JPH0333190B2 - - Google Patents

Info

Publication number
JPH0333190B2
JPH0333190B2 JP24706883A JP24706883A JPH0333190B2 JP H0333190 B2 JPH0333190 B2 JP H0333190B2 JP 24706883 A JP24706883 A JP 24706883A JP 24706883 A JP24706883 A JP 24706883A JP H0333190 B2 JPH0333190 B2 JP H0333190B2
Authority
JP
Japan
Prior art keywords
weight
flame retardant
resin
aromatic vinyl
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24706883A
Other languages
Japanese (ja)
Other versions
JPS60139747A (en
Inventor
Kenji Nabeta
Isamu Kahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP24706883A priority Critical patent/JPS60139747A/en
Priority to US06/645,938 priority patent/US4602051A/en
Priority to EP84110394A priority patent/EP0137290B1/en
Priority to DE8484110394T priority patent/DE3467826D1/en
Priority to CA000462546A priority patent/CA1226391A/en
Priority to US06/720,194 priority patent/US4604413A/en
Publication of JPS60139747A publication Critical patent/JPS60139747A/en
Priority to US06/800,004 priority patent/US4696956A/en
Priority to US06/820,493 priority patent/US4704413A/en
Priority to CA000529629A priority patent/CA1260180A/en
Priority to CA000529630A priority patent/CA1260181A/en
Publication of JPH0333190B2 publication Critical patent/JPH0333190B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、共重合体と炭素繊維とからなる電磁
波遮蔽性樹脂組成物において、特に電磁波遮蔽効
果及び力学物性が良好でかつ難燃性に優れた樹脂
組成物であり、更に詳くは、共重合体と炭素繊維
とからなる電磁波遮蔽性樹脂組成物において、含
ハロゲン有機難燃剤、難燃助剤及びエチレン−プ
ロピレンターポリマーを加える事により、電磁波
遮蔽効果及び熱的性質、機械的性質が良好である
難燃性を有する電磁波遮蔽性優れた樹脂組成物に
関する。 従来、事務機器、電子計算機、TVレシーバ
ー、などの電子機器は、それ自体が電磁波の発生
源となり、周囲の電子機器の誤動作やノイズの原
因となつている。 一方、これらの電子機器は、その近傍に設置さ
れた電気機器などの影響を受け、それ自身が誤動
作やノイズを発生することも有る。 これら電子機器の筐体には、電磁波を遮蔽する
性能を有する板金や、アルミダイキヤストなどが
使用されており、この場合には、電磁波による障
害はある程度防止されていた。 しかしながら近年、成形の容易さ、自由なデザ
イン、軽量性、などのメリツトにより、プラスチ
ツク材料が電子機器の筐体に数多く使われてい
る。 プラスチツク材料は、一般に導電性に乏しく、
電磁波を遮蔽する性能が殆んどない為に、電子機
器の筐体にプラスチツク材料を用いる場合は、電
磁波に対する遮蔽処理が必要となる。 特に、最近では、国内、国外を問わず、電子機
器からの電磁波の放射に対して厳しい制限が加え
られており、プラスチツク材料の電磁波遮蔽処理
に対する要求が高まりつつある。 一方、プラスチツク材料をこれらの電子機器の
筐体に用いる場合は、火災による人身事故を未然
に防ぐ為、UL規格、CSA規格などによつて、プ
ラスチツク材料を難燃化する事が義務づけられて
いる。 プラスチツク材料を難燃化する公知の方法は、
易燃性樹脂に難燃剤及び難燃助剤を混和するもの
であり、難燃剤の中で含ハロゲン有機難燃剤は消
炎効果が高く、且つ三酸化アンチモンなどの難燃
助剤を併用すると相剰効果が期待される。 更に、塩化ビニル樹脂、塩素化ポリエチレン樹
脂、塩素化ポリプロピレン樹脂、クロルスルホン
化ポリエチレン樹脂などの塩素化炭化水素樹脂を
混和する方法も広く知られている。 しかしながら、通常の難燃性に対する規格、例
えばUL−94の垂直燃焼テストに合格するには、
これらの難燃剤、難燃助剤及び塩素化炭化水素樹
脂を多量に添加する必要がある為に、熱的性質、
機械的性質に劣るものであつた。 特に、電磁波に対する遮蔽効果を得る為に、炭
素繊維などの導電性フイラーを、樹脂中に混和し
