JPH0333193B2 - - Google Patents

Info

Publication number
JPH0333193B2
JPH0333193B2 JP58120734A JP12073483A JPH0333193B2 JP H0333193 B2 JPH0333193 B2 JP H0333193B2 JP 58120734 A JP58120734 A JP 58120734A JP 12073483 A JP12073483 A JP 12073483A JP H0333193 B2 JPH0333193 B2 JP H0333193B2
Authority
JP
Japan
Prior art keywords
acrylate
meth
weight
parts
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58120734A
Other languages
Japanese (ja)
Other versions
JPS6013861A (en
Inventor
Makoto Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP12073483A priority Critical patent/JPS6013861A/en
Publication of JPS6013861A publication Critical patent/JPS6013861A/en
Publication of JPH0333193B2 publication Critical patent/JPH0333193B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

この発明はシクロアルキル基を有する液状の単
官胜メタアクリレヌトずゎム成分ずを含有す
る特に玫倖線などの攟射線で硬化しうる液状の被
芆甚組成物に関する。 実質的に液剀を含たない硬化性組成物は省資
源省゚ネルギヌあるいは環境衛生や安党性の面
ですぐれ、たた皮膜圢成に際し溶液タむプのもの
に比し塗垃厚みの調節が容易でか぀均䞀厚みのも
のを埗やすいなど倚くの利点を有しおおり、特に
光硬化性のものに぀いおは非加熱硬化のため被塗
物に熱的圱響を䞎えない利点もあるこずから盛ん
に研究されおおり、珟実に皮々の玠材の衚面コヌ
ト甚、接着甚その他各皮バむンダなどずしお広く
甚いられおいる。 ずころで、この皮の液状組成物では、䞊述の利
点に加えお塗装䜜業性を向䞊させるための所望の
粘床に容易に調敎できるものであるこずが芁求さ
れる䞀方、その硬化物が所望の匟性率ずか぀良奜
な䌞び特性ずを有しお耐熱性や電気的特性などの
䞀般特性を満足するものであるこずが芁求され
る。 しかるに、埓来のこの皮の組成物は䞀般に䞊蚘
粘床特性ず硬化物特性ずをバランスさせにくいず
いう難点があり、たた硬化物特性に぀いおいえば
特に光硬化性のものでは䞀般に可撓性にすぐれる
ものは耐熱性や電気的特性などの䞀般特性のいず
れかに劣り、逆に耐熱性や電気的特性などにすぐ
れるものは可撓性に劣り、䞡特性を共に満足させ
にくいずいう難点があ぀た。 このため、これら特性のバランス化を容易に実
珟しうる、぀たり塗装䜜業性を向䞊しうるような
所望の粘床に容易に調敎できおしかもその硬化物
が所望の匟性率ず良奜な䌞び特性ずを備えお耐熱
性電気的特性などの諞特性をいずれも満足しう
るような液状の溶剀を含たない硬化性組成
物、特に光硬化性の組成物が芋い出せれば各皮方
面ぞの応甚展開がより䞀局期埅できるものであ
る。 この発明者は、このような芳点から鋭意怜蚎を
続けた結果、特定の構造を有するメタアクリ
レヌトがゎム成分を高床に溶解し、このゎム成分
の量加枛によ぀お所望の粘床を容易に埗るこずが
できるずずもに、このゎム成分の溶液に倚官胜
メタアクリレヌトおよび重合開始剀さらに芁
すれば通垞の単官胜メタアクリレヌトを加え
おなる組成物が硬化性特に光硬化性を有しおか぀
その硬化物がゎム成分による可撓性の向䞊などを
含んだ巟広い特性を瀺すものであるこずを知り、
この発明を完成するに至぀た。 すなわち、この発明は、䞀般匏CH2
−COOR1は氎玠たたはメチル基、R1はシ
クロアルキル基を有する䞀䟡の基で衚わされる
液状の単官胜メタアクリレヌト100重量郚、
ゎム成分〜100重量郚、䞀般匏CH2
−COOR2は氎玠たたはメチル基、R2
は炭玠数〜18の鎖状たたは分枝状アルキル基
で衚わされる単官胜メタアクリレヌト〜80
重量郚、䞀般匏〔CH2−COO〕―o
R3は氎玠たたはメチル基、R3は䟡の有機
基、≧で衚わされる倚官胜メタアクリ
レヌト〜150重量郚および光重合開始剀0.5
〜40重量郚を含んでなる攟射線硬化性の䞀液型の
組成物であるこずを特城ずする硬化性被芆甚組成
物に係るものである。 この発明の䞊蚘組成物は、成分ずしおの特定
の単官胜メタアクリレヌトを甚いおいるこず
によ぀おこれが成分ずしおのゎム成分を任意に
溶解しうる性質を有しおいるため、このゎム成分
の量加枛によ぀おその粘床性状を適宜任意に調敎
でき、これにより甚途目的に応じた良奜な塗装䜜
業性が埗られる。たた、この組成物は成分ずし
お光重合開始剀を甚いるこずにより玫倖線などの
攟射線でより簡単に硬化できる。 しかも、䞊蚘硬化によ぀お所望する匟性率ずさ
らにゎム成分の䜿甚によ぀お良奜な䌞び特性が埗
られ、特に各成分の皮類配合量を適宜遞択する
こずによ぀お䞊蚘特性のバランス化を容易になし
え、結果ずしお耐熱性や電気的特性などの䞀般特
性ずずもに可撓性をも共に満足しうる硬化物を埗
るこずが可胜ずなる。たた、この硬化物は耐氎性
の面でもすぐれおいるずいう特城を有し、被芆材
ずしおきわめお奜適な性胜を発揮する。 この発明においお成分ずしお䜿甚するシクロ
アルキル基を有する液状の単官胜メタアクリ
レヌトずしおは、実甚的にはシクロヘキシルメ
タアクリレヌト、む゜ボルニルメタアクリ
レヌト、ゞシクロペンテニルメタアクリレヌ
トあるいはこれらのシクロアルキル基䞊での眮換
䜓およびこれらのシクロアルキル基がメチレンた
たはオキシ゚チレン鎖を介したメタアクリレ
ヌトなどが挙げられ、これらは単独あるいは混合
しお䜿甚される。 これらのシクロアルキル基を有するメタア
クリレヌト類は成分ずしおの各皮の倩然たたは
合成ゎムあるいはこれらの解重合物を高床に溶解
する。このゎム成分ずしおは倩然ゎム、む゜プレ
ンゎム、スチレン−ブタゞ゚ンゎムランダムた
たはブロツク、スチレン−む゜プレンゎム、ブ
タゞ゚ンゎム、クロロプレンゎム、ブチルゎム、
ポリむ゜ブチレン、ニトリルゎム、゚チレン−プ
ロピレンゎムなどがある。たた圓然のこずながら
たずえばブタゞ゚ン系の液状ゎムなども䜿甚しう
るものである。これらの䜿甚量は芁求の粘性を埗
るに必芁な量を適宜遞ぶものであるが、䞊蚘液状
の単官胜メタアクリレヌト100重量郚に察し
お〜100重量郚の範囲ずされる。重量郚未満
では盞圓高分子量のタむプのゎム成分を甚いない
ず性状的な改倉あるいは可撓性向䞊の効果が䞍充
分ずなり、たた逆に100重量郚を超えるず䜎分子
量のゎムを䜿甚する必芁があり、この堎合ゎム成
分による可撓性向䞊の効果が小さくなる。 この発明の組成物は䞊蚘ゎム成分を前蚘成分
ずしおの単官胜メタアクリレヌトに溶解させ
おなる溶液にさらにその目的に応じお成分ずし
お鎖状たたは分枝状のアルキル単官胜メタア
クリレヌトを前蚘液状単官胜メタアクリレヌ
ト100重量郚に察しお〜80重量郚の割合で配合
するこずができる。この単官胜メタアクリレ
ヌトは鎖状たたは分枝状のアルキル基の炭玠数が
〜18の範囲にあるものがよく、その具䜓䟋ずし
おは−゚チルヘキシルメタアクリレヌト、
デシルメタアクリレヌト、ラりリルメタ
アクリレヌト、トリデシルメタアクリレヌ
ト、ステアリルメタアクリレヌトなどの単独
あるいは混合物が挙げられる。 これら成分は䞊蚘成分からなる溶液に
よく盞溶するものであり、硬い硬化物を埗たい堎
合はあえお䜿甚しなくおもよいが、比范的柔らか
