spinneret 10 the filament is coming from from the yarn breakage information of the horizontal and vertical rows. It is possible to determine whether the thread has broken, and to take immediate action to deal with the thread breakage. In this case, it is convenient if the CPU 25 calculates which spindle and which position of the spinning nozzle the filament has broken, and outputs and displays it on a suitable display device. Note that even if the spinning nozzles are arranged in a staggered manner, detection in vertical and horizontal rows is possible.

紡糸原液は前記の無機繊維、炭素繊維のものに限らず、
糸切れした際、紡糸口金下方で、切断したフィラメント
先端に粒状体が形成されるようなもの全てに適用できる
The spinning dope is not limited to the above-mentioned inorganic fibers and carbon fibers,
It can be applied to any type of material in which, when the filament is broken, granules are formed at the tip of the cut filament below the spinneret.

以上、本発明につき好適な実施例を挙げて種々説明した
が、本発明はこの実施例に限定されるものではなく、発
明の精神を逸脱しない範囲内で多くの改変を施し得るの
はもちろんのことである。
The present invention has been variously explained above with reference to preferred embodiments, but the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. That's true.

(発明の効果) 本発明では、フィラメントそのものに注目するのでなく
、フィラメント切れが生じた際、紡糸ノズル側のフィラ
メント切断端に紡糸原液が流下して粒状に成長すること
から、この粒状体に注目し、粒状体による光の遮断を検
出することにより、感度よく糸切れを検出することがで
きるようになった。
(Effects of the Invention) In the present invention, we do not focus on the filament itself, but rather on the granules because when the filament breaks, the spinning dope flows down to the cut end of the filament on the spinning nozzle side and grows into granules. However, by detecting the blockage of light by the granules, yarn breakage can now be detected with high sensitivity.

発光素子群、受光素子群を縦横の両方向に配置すれば、
糸切れの生じた紡糸ノズル位置をも検出することができ
、早期に糸切れに対する必要な処理を行うことができる
If the light emitting element group and the light receiving element group are arranged both vertically and horizontally,
It is also possible to detect the position of the spinning nozzle where yarn breakage has occurred, and necessary processing for yarn breakage can be carried out at an early stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は紡糸装置の概要を示す説明図、第2図は糸切れ
時の粒状体の状態を示す説明図、第3図は発光素子と受
光素子の配置状態を示す説明図、第4図は発光素子群、
受光素子群の配置例の説明図、第5図は紡糸ノズルが格
子状に配置された状態の説明図、第6図は発光素子から
の光の広がり状態を示す説明図である。 lO・・・紡糸口金、 1日・・・粒状体、 20 21・・・受光素子群、 25・・・cpu、  p・ R・・・受光素子。
Fig. 1 is an explanatory diagram showing the outline of the spinning device, Fig. 2 is an explanatory diagram showing the state of the granules when the yarn breaks, Fig. 3 is an explanatory diagram showing the arrangement of the light emitting element and the light receiving element, and Fig. 4 is a group of light emitting elements,
FIG. 5 is an explanatory diagram of an example of arrangement of a group of light receiving elements, FIG. 5 is an explanatory diagram of a state in which spinning nozzles are arranged in a grid pattern, and FIG. 6 is an explanatory diagram showing a state in which light from light emitting elements is spread. lO...Spinneret, 1st...Particle, 20 21...Light receiving element group, 25...CPU, p.R...Light receiving element.