た場合には、元来衝撃強度などの力学物性が低下
し、その上樹脂の熱伝導率が向上する事により難
燃性が低下する為に、更に多量の難燃剤、難燃助
剤及び塩素化炭化水素樹脂を添加する必要があ
り、成形品の熱的性質、機械的性質に全く劣るも
のであつた。 本発明者等は、上述の問題点に鑑み、これを解
決すべき鋭意検討を行なつた結果、共重合体と炭
素繊維、含ハロゲン有機難燃剤及び難燃助剤より
なる、難燃性を有する電磁波遮蔽性樹脂組成物
に、エチレン−プロピレン−ターポリマーを少量
添加する事により、少量の含ハロゲン有機難燃剤
や難燃助剤の添加で、充分な難燃性を有し、かつ
成形品の熱的性質、機械的性質の良好な難燃性を
有する電磁波遮蔽性樹脂組成物を得るとの新規な
知見を得、本発明の完成に致つたものである。 すなわち、本発明は、 (1) エチレン性不飽和ニトリル−ジエンゴム−芳
香族ビニル共重合体又はこれとエチレン性不飽
和ニトリル−芳香族ビニル共重合体との混合物
35〜75重量% (2) エチレン−プロピレンターポリマー2〜20重
量% (3) 炭素繊維5〜40重量% (4) 含ハロゲン有機難燃剤2〜30重量% (5) 難燃助剤0.4〜18重量% からなることを特徴とする。 本発明の難燃性を有する電磁波遮蔽性樹脂組成
物のベースとなる樹脂は、エチレン性不飽和ニト
リル−ジエンゴム−芳香族ビニル共重合体または
これとエチレン性不飽和ニトリル−芳香族ビニル
共重合体との混合物が用いられる。 本発明におけるエチレン性不飽和ニトリル化合
物とは、例えば、アクリロニトリル、メタクリロ
ニトリル、エタクリロニトリル、メチルメタクリ
ロニトリルなどであり、アクリロニトリル及びメ
タクリロニトリルが特に好ましい。 本発明におけるジエンゴムは、1種またはそれ
以上の共役1,3−ジエン、例えば、ブタジエ
ン、イソプレン、2−クロロ−1,3−ブタジエ
ン、1−クロロ−1,3−ブタジエン、ピペリレ
ンなどの任意のゴム状重合体であるが、特にブタ
ジエンが好ましい。 本発明における芳香族ビニル化合物とは、スチ
レン、a−メチルスチレン、ビニルトルエン、ジ
ビニルベンゼン、クロロスチレン、などの単独あ
るいは混合物を意味するが、なかでもスチレン単
独で用いると、本発明の場合にはより良い結果を
与える。 更に本発明の、エチレン性不飽和ニトリル−ジ
エンゴム−芳香族ビニル共重合体としては、ジエ
ンゴムまたはジエンゴム50重量%以上を含有する
ジエン含有重合体20〜75重量部好ましくは20〜60
重量部にエチレン性不飽和ニトリル化合物及び芳
香族ビニル化合物の混合物80〜25重量部好ましく
は80〜40重量部をグラフトさせた重合体が良い。 一方、エチレン性不飽和ニトリル−ジエンゴム
−芳香族ビニル共重合体とエチレン性不飽和ニト
リル−芳香族ビニル共重合体との混合物を用いる
場合、その比率は、前者が25〜99重量部好ましく
は35〜65重量部、後者が1〜75重量部好ましくは
65〜35重量部の範囲が良い。前記範囲以外では、
成形性および物性が低下する。これらの製造方法
は、例えば特公昭51−37675号があげられる。 次に本発明で用いられるエチレン−プロピレン
−ターポリマーとしては、エチレンプロピレン共
重合体に、第三成分として二重結合を持つ少量の
不飽和物を導入したもので、その組成は、エチレ
ン50〜80mol%、プロピレン20〜50mol%、不飽
和物0.5〜10mol%の範囲であるが、エチレン60
〜70mol%、プロピレン30〜40mol%、不飽和物
0.5〜5mol%の範囲が最も良好である。 一方、不飽和物としては、一般にジエン又はト
リエンが用いられるが、共重合性が良いことと価
格が安いことを勘案し、1,4ヘキサジエン、ジ
シクロペンタジエン、エチリデンノルボーネンが
特に良く用いられる。 エチレン−プロピレン−ターポリマーの添加量
は、2〜20重量%、好ましくは5〜10重量%であ
り、添加量が2重量%未満では、難燃性の改良効
果が殆んど得られず、添加量が20重量%を越える
と、成形品の機械的性質及び熱的性質に劣るもの
となる。 更に添加量が著く多い場合には、本発明の目的
である難燃性をも損うものとなる。 次に本発明に用いる炭素繊維は、ポリアクリロ
ニトリル系炭素繊維、ピツチ系炭素繊維、フエノ
ール系炭素繊維の群より選ばれる1種又は2種以
上の混合物が用いられるが、なかでもポリアクリ
ロニトリル系炭素繊維を単独で用いると特に良好
な電磁波遮蔽効果が得られる。 炭素繊維の添加量は、5〜40重量%、好ましく
は10〜25重量%であり、添加量が5重量%未満で
は、電磁波遮蔽効果が殆んど得られず、添加量が
40重量%を越えると、押出成形、射出成形が困難
であり、更に成形品の機械的性質に劣るものとな
る。 さらに、本発明で使用される含ハロゲン有機難
燃剤としては、塩素化パラフイン、テトラブロモ
ビスフエノールA及びそのオリゴマー、デカブロ
モビフエニルエーテル、ヘキサブロモビフエニル
エーテル、ペンタブロモビフエニルエーテル、ペ
ンタブロモトルエン、ペンタブロモエチルベンゼ
ン、ヘキサブロモベンゼン、ペンタブロモフエノ
ール、トリブロモフエノール誘導体、パークロロ
ペンタンシクロデカン、ヘキサブロモシクロドデ
カン、トリス−(2,3ジブロモプロピル−1)−
イソシアヌレート、テトラブロモビスフエノール
s及び誘導体、1,2ビス(2,3,4,5,6
−ペンタブロモフエノキシ)エタン、1,2ビス
(2,4,6−トリブロモフエノキシ)エタン、
臭素化スチレンオリゴマー、2,2−ビス−(4
−(2,3,−ジブロモプロピル)−3,5ジブロ