いものを埗たい堎合必芁である。ただし、80重量
郚を超える添加ずなるずその向䞊効果はほずんど
認められなくなる。 この発明においお必須成分ずしお甚いる成分
は硬化速床の保持あるいは硬化物に所望の硬さを
付䞎するためのものであり、分子䞭に個以䞊の
メタアクリロむル基を有する倚官胜メタ
アクリレヌトずしお知られる各皮のモノマヌ状あ
るいはオリゎマヌ状のものが甚いられる。具䜓的
にぱチレングリコヌルゞメタアクリレヌ
ト、−プロパンゞオヌルゞメタアクリ
レヌト、−ブタンゞオヌルゞメタアク
リレヌト、−ペンタンゞオヌルゞメタ
アクリレヌト、−ヘキサンゞオヌルゞメ
タアクリレヌト、デカメチレングリコヌルゞ
メタアクリレヌト、ゞ゚チレングリコヌルゞ
メタアクリレヌト、トリ゚チレングリコヌル
ゞメタアクリレヌト、テトラ゚チレングリコ
ヌルゞメタアクリレヌト、ゞプロピレングリ
コヌルゞメタアクリレヌト、トリプロピレン
グリコヌルゞメタアクリレヌト、グリセロヌ
ルゞメタアクリレヌト、トリメチロヌルプロ
パンゞメタアクリレヌト、ペンタ゚リスリト
ヌルゞメタアクリレヌト、−シクロヘ
キサンゞオヌルゞメタアクリレヌト、
−ベンれンゞオヌルゞメタアクリレヌト、
−ブタントリオヌルトリメタアク
リレヌト、グリセロルトリメタアクリレヌ
ト、トリメチロヌルプロパントリメタアクリ
レヌト、ペンタ゚リスリトヌルトリメタアク
リレヌト、ペンタ゚リスリトヌルテトラメタ
アクリレヌト、その他同様の誘導䜓あるいはオリ
ゎマヌ状の倚官胜メタアクリレヌトが挙げら
れ、これらは単独たたは混合しお甚いられる。こ
れらの䜿甚量は前蚘成分ずしおの液状単官胜
メタアクリレヌト100重量郚に察しお〜150
重量郚の割合ずされる。重量郚未満では、その
硬化速床の保持などに察する効果が小さく、たた
150重量郚を超えおしたうず硬化物が硬くなりす
ぎたり盞溶性を倱うこずずなるため、いずれも䞍
適圓である。 この発明の組成物は成分ずしお光重合開始剀
を甚いるこずによ぀お玫倖線などの攟射線で簡単
か぀迅速に硬化させるこずができる。䞊蚘光重合
開始剀ずしおは䞀般に玫倖線硬化型塗料の開始剀
や増感剀ずしお甚いられおいる各皮のものが䜿甚
できる。䟋えばベンゟむン、ベンゟむンメチル゚
ヌテル、ベンゟむン゚チル゚ヌテル、ベンゟむン
む゜プロピル゚ヌテル、ベンゟむンブチル゚ヌテ
ル、−メチルベンゟむン、ベンゟプノン、ミ
ヒラヌズケトン、ベンゞル、ベンゞルゞメチルケ
タヌル、ベンゞルゞ゚チルケタヌル、アントラキ
ノン、メチルアントラキノン、ゞアセチル、アセ
トプノン、ゞプニルゞスルフむド、アントラ
センなど、たたこれらずアミン類などの少量の増
感助剀ず䜵甚したものなどを挙げるこずができ
る。 たた、この発明の組成物は䞊蚘の光重合開始剀
ずずもに必芁により熱重合開始剀を甚いお、攟射
線による硬化埌にさらに加熱硬化させるこずもで
きる。䞊蚘熱重合開始剀ずしおは、䞉玚ブチルパ
ヌオクト゚ヌトや䞉玚ブチルパヌピバレヌトなど
のパヌ゚ステル、ビス−−䞉玚ブチルシクロ
ヘキシル−パヌオキシゞカルボネヌトの劂き過
炭酞゚ステル、ベンゟむルパヌオキシドの劂きゞ
アシルパヌオキシド、ゞ−䞉玚ブチルパヌオキシ
ドやゞクミルパヌオキシドの劂きゞアルキルパヌ
オキシド、シクロヘキサノンパヌオキシド、メチ
ル゚チルケトンパヌオキシド、クメンヒドロパヌ
オキシドなどのヒドロパヌオキシドおよびこれら
ず−゚チルヘキサン酞やナフテン酞のコバルト
−塩の劂き金属促進剀ずの組合せなどの過酞化
物系重合開始剀が挙げられ、その他アゟ化合物な
ども䜿甚できる。 これらの光重合開始剀たたはこれず熱重合開始
剀の䜿甚量は前蚘成分の液状単官胜メタア
クリレヌト100重量郚に察しお0.5〜40重量郚の範
囲ずすべきである。0.5重量郚より少ないず充分
な重合開始を行いにくく、䞀方40重量郚を超えお
䜿甚しおもそれによる効果は特に認められず実甚
性に欠けるため、いずれも䞍適圓である。 この発明の組成物には硬化条件や盞溶性などの
面で蚱容される範囲内で前蚘以倖のメタアク
リレヌトやその他アリル化合物、ビニル化合物な
どの重合性䞍飜和化合物を添加しおもよい。たた
組成物の熱的な安定性などを向䞊するための公知
の熱重合防止剀、硬化物の柔軟性の向䞊を図るた
めの公知の可塑剀、コヌテむング時の性状を適宜
調敎するための可溶性の高分子材料、硬化埌の高
枩劣化に察する向䞊を図るための公知の老化防止
剀および玠材ずの密着性などを向䞊するための改
良剀などを添加するこずが可胜である。 以䞊詳述したずおり、この発明の硬化性被芆甚
組成物は成分ずしおのゎム成分の量加枛によ぀
お任意の粘床に調敎できるために適宜の塗工手段
によ぀お良奜な塗工䜜業を行うこずができる䞀
方、塗工埌玫倖線などの攟射線によ぀お容易に硬
化させるこずができ、その硬化物の耐熱性電気
的特性可撓性耐氎性などの諞特性をいずれも
満足させるこずができるずいう特城を有しおい
る。 以䞋に、この発明の実斜䟋を比范䟋ず察比しお
瀺す。 実斜䟋〜および比范䟋 実斜䟋においおは成分ずしおのシクロ
ヘキシルアクリレヌト倧阪有機化孊工業瀟補商
品名ビスコヌト155に第衚の配合割合重量
郚にお成分ずしおのむ゜プレンゎムクラレ
む゜プレンケミカル瀟補の合成む゜プレンゎム
IR−10を小片状にしお配合溶解させたのち、
さらに成分ずしおのラりリル・トリデシルアク
リレヌト倧阪有機化孊工業瀟補商品名LTA
および成分ずしおの−ヘキサンゞオヌル
ゞアクリレヌトを第衚の配合割合重量郚で
加え、これら配合党量を100重量郚ずしお、これ
に成分ずしおのベンゞルゞメチルケタヌルチ
バガむギヌ瀟補商品名むルガキナアヌ651を
重量郚加えお、この発明の光硬化性被芆甚組成物
ずした。 実斜䟋〜は成分ずしおのシクロヘキシル
アクリレヌトに成分ずしおのスチレン−ブタゞ
゚ン−スチレンブロツク共重合䜓シ゚ル化孊瀟
補商品名カリフレツクスTR−KX65を第衚
の配合割合重量郚で溶解し、溶解埌実斜䟋
ず同様に第衚蚘茉の配合割合重量郚
で成分ずしおのラりリル・トリデシルアクリレ
ヌトおよび成分ずしおの−ヘキサンゞオ
ヌルゞアクリレヌトを加え、さらにこれら配合党
量を100重量郚ずしおこれに成分ずしおベンゞ
ルゞメチルケタヌルを重量郚加えお、この発明
の光硬化性被芆甚組成物ずした。 たた、比范䟋は成分ずしおのゎム成分を甚
いなか぀た以倖は、䞊蚘実斜䟋〜ず同様の配
合組成にお比范甚の光硬化性被芆甚組成物ずした
ものである。 これら実斜䟋および比范䟋の組成物の粘床およ
び硬化物特性を調べた結果は、䞋蚘の第衚に䜵
蚘されるずおりであ぀た。
The present invention relates to a liquid coating composition that is curable, particularly by radiation such as ultraviolet rays, and contains a liquid monofunctional (meth)acrylate having a cycloalkyl group and a rubber component. A curable composition that does not substantially contain a liquid agent is superior in terms of resource and energy savings, environmental health and safety, and when forming a film, it is easier to adjust the coating thickness and the thickness is more uniform than that of a solution type. It has many advantages such as being easy to obtain.In particular, photo-curing products have the