Claims (1)

【特許請求の範囲】 1、多数の紡糸ノズルが開口されている紡糸口金の下方
一側に、複数の発光素子から構成され、前記紡糸ノズル
から押し出される全フィラメントの通過領域に光を照射
可能な発光素子群を配置し、 該発光素子群とフィラメントを挟んで対向 させて、発光素子群の発光素子から発せられフィラメン
トにより一部遮断される光を受光する複数の受光素子か
らなる受光素子群を配置し、 フィラメントの糸切れが生じ、紡糸ノズル から突出する側のフィラメントの切断端が粒状になり、
この粒状体が発光素子からの光をより多く遮断すること
による受光素子での受光量の減少を検出して糸切れと判
別することを特徴とする糸切れ検出方法。 2、複数の発光素子から構成され、多数の紡糸ノズルが
開口されている紡糸口金の下方一側に配置されて、前記
紡糸ノズルから押し出される全フィラメントの通過領域
に光を照射可能な発光素子群と、 該発光素子群とフィラメントを挟んで対向 して配置され、発光素子群の発光素子から発せられフィ
ラメントにより一部遮断される光を受光する複数の受光
素子から成る受光素子群と、 該受光素子群の単一もしくは所定の複数の 受光素子からの受光信号が入力され、この受光信号を複
数回サンプリングして、前記受光素子での平均の受光量
を基準値として算出すると共に、該算出された基準値か
らあらかじめ定められた大きさの許容値を減算して設定
値を求める演算手段と、 該演算手段により算出された設定値を記憶 する第1のメモリーと、 前記受光素子群の単一もしくは所定の複数 の受光素子によって受光された受光量を記憶する第2の
メモリーと、 前記第1のメモリーと第2のメモリーの内 容を比較する比較手段と、 該比較手段によって比較された際、第2の メモリーに記憶されている受光量の方が前記設定値より
も小さいときに糸切れと判断して警報手段を作動させる
制御手段と を具備することを特徴とする糸切れ検出装 置。 3、前記紡糸口金の紡糸ノズルが格子状もしくは千鳥状
に配置され、 前記発光素子群と受光素子群とは、前記紡 糸ノズルの縦横列方向の各側方に一対ずつ配置されると
共に、各発光素子群と受光素子群の対応する発光素子と
受光素子とは紡糸ノズルの縦横の各列に対応して配置さ
れ、さらに発光素子は対応するフィラメント列にのみ光
を照射可能になっており、 前記制御手段は、縦列方向の糸切れ列と横 列方向の糸切れ列の情報により、糸切れの生じた紡糸ノ
ズル位置を表示する表示手段を作動させる制御手段を含
むことを特徴とする請求項2記載の糸切れ検出装置。
[Scope of Claims] 1. A spinneret having a plurality of spinning nozzles opened on one lower side is composed of a plurality of light emitting elements, and is capable of irradiating light to a passage area of all the filaments extruded from the spinning nozzles. A light-emitting element group is arranged, and a light-receiving element group consisting of a plurality of light-receiving elements is arranged to face the light-emitting element group with a filament in between, and receives light emitted from the light-emitting elements of the light-emitting element group and partially blocked by the filament. When placed, the filament breaks, and the cut end of the filament on the side that protrudes from the spinning nozzle becomes granular.
A yarn breakage detection method characterized by detecting a decrease in the amount of light received by a light receiving element due to the granules blocking more light from a light emitting element and determining that the yarn is broken. 2. A group of light-emitting elements, which are composed of a plurality of light-emitting elements and are arranged at one side below a spinneret in which a large number of spinning nozzles are opened, and can irradiate light to the passage area of all the filaments extruded from the spinning nozzles. and a light-receiving element group consisting of a plurality of light-receiving elements arranged to face the light-emitting element group with a filament in between, and receiving light emitted from the light-emitting elements of the light-emitting element group and partially blocked by the filament; A light reception signal from a single light receiving element or a predetermined plurality of light receiving elements of the element group is input, and this light reception signal is sampled multiple times to calculate the average amount of light received by the light receiving elements as a reference value. a calculation means for calculating a set value by subtracting a predetermined tolerance value from the reference value; a first memory for storing the set value calculated by the calculation means; and a single memory of the light receiving element group. or a second memory that stores the amount of light received by a plurality of predetermined light receiving elements, a comparison means that compares the contents of the first memory and the second memory, and when compared by the comparison means, A thread breakage detection device characterized by comprising: control means that determines that thread breakage has occurred and activates an alarm means when the amount of received light stored in the second memory is smaller than the set value. 3. The spinning nozzles of the spinneret are arranged in a grid or staggered pattern, and the light-emitting element group and the light-receiving element group are arranged in pairs on each side of the spinning nozzle in the vertical and row directions, and The corresponding light-emitting elements and light-receiving elements of the element group and the light-receiving element group are arranged corresponding to each vertical and horizontal row of the spinning nozzle, and furthermore, the light-emitting element can irradiate light only to the corresponding filament row, 3. The control means includes a control means for operating a display means for displaying the position of the spinning nozzle where the yarn breakage has occurred based on information about the yarn breakage rows in the column direction and the yarn breakage rows in the row direction. Thread breakage detection device.
JP1170392A 1989-06-30 1989-06-30 Detection of yarn breakage and equipment therefor Pending JPH0333210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170392A JPH0333210A (en) 1989-06-30 1989-06-30 Detection of yarn breakage and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170392A JPH0333210A (en) 1989-06-30 1989-06-30 Detection of yarn breakage and equipment therefor