モフエノキシ)プロパン、テトラクロロフタリツ
クアンハイドライド、テトラブロモフタリツクア
ンハイドライドなどがある。 本発明で使用される難燃助剤としては、三酸化
アンチモン、アンチモン酸ソーダー、ほう酸亜
鉛、ジルコン及びモリブデンの酸化物及び硫化物
であるが、三酸化アンチモンを用いると最も良好
な結果を与える。 含ハロゲン有機難燃剤の添加量は、要求される
難燃度やエチレン−プロピレンターポリマーの添
加量によつても異なるが、2〜30重量%、好まし
くは5〜25重量%である。 含ハロゲン有機難燃剤の添加量が2重量%未満
では、充分な難燃効果が得られず、一方添加量が
30重量%を越えると、成形品の機械的性質及び熱
的性質に劣るものとなる。 一方、難燃助剤の添加量は、0.4〜18重量%で、
しかも、含ハロゲン有機難燃剤の6/10〜2/10、好
ましくは、5/10〜3/10の範囲である。 難燃助剤の添加量が、0.4重量%未満では、難
燃剤との相剰効果による難燃効果の発現が不足
し、また、18重量%を越えると成形品の機械的性
質が劣る。さらに、添加量が含ハロゲン有機難燃
剤の2/10未満の場合は、含ハロゲン有機難燃剤と
の相剰効果による難燃効果の発現が不足し、充分
な難燃効果が得られず、一方添加量が含ハロゲン
有機難燃剤の6/10を越えると、成形品の機械的性
質に劣るものとなる。 更に本発明品の性質を改良する為に、酸化防止
剤、安定剤、滑剤などの加工助剤を添加すること
も出来る。 詳くは、酸化防止剤として、フエノール系酸化
防止剤、硫黄系酸化防止剤、燐系酸化防止剤が用
いられる。 酸化防止剤の添加量は、樹脂100重量部に対し
て0.01〜4重量部が好ましい。 安定剤としては、金属石鹸、無機酸塩類、有機
錫化合物、複合安定剤が用いられる。 安定剤の添加量は、樹脂100重量部に対して
0.01〜4重量部が好ましい。 滑剤としては、パラフイン及び炭化水素樹脂、
脂肪酸、脂肪酸アミド、脂肪酸エステル、脂肪族
アルコール、脂肪酸と多価アルコールの部分エス
テルが用いられる。 滑剤の添加量は、樹脂100重量部に対して0.01
〜4重量部が好ましい。 次に、本発明の樹脂組成物の製造方法は、まず
粉末状、ビーズ状、ペレツト状など各種形状のエ
チレン性不飽和ニトリル−ジエンゴム−芳香族ビ
ニル共重合体またはこれと各種形状のエチレン性
不飽和ニトリル−芳香族ビニル共重合体との混合
物、更にエチレン−プロピレンターポリマー、炭
素繊維、難燃剤、難燃助剤からなるが、成形性や
成形品物性の面より、エチレン不飽和ニトリル−
ジエンゴム−芳香族ビニル共重合体は粉末状を、
エチレン不飽和ニトリル−芳香族ビニル共重合体
は、ビーズ状を用いると更に好ましい。また、本
発明の組成物を均一なものとする為には、バンバ
リーミキサー、コニーダー、単軸押出機、2軸押
出機などの混練機、押出機にて混合混練を行な
い、さらに、混練機、押出機にて混合混練を行な
う前にタンブラー、高速ミキサーなどの手段を用
いて予備混合を行なつても良い。 この混合混練を行なう事で得た樹脂組成物は、
射出成形機のホツパー内に供給し、可塑性シリン
ダー内で溶融し、射出成形金型内に射出し、金型
内で冷却固化した成形品を取り出す事で、本発明
の樹脂組成物を用いた射出成形品を得ることがで
き、同様に、樹脂組成物を押出成形機のホツパー
内に供給し、可塑化シリンダー内で溶融し、押出
機先端に設置したダイより押し出す事で、本発明
の樹脂組成物を用いた押出成形品を得ることがで
きる。 以下実施例及び比較例により、本発明を更に詳
細に説明する。 実施例 1〜8 樹脂として、組成比が、アクリロニトリル10重
量%、ポリブタジエン50重量%、スチレン40重量
%からなる粉末状アクリロニトリル−ブタジエン
−スチレン共重合樹脂(ABB樹脂)及びアクリ
ロニトリル30重量%、スチレン70重量%からなる
ビーズ状アクリロニトリル−スチレン共重合樹脂
(AS樹脂)を用い、更にエチレン−プロピレン−
ターポリマーとしては、エチレン−プロピレン−
ジシクロペンタジエン樹脂、三井石油化学工業(株)
製商品名「EPT−#1045」を用いた。 次に、炭素繊維は、ポリアクリロニトリル系炭
素繊維のチヨツプドストランド、東邦レーヨン(株)
製商品名「ベスフアイトHTAC6S」を用い、含
ハロゲン有機難燃剤としては、テトラブロモビス
フエノールA、帝人化成(株)製商品名「フアイヤー
ガード2000」を用い、難燃助剤としては、日本鉱
業(株)製、三酸化アンチモンを用いた。 更にこれに酸化防止剤と三塩基性鉛からなる安
定剤及びステアリン酸亜鉛を樹脂100重量部に対
して夫々1重量部加え第1表に示す様な組成で配
合し、その配合物を140℃に加熱されたバンバリ
ーミキサー中に投入し、溶融混練し混合物が190
℃に達した時点で取り出し、直ちにミキシングロ
ールにてシート状に冷却、粉砕しペレツトとし
た。 このペレツトを、8オンス射出成形機のホツパ
ー内に供給し、可塑化シリンダー内で溶融し、射
出成形金型内に射出する。 射出成形金型は、厚味3m/mで15cm角の筐体
形状で、ゲートは、口径2mmφのダイレクトゲー
トを用いた。 この様にして得られた成形品は、機械的性質、
耐熱性、難燃性電磁波遮蔽効果ともに優れたもの
であつた。 実施例 9〜11 第1表に示すように配合組成を実施例1と同様
な方法でペレツト化し、これを直径40m/mの押
出機(L/D=24)のホツパー内に供給し、溶融
した200℃の単層シートダイに供給する。 ダイの巾は600m/m、リツプは3.5m/mに調