advantage of not having any thermal effect on the coated object because they are cured without heating, so they are being actively researched and have been put into practical use. It is widely used as a surface coating for various materials, adhesives, and various other binders. By the way, in addition to the above-mentioned advantages, this type of liquid composition is required to have a viscosity that can be easily adjusted to the desired viscosity in order to improve painting workability, while the cured product must have a desired elastic modulus. It is also required to have good elongation properties and satisfy general properties such as heat resistance and electrical properties. However, conventional compositions of this type generally have the disadvantage that it is difficult to balance the above-mentioned viscosity characteristics with the properties of the cured product, and when it comes to the properties of the cured product, especially those that are photocurable, they generally have excellent flexibility. It has the disadvantage that it is inferior in general properties such as heat resistance and electrical properties, and conversely, those that are excellent in heat resistance and electrical properties are inferior in flexibility, making it difficult to satisfy both properties. Therefore, it is possible to easily balance these properties, that is, to easily adjust the desired viscosity to improve painting workability, and the cured product has the desired elastic modulus and good elongation properties. If a liquid (solvent-free) curable composition, especially a photocurable composition, can be found that satisfies various properties such as heat resistance and electrical properties, it would be possible to develop applications in various fields. is even more promising. As a result of intensive studies from this point of view, the inventor discovered that (meth)acrylate with a specific structure dissolves rubber components to a high degree, and that a desired viscosity can be easily achieved by adjusting the amount of this rubber component. In addition, a composition obtained by adding a polyfunctional (meth)acrylate and a polymerization initiator to a solution of this rubber component and, if necessary, an ordinary monofunctional (meth)acrylate, has curability, especially photocurability. I also learned that the cured product exhibits a wide range of properties, including improved flexibility due to the rubber component.
This invention was completed. That is, this invention provides a) general formula; CH 2 =C
100 parts by weight of liquid monofunctional (meth)acrylate represented by (R)-COOR 1 (R is hydrogen or a methyl group, R 1 is a monovalent group having a cycloalkyl group);
b) Rubber component 2-100 parts by weight, c) General formula; CH 2
=C(R)-COOR 2 (R is hydrogen or methyl group, R 2
is a chain or branched alkyl group having 8 to 18 carbon atoms)
Monofunctional (meth)acrylate expressed by 0-80
Parts by weight, d) General formula; [CH 2 =C(R)-COO] - o
5 to 150 parts by weight of a polyfunctional (meth)acrylate represented by R 3 (R is hydrogen or a methyl group, R 3 is an n-valent organic group, n≧2) and e) 0.5 parts by weight of a photopolymerization initiator