Publications (1)

Publication Number Publication Date
JPH0333210A true JPH0333210A (en) 1991-02-13

Family

ID=15904079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170392A Pending JPH0333210A (en) 1989-06-30 1989-06-30 Detection of yarn breakage and equipment therefor

Country Status (1)

Country Link
JP (1) JPH0333210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197875A (en) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd Electrostatic atomization apparatus and method for monitoring electrostatic atomization
WO2024061335A1 (en) * 2022-09-23 2024-03-28 江苏恒力化纤股份有限公司 Method for producing profiled fibers having low broken filament rate by polyester fdy process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197875A (en) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd Electrostatic atomization apparatus and method for monitoring electrostatic atomization
WO2024061335A1 (en) * 2022-09-23 2024-03-28 江苏恒力化纤股份有限公司 Method for producing profiled fibers having low broken filament rate by polyester fdy process

Similar Documents

Publication Publication Date Title
JPH06501066A (en) How to detect errors in textile webs
SK12112000A3 (en) A method of determining the thickness and/or the homogeneity of a moving linear textile formation and a device for carrying out the method
JPH0721463B2 (en) Foreign material monitoring method and device for textile products
US6462820B1 (en) Operator-free fabric web inspection system
US4976018A (en) Device for monitoring threads on a textile machine
CN108519385A (en) A kind of fiber on-Line Monitor Device and method
JPH0333210A (en) Detection of yarn breakage and equipment therefor
US5767963A (en) Method and apparatus of detecting a yarn lap on a rotating roll
US4566163A (en) Automatic supervisory system for a warper
JPH11279923A (en) Production of nonwoven fabric, apparatus therefor and defect detector
JPH03294553A (en) Method for sensing end of knitting yarn in warp knitting machine
JP5357516B2 (en) Yarn running monitoring device
EP3878785B1 (en) Yarn monitoring device and yarn winding machine
JP2003206071A (en) Filament winding device
JP2004250837A (en) Method and apparatus for detecting single fiber breakage and management method and apparatus for fiber manufacturing process using the detection method
EP0037681A2 (en) Method and apparatus for detecting yarns
JP5096180B2 (en) Yarn running monitoring device
JP2005154969A (en) Method for producing monofilament and package thereof
JP2006056697A (en) Method of manufacturing synthetic fiber
SU1131926A1 (en) Method of controlling the process of forming complex yarn of polymer melt
JPH0892812A (en) End breakage detection and apparatus therefor
RU2008382C1 (en) Thread breakage monitor
JPH0571007A (en) Apparatus for measuring position of fiber bundle
JPH05178541A (en) Winding device for synthetic fiber thread
JP2020190056A (en) Yarn configuration measuring apparatus of multifilament and yarn configuration measuring method