整され、この結果厚味3m/mの単層シートを得
た。 得られた単層シートは、第1表に示す通り、機
械的性質、耐熱性、難燃性、電磁波遮蔽効果の優
れたものであつた。 実施例 12〜13 実施例1の粉末状アクリロニトリル−ブタジエ
ン−スチレン共重合樹脂のかわりにメタクリロニ
トリル50重量%、ポリブタジエン10重量%及びス
チレン40重量%からなる粉末状メタクリロニトリ
ル−ブタジエン−スチレン共重合樹脂(MBS樹
脂)を用い、他は第1表に示す配合とした組成を
実施例1と同様な方法でペレツト化し、これを用
いて射出成形品を得た。物性を測定した結果、力
学物性、耐熱性、難燃性電磁波遮蔽効果ともに優
れていた。 実施例 14 アクリロニトリル20重量%、ポリブタジエン20
重量%及びスチレン60重量%からなるペレツト状
アクリロニトリル−ブタジエン−スチレン共重合
樹脂(ABS樹脂)を用い、他は第1表に示す配
合とした組成を、実施例1と同様な方法でペレツ
ト化し、これを用いて射出成形品を得た。物性を
測定した結果、得られた成形品は、機械的強度、
耐熱性、難燃性及び電磁波遮蔽効果ともに優れて
いた。 実施例 15〜16 実施例1のエチレン−プロピレン−ジシクロペ
ンタジエン樹脂のかわりに、エチレン−プロピレ
ン−エチリデンノルボーネン樹脂、三井石油化学
工業(株)製商品名「EPT−#3045」を用い、他は
第1表に示す配合とした組成を、実施例1と同様
な方法でペレツト化し、これを用いて射出成形品
を得た。 物性を測定した結果、機械的強度、耐熱性、難
燃性、電磁波遮蔽効果ともに優れたものであつ
た。 比較例 1〜2 第2表に示すような配合組成でエチレン−プロ
ピレン−ジシクロペンタジエン樹脂を特許請求の
範囲に達せぬ量又は特許請求の範囲を越えた量添
加したこと以外は、実施例1と同様な方法で射出
成形品を得た。 この射出成形品の物性測定結果を第2表に示
す。 比較例 3〜4 第2表に示すような配合組成で炭素繊維を特許
請求の範囲に達せぬ量又は特許請求の範囲を越え
た量添加したこと以外は、実施例1と同様な方法
で射出成形品を得た。 この射出成形品の物性測定結果を第2表に示
す。
The present invention relates to an electromagnetic wave shielding resin composition comprising a copolymer and carbon fiber, which has particularly good electromagnetic wave shielding effect and mechanical properties, and is excellent in flame retardancy. By adding a halogen-containing organic flame retardant, a flame retardant aid, and an ethylene-propylene terpolymer to an electromagnetic wave shielding resin composition consisting of a polymer and carbon fiber, the electromagnetic wave shielding effect, thermal properties, and mechanical properties are improved. The present invention relates to a resin composition having flame retardancy and excellent electromagnetic wave shielding properties. Conventionally, electronic devices such as office equipment, computers, and TV receivers have themselves been sources of electromagnetic waves, causing malfunctions and noise in surrounding electronic devices. On the other hand, these electronic devices are affected by electrical devices installed nearby, and may malfunction or generate noise themselves. The housings of these electronic devices are made of sheet metal, aluminum die-casting, or the like, which has the ability to shield electromagnetic waves, and in this case, interference caused by electromagnetic waves can be prevented to some extent. However, in recent years, plastic materials have been widely used for the housings of electronic devices due to their advantages such as ease of molding, flexible design, and light weight. Plastic materials generally have poor conductivity;