The present invention relates to a curable coating composition characterized in that it is a radiation-curable one-component composition comprising 40 parts by weight. The above composition of the present invention uses a specific monofunctional (meth)acrylate as component a, which has the property of arbitrarily dissolving the rubber component as component b. By adjusting the amount of the rubber component, the viscosity can be adjusted as desired, and thereby good coating workability can be obtained depending on the purpose of use. Further, by using a photopolymerization initiator as component e, this composition can be more easily cured with radiation such as ultraviolet rays. Moreover, the desired elasticity modulus can be obtained by the above-mentioned curing, and good elongation properties can be obtained by using the rubber components.In particular, by appropriately selecting the types and amounts of each component, it is possible to achieve a balance in the above-mentioned properties. This can be done easily, and as a result, it becomes possible to obtain a cured product that satisfies not only general properties such as heat resistance and electrical properties, but also flexibility. Furthermore, this cured product has excellent water resistance and exhibits extremely suitable performance as a coating material. In this invention, the liquid monofunctional (meth)acrylate having a cycloalkyl group used as component a is practically cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, or these. Substituents on a cycloalkyl group and (meth)acrylates in which these cycloalkyl groups are connected via a methylene or oxyethylene chain are included, and these may be used alone or in combination. These (meth)acrylates having a cycloalkyl group highly dissolve various natural or synthetic rubbers or depolymerized products thereof as component b. The rubber components include natural rubber, isoprene rubber, styrene-butadiene rubber (random or block), styrene-isoprene rubber, butadiene rubber, chloroprene rubber, butyl rubber,
Examples include polyisobutylene, nitrile rubber, and ethylene-propylene rubber. Naturally, for example, butadiene-based liquid rubber can also be used. The amount of these to be used is selected as appropriate to obtain the required viscosity, and is in the range of 2 to 100 parts by weight per 100 parts by weight of the liquid monofunctional (meth)acrylate. If it is less than 2 parts by weight, the effect of modifying properties or improving flexibility will be insufficient unless a rubber component with a fairly high molecular weight is used, and conversely, if it exceeds 100 parts by weight, it is necessary to use a rubber component with a low molecular weight. In this case, the effect of improving flexibility due to the rubber component is reduced. The composition of the present invention is prepared by dissolving the above-mentioned rubber component in a monofunctional (meth)acrylate as the above-mentioned component a, and further adding a chain or branched alkyl monofunctional (meth)acrylate as a component depending on the purpose. The acrylate can be blended in a proportion of 0 to 80 parts by weight based on 100 parts by weight of the liquid monofunctional (meth)acrylate. This monofunctional (meth)acrylate preferably has a chain or branched alkyl group with a carbon number in the range of 8 to 18, and specific examples include 2-ethylhexyl (meth)acrylate,
Decyl (meth)acrylate, lauryl (meth)
Examples include acrylate, tridecyl (meth)acrylate, and stearyl (meth)acrylate alone or in mixtures. These c components are well compatible with the solution consisting of the a and b components, and do not need to be used if a hard cured product is desired, but are necessary if a relatively soft product is desired. However, if more than 80 parts by weight is added, the improvement effect will hardly be recognized. The component d used as an essential component in this invention is for maintaining the curing speed or imparting desired hardness to the cured product, and is a polyfunctional (meth)acryloyl group having two or more (meth)acryloyl groups in the molecule.
Various monomers or oligomers known as acrylates are used. Specifically, ethylene glycol di(meth)acrylate, 1,3-propanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,3-pentanediol di(meth)acrylate
Acrylate, 1,6-hexanediol di(meth)acrylate, decamethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, dipropylene Glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, glycerol di(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol di(meth)acrylate, 1,4-cyclohexanediol di(meth)acrylate Acrylate, 1,4
-benzenediol di(meth)acrylate,
1,2,4-butanetriol tri(meth)acrylate, glycerol tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate
Examples include acrylate, other similar derivatives, and oligomeric polyfunctional (meth)acrylates, which may be used alone or in combination. The amount used is 5 to 150 parts by weight per 100 parts by weight of the liquid monofunctional (meth)acrylate as component a.
It is expressed as a percentage of parts by weight. If it is less than 5 parts by weight, the effect on maintaining the curing speed will be small, and
If the amount exceeds 150 parts by weight, the cured product becomes too hard or loses compatibility, so both are unsuitable. By using a photopolymerization initiator as component e, the composition of the present invention can be easily and quickly cured with radiation such as ultraviolet rays. As the above-mentioned photopolymerization initiator, various kinds of initiators and sensitizers that are generally used for ultraviolet curable coatings can be used. For example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, 2-methylbenzoin, benzophenone, Michler's ketone, benzyl, benzyl dimethyl ketal, benzyl diethyl ketal, anthraquinone, methylanthraquinone, diacetyl, acetophenone, diphenyl disulfide. Examples include hydride, anthracene, etc., and those used in combination with small amounts of sensitizing aids such as amines. Further, the composition of the present invention can be further heat-cured after being cured by radiation, using a thermal polymerization initiator if necessary in addition to the above-mentioned photopolymerization initiator. Examples of the thermal polymerization initiator include peresters such as tertiary butyl peroctoate and tertiary butyl perpivalate, percarbonate esters such as bis-(4-tertiary butylcyclohexyl)-peroxydicarbonate, and benzoyl peroxide. Diacyl peroxides such as di-tert-butyl peroxide and dicumyl peroxide, hydroperoxides such as cyclohexanone peroxide, methyl ethyl ketone peroxide, cumene hydroperoxide, and these together with 2-ethylhexanoic acid and Examples include peroxide polymerization initiators in combination with metal promoters such as cobalt naphthenic acid salts, and other azo compounds can also be used. The amount of the photopolymerization initiator or the thermal polymerization initiator used should be in the range of 0.5 to 40 parts by weight based on 100 parts by weight of the liquid monofunctional (meth)acrylate as component a. If it is less than 0.5 parts by weight, it