Since plastic materials have almost no ability to shield electromagnetic waves, when using plastic materials for the housing of electronic devices, shielding treatment against electromagnetic waves is required. In particular, in recent years, strict restrictions have been placed on the radiation of electromagnetic waves from electronic devices both domestically and internationally, and there has been an increasing demand for electromagnetic wave shielding treatments for plastic materials. On the other hand, when plastic materials are used in the housings of these electronic devices, UL standards, CSA standards, etc. require that the plastic materials be made flame retardant in order to prevent accidents resulting in injury or death due to fire. Known methods for making plastic materials flame retardant include:
A flame retardant and a flame retardant aid are mixed with a flame retardant. Among the flame retardants, a halogen-containing organic flame retardant has a high flame-extinguishing effect, and when used in combination with a flame retardant aid such as antimony trioxide, Expected to be effective. Furthermore, methods of mixing chlorinated hydrocarbon resins such as vinyl chloride resin, chlorinated polyethylene resin, chlorinated polypropylene resin, and chlorosulfonated polyethylene resin are also widely known. However, in order to pass the normal flame retardant standards, such as the UL-94 vertical flame test,
Because it is necessary to add large amounts of these flame retardants, flame retardant aids, and chlorinated hydrocarbon resins, thermal properties,
It had poor mechanical properties. In particular, when a conductive filler such as carbon fiber is mixed into a resin in order to obtain a shielding effect against electromagnetic waves, mechanical properties such as impact strength are originally reduced, and the thermal conductivity of the resin is improved. As a result, the flame retardancy decreases, so it is necessary to add a large amount of flame retardant, flame retardant aid, and chlorinated hydrocarbon resin, and the thermal and mechanical properties of the molded product are completely inferior. It was hot. In view of the above-mentioned problems, the present inventors conducted intensive studies to solve the problem, and as a result, the present inventors developed a flame retardant material