will be difficult to initiate polymerization sufficiently, while if it is used in excess of 40 parts by weight, no particular effect will be observed and it will lack practicality, so both are inappropriate. Polymerizable unsaturated compounds such as (meth)acrylates other than those mentioned above and other allyl compounds and vinyl compounds may be added to the composition of the present invention within the range permitted in terms of curing conditions and compatibility. In addition, known thermal polymerization inhibitors are used to improve the thermal stability of the composition, known plasticizers are used to improve the flexibility of the cured product, and soluble additives are used to appropriately adjust the properties during coating. It is possible to add polymeric materials, known anti-aging agents to improve high temperature deterioration after curing, and improvers to improve adhesion to materials. As detailed above, the curable coating composition of the present invention can be adjusted to any desired viscosity by adjusting the amount of the rubber component as component (b), so that it can be applied smoothly using an appropriate coating method. On the other hand, it can be easily cured by radiation such as ultraviolet rays after coating, and the cured product satisfies various properties such as heat resistance, electrical properties, flexibility, and water resistance. It has the characteristic of being able to Examples of the present invention will be shown below in comparison with comparative examples. Examples 1 to 6 and Comparative Example 1 In Examples 1 and 2, cyclohexyl acrylate (product name: Viscoat 155, manufactured by Osaka Organic Chemical Industry Co., Ltd.) as component a was added as component b at the blending ratio (parts by weight) shown in Table 1. Isoprene rubber (synthetic isoprene rubber manufactured by Clarei Soprene Chemical Co., Ltd.)
After mixing and dissolving IR-10) into small pieces,
Furthermore, lauryl tridecyl acrylate (product name LTA, manufactured by Osaka Organic Chemical Industry Co., Ltd.) as a c component.
and 1,6-hexanediol diacrylate as component d in the proportions (parts by weight) shown in Table 1, making the total blended amount 100 parts by weight, and to this, benzyl dimethyl ketal as component e (product manufactured by Ciba Geigy). 4
Parts by weight were added to form a photocurable coating composition of the present invention. In Examples 3 to 6, cyclohexyl acrylate as component a and styrene-butadiene-styrene block copolymer as component b (product name: CALIFLEX TR-KX65, manufactured by Ciel Chemical Co., Ltd.) were mixed in the proportions (parts by weight) shown in Table 1. Dissolve, and after dissolving, mix the proportions (parts by weight) listed in Table 1 in the same manner as in Examples 1 and 2.
Add lauryl tridecyl acrylate as component c and 1,6-hexanediol diacrylate as component d, and further add 4 parts by weight of benzyl dimethyl ketal as component e, making the total blended amount 100 parts by weight, The photocurable coating composition of this invention was prepared. Moreover, in Comparative Example 1, a comparative photocurable coating composition was prepared with the same formulation as in Examples 1 to 6, except that the rubber component as component b was not used. The results of examining the viscosity and cured product properties of the compositions of these Examples and Comparative Examples are as shown in Table 1 below.