composed of a copolymer, carbon fiber, a halogen-containing organic flame retardant, and a flame retardant aid. By adding a small amount of ethylene-propylene terpolymer to the electromagnetic wave shielding resin composition, it has sufficient flame retardancy and molded products can be obtained by adding a small amount of halogen-containing organic flame retardant or flame retardant aid. The present invention was completed based on the novel finding that it is possible to obtain an electromagnetic wave shielding resin composition having good flame retardant thermal properties and mechanical properties. That is, the present invention provides: (1) an ethylenically unsaturated nitrile-diene rubber-aromatic vinyl copolymer or a mixture thereof with an ethylenically unsaturated nitrile-aromatic vinyl copolymer;
35 to 75% by weight (2) Ethylene-propylene terpolymer 2 to 20% by weight (3) Carbon fiber 5 to 40% by weight (4) Halogen-containing organic flame retardant 2 to 30% by weight (5) Flame retardant aid 0.4 to 40% by weight It is characterized by consisting of 18% by weight. The base resin of the flame-retardant electromagnetic wave shielding resin composition of the present invention is an ethylenically unsaturated nitrile-diene rubber-aromatic vinyl copolymer or an ethylenically unsaturated nitrile-aromatic vinyl copolymer with this copolymer. A mixture of The ethylenically unsaturated nitrile compound in the present invention includes, for example, acrylonitrile, methacrylonitrile, ethacrylonitrile, methylmethacrylonitrile, and the like, with acrylonitrile and methacrylonitrile being particularly preferred. The diene rubber in the present invention may be any one or more conjugated 1,3-dienes, such as butadiene, isoprene, 2-chloro-1,3-butadiene, 1-chloro-1,3-butadiene, piperylene, etc. Among rubber-like polymers, butadiene is particularly preferred. The aromatic vinyl compound in the present invention means styrene, a-methylstyrene, vinyltoluene, divinylbenzene, chlorostyrene, etc. alone or in a mixture. Among them, when styrene is used alone, in the case of the present invention, give better results. Furthermore, the ethylenically unsaturated nitrile-diene rubber-aromatic vinyl copolymer of the present invention includes 20 to 75 parts by weight of diene rubber or a diene-containing polymer containing 50% by weight or more of diene rubber, preferably 20 to 60 parts by weight.