【衚】【table】

【衚】 なお、硬化物の物性は以䞋のようにしお求め
た。すなわち各組成物をガラス板䞊に厚み玄0.3
mm皋床で流延し、ポリ゚ステルフむルムで密着カ
バヌした溶液詊料を䜜成し、高圧氎銀灯を内蔵し
た玫倖線露光装眮にお脱気䞋で400mJcm2の露光
を行い硬化シヌトを䜜成し、このシヌトより匕匵
り詊隓甚詊隓片を打ち抜き、匕匵りスピヌド50
mm分で匕匵り詊隓を行い求めた。 䞊蚘の結果から明らかなように、比范䟋はシ
クロヘキシルアクリレヌト、ラりリル・トリデシ
ルアクリレヌトおよび−ヘキサンゞオヌル
ゞアクリレヌトからなり、ゎム成分を含たないも
のであるため、その粘床は単なるアクリル系モノ
マヌの混合物で非垞に䜎い。したが぀おたずえば
極薄塗垃などには可胜であろうが、汎甚分野では
それぞれ所望の粘性が必芁であるため、このよう
な組成物の倚方面ぞの実甚はむづかしい。 これに察し、む゜プレンゎムを䜵甚した実斜䟋
の組成物では、䞊蚘ゎム成分によりその粘
床が倧巟に可倉ずなり、たた硬化物の特性におい
おも匟性率は比范䟋のものずほが同等であるず
ずもに䌞びが改良され、良奜な耐熱性電気的特
性などを附䞎しうるいわゆるタフネスが向䞊した
硬化物が埗られおいる。 たた、実斜䟋〜はゎム成分ずしおスチレン
−ブタゞ゚ン−スチレンブロツク共重合䜓を配合
したもので、前蚘実斜䟋の堎合ず同様にゎ
ム成分の増量により巟広くその粘床特性を制埡す
るこずができる。このずきゎム成分の増量にした
が぀おモノマヌ皮が同配合であれば匟性率が䜎䞋
しおくるが実斜䟋、これは成分ずし
おのラりリル・トリデシルアクリレヌトや成分
ずしおの−ヘキサンゞオヌルゞアクリレヌ
トの配合比を倉曎するこず実斜䟋により所
望の倀を埗るこずができる。 このように、実斜䟋〜の組成物によれば、
所望の粘床特性ず所望の硬化物特性ずを容易に埗
るこずができ、被芆甚組成物ずしおの利甚䟡倀が
きわめお高いものであるこずがわかる。 実斜䟋〜10および比范䟋 成分ずしおのむ゜ボルニルアクリレヌトロ
ヌムハヌス瀟補のモノマヌQM−589に第
衚の配合割合重量郚で成分ずしおのスチレ
ン−ブタゞ゚ン−スチレンブロツク共重合䜓実
斜䟋〜のものず同じを配合溶解したのち、
さらに第衚に瀺す配合割合重合郚で成分
ずしおのラりリル・トリデシルアクリレヌトおよ
び成分ずしおのペンタ゚リスリトヌルトリアク
リレヌトを加え、これら配合党量を100重量郚ず
しおこれに成分ずしおのベンゞルゞメチルケタ
ヌルを重量郚加えお、この光明の光硬化性被芆
甚組成物ずした。 たた、比范䟋は成分ずしおのゎム成分を甚
いなか぀た以倖は、䞊蚘実斜䟋〜10ず同様の配
合組成にお比范甚の光硬化性被芆甚組成物ずした
ものである。 これら実斜䟋および比范䟋の組成物の粘床およ
び硬化物特性を調べた結果は、䞋蚘の第衚に䜵
蚘されるずおりであ぀た。
[Table] The physical properties of the cured product were determined as follows. That is, each composition is spread on a glass plate to a thickness of approximately 0.3
A solution sample was prepared by casting a sample of about 1.0 mm in diameter and tightly covered with a polyester film, and exposed to 400 mJ/cm 2 under degassing using an ultraviolet exposure device with a built-in high-pressure mercury lamp to create a cured sheet. Punch out the specimen for tensile test, tensile speed 50
It was determined by performing a tensile test at mm/min. As is clear from the above results, Comparative Example 1 consists of cyclohexyl acrylate, lauryl tridecyl acrylate, and 1,6-hexanediol diacrylate and does not contain a rubber component, so its viscosity is that of a mere acrylic monomer. very low in the mixture. Therefore, although it may be possible for extremely thin coating, for example, it is difficult to put such a composition into practical use in a wide variety of fields, since a desired viscosity is required for each general purpose field. On the other hand, in the compositions of Examples 1 and 2 in which isoprene rubber was used in combination, the viscosity was widely variable due to the above rubber component, and the elastic modulus of the cured product was almost the same as that of Comparative Example 1. At the same time, a cured product with improved elongation and improved so-called toughness, which can impart good heat resistance, electrical properties, etc., has been obtained. Further, Examples 3 to 6 are those in which a styrene-butadiene-styrene block copolymer is blended as a rubber component, and as in the case of Examples 1 and 2, the viscosity characteristics are widely controlled by increasing the amount of the rubber component. be able to. At this time, as the amount of the rubber component increases, the elastic modulus decreases if the monomer types are the same (Examples 4 and 5), but this is due to lauryl tridecyl acrylate as the c component and lauryl tridecyl acrylate as the d component. A desired value can be obtained by changing the blending ratio of 1,6-hexanediol diacrylate (Example 6). Thus, according to the compositions of Examples 1 to 6,
It can be seen that the desired viscosity characteristics and desired cured product characteristics can be easily obtained, and that the composition has extremely high utility value as a coating composition. Examples 7 to 10 and Comparative Example 2 Isobornyl acrylate (monomer QM-589 manufactured by Rohm & Haas) as component a
After blending and dissolving the styrene-butadiene-styrene block copolymer as component b (same as in Examples 3 to 6) at the blending ratio (parts by weight) shown in the table,
Furthermore, lauryl tridecyl acrylate as component c and pentaerythritol triacrylate as component d are added at the blending ratio (polymerization part) shown in Table 2, and the total amount of these is 100 parts by weight, and to this is benzyl dimethyl as component e. 4 parts by weight of ketal was added to prepare this light curable coating composition. Comparative Example 2 was a comparative photocurable coating composition having the same formulation as in Examples 7 to 10, except that the rubber component as component b was not used. The results of examining the viscosity and cured product properties of the compositions of these Examples and Comparative Examples are as shown in Table 2 below.

【衚】【table】

【衚】【table】

【衚】 䞊蚘の第衚から明らかなように、実斜䟋〜
10の組成物によ぀おも第衚ず同様に粘床特性を
広範囲に改質できる䞀方、この粘床特性ず硬化物
特性ずの䞡立を容易に図りうるものであるこずが
わかる。
[Table] As is clear from Table 2 above, Examples 7-
It can be seen that with composition No. 10, the viscosity properties can be modified over a wide range as shown in Table 1, and it is also possible to easily achieve both the viscosity properties and the properties of the cured product.

Claims (1)

【特蚱請求の範囲】  䞀般匏CH2−COOR1は氎
玠たたはメチル基、R1はシクロアルキル基を有
する䞀䟡の基で衚わされる液状の単官胜メ
タアクリレヌト100重量郚、ゎム成分〜
100重量郚、䞀般匏CH2−COOR2
は氎玠たたはメチル基、R2は炭玠数〜18の
鎖状たたは分枝状アルキル基で衚わされる単官
胜メタアクリレヌト〜80重量郚、䞀般
匏〔CH2−COO〕―oR3は氎玠たたは
メチル基、R3は䟡の有機基、≧で衚わ
される倚官胜メタアクリレヌト〜150重量
郚および光重合開始剀0.5〜40重量郚を含ん
でなる攟射線硬化性の䞀液型の組成物であるこず
を特城ずする硬化性被芆甚組成物。
[Claims] 1 a) Liquid monofunctional compound represented by the general formula: CH 2 =C(R)-COOR 1 (R is hydrogen or a methyl group, R 1 is a monovalent group having a cycloalkyl group) (meth)acrylate 100 parts by weight, b) rubber component 2~
100 parts by weight, c) General formula; CH2 =C(R) -COOR2
(R is hydrogen or a methyl group, R2 is a chain or branched alkyl group having 8 to 18 carbon atoms) 0 to 80 parts by weight of a monofunctional (meth)acrylate, d) General formula; [ CH2 = 5 to 150 parts by weight of a polyfunctional (meth)acrylate represented by o R 3 (R is hydrogen or a methyl group, R 3 is an n-valent organic group, n≧2) and e) light. A curable coating composition characterized in that it is a radiation-curable one-component composition comprising 0.5 to 40 parts by weight of a polymerization initiator.
JP12073483A 1983-07-02 1983-07-02 Curable coating composition Granted JPS6013861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12073483A JPS6013861A (en) 1983-07-02 1983-07-02 Curable coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12073483A JPS6013861A (en) 1983-07-02 1983-07-02 Curable coating composition

Publications (2)

Publication Number Publication Date
JPS6013861A JPS6013861A (en) 1985-01-24
JPH0333193B2 true JPH0333193B2 (en) 1991-05-16

Family

ID=14793660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12073483A Granted JPS6013861A (en) 1983-07-02 1983-07-02 Curable coating composition

Country Status (1)

Country Link
JP (1) JPS6013861A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284165A (en) * 1985-10-08 1987-04-17 Nippon Shokubai Kagaku Kogyo Co Ltd Acrylic lacquer composition
US20190241694A1 (en) * 2016-10-28 2019-08-08 Hitachi Chemical Company, Ltd. Curable composition for forming elastic resin layer
WO2023190741A1 (en) * 2022-03-31 2023-10-05 株匏䌚瀟レゟナック Resin composition, cured product, laminate, transparent antenna, and image display device
WO2024181377A1 (en) * 2023-02-28 2024-09-06 株匏䌚瀟レゟナック Semiconductor package and resin composition for semiconductor package

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0044166A1 (en) * 1980-07-11 1982-01-20 Loctite Corporation Butadiene toughened adhesive composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0044166A1 (en) * 1980-07-11 1982-01-20 Loctite Corporation Butadiene toughened adhesive composition

Also Published As

Publication number Publication date
JPS6013861A (en) 1985-01-24

Similar Documents

Publication Publication Date Title
JP5805916B1 (en) Modified liquid diene rubber and method for producing the same
CN107001490B (en) Modified liquid diene series rubber and resin combination comprising the modified liquid diene series rubber
KR20140070551A (en) (meth)acrylate-functional polyacrylate resins with narrow but bimodal molecular weight distributions
US5916963A (en) Water-based resin dispersion and process for the production thereof
JP7069117B2 (en) Vinyl-based comb-type copolymer
CN109642137A (en) (Meth)acrylic oligomer
JPH0333193B2 (en)
JPH0336066B2 (en)
JPH04211461A (en) Ultraviolet-curing antifogging agent composition and production of antifogging coating film
JPS60262840A (en) Rubber composition
CN116507680B (en) Free radically polymerizable crosslinking agent, curable composition, and adhesive therefrom
CN116635452A (en) Free radically polymerizable crosslinking agent, curable composition, and adhesive therefrom
JPH04209662A (en) Urethane-containing photo-setting composition
JPS60118653A (en) Coating composition for optical fiber
JPS6051639A (en) Composition for covering optical fiber
JP3084690B2 (en) Method for producing polymer
JP2019163421A (en) Resin composition and cured product thereof
JP2009118256A (en) Hardenable vibration-damping material for speaker edge
JP2001240615A (en) Reactive liquid polymer and method for producing the same
JP4856389B2 (en) Aqueous coating composition
JPH0859750A (en) Curable liquid resin and its production
JPH02242811A (en) Production of curable resin
JPS60118654A (en) Coating composition for optical fiber
JPH02247211A (en) Antifouling coating composition
JPS60251157A (en) Cladding material for optical glass fiber