A polymer having 80 to 25 parts by weight, preferably 80 to 40 parts by weight of a mixture of an ethylenically unsaturated nitrile compound and an aromatic vinyl compound grafted thereto is preferred. On the other hand, when using a mixture of ethylenically unsaturated nitrile-diene rubber-aromatic vinyl copolymer and ethylenically unsaturated nitrile-aromatic vinyl copolymer, the ratio is preferably 25 to 99 parts by weight of the former, preferably 35 parts by weight. ~65 parts by weight, preferably 1 to 75 parts by weight of the latter
A range of 65 to 35 parts by weight is good. Outside the above range,
Moldability and physical properties deteriorate. These manufacturing methods are disclosed in, for example, Japanese Patent Publication No. 37675/1983. Next, the ethylene-propylene terpolymer used in the present invention is an ethylene-propylene copolymer in which a small amount of unsaturated material having a double bond is introduced as a third component, and its composition is ethylene 50~ 80 mol%, propylene 20-50 mol%, unsaturates ranges from 0.5-10 mol%, but ethylene 60
~70mol%, propylene 30-40mol%, unsaturates
A range of 0.5 to 5 mol% is best. On the other hand, as the unsaturated substance, dienes or trienes are generally used, but 1,4 hexadiene, dicyclopentadiene, and ethylidene norbornene are particularly often used in view of their good copolymerizability and low cost. The amount of the ethylene-propylene terpolymer added is 2 to 20% by weight, preferably 5 to 10% by weight. If the amount added is less than 2% by weight, almost no flame retardant improvement effect is obtained, If the amount added exceeds 20% by weight, the mechanical and thermal properties of the molded article will be poor. Furthermore, if the amount added is significantly large, the flame retardancy, which is the objective of the present invention, will be impaired. Next, as the carbon fiber used in the present invention, one type or a mixture of two or more types selected from the group of polyacrylonitrile carbon fiber, pitch carbon fiber, and phenolic carbon fiber is used, and among them, polyacrylonitrile carbon fiber When used alone, a particularly good electromagnetic wave shielding effect can be obtained. The amount of carbon fiber added is 5 to 40% by weight, preferably 10 to 25% by weight. If the amount added is less than 5% by weight, almost no electromagnetic wave shielding effect can be obtained, and the amount added is less than 5% by weight.
If it exceeds 40% by weight, extrusion molding and injection molding will be difficult, and the mechanical properties of the molded product will be poor. Furthermore, the halogen-containing organic flame retardants used in the present invention include chlorinated paraffin, tetrabromobisphenol A and its oligomer, decabromobiphenyl ether, hexabromobiphenyl ether, pentabromobiphenyl ether, and pentabromotoluene. , pentabromoethylbenzene, hexabromobenzene, pentabromophenol, tribromophenol derivatives, perchloropentanecyclodecane, hexabromocyclododecane, tris-(2,3 dibromopropyl-1)-
Isocyanurates, tetrabromobisphenols and derivatives, 1,2 bis(2,3,4,5,6
-pentabromophenoxy)ethane, 1,2bis(2,4,6-tribromophenoxy)ethane,
Brominated styrene oligomer, 2,2-bis-(4
Examples include -(2,3,-dibromopropyl)-3,5 dibromophenoxy)propane, tetrachlorophthalic anhydride, and tetrabromophthalic anhydride. Flame retardant aids used in the present invention include antimony trioxide, sodium antimonate, zinc borate, zircon and molybdenum oxides and sulfides, with antimony trioxide giving the best results. The amount of the halogen-containing organic flame retardant added varies depending on the required degree of flame retardancy and the amount of ethylene-propylene terpolymer added, but is 2 to 30% by weight, preferably 5 to 25% by weight. If the amount of the halogen-containing organic flame retardant added is less than 2% by weight, a sufficient flame retardant effect cannot be obtained;
If it exceeds 30% by weight, the mechanical and thermal properties of the molded article will be poor. On the other hand, the amount of flame retardant aid added is 0.4 to 18% by weight.
Moreover, it is in the range of 6/10 to 2/10, preferably 5/10 to 3/10, of the halogen-containing organic flame retardant. If the amount of flame retardant auxiliary added is less than 0.4% by weight, the flame retardant effect due to the mutual effect with the flame retardant will not be sufficiently expressed, and if it exceeds 18% by weight, the mechanical properties of the molded article will be poor. Furthermore, if the amount added is less than 2/10 of the halogen-containing organic flame retardant, the flame retardant effect due to the mutual effect with the halogen-containing organic flame retardant will not be sufficiently expressed, and a sufficient flame retardant effect will not be obtained. If the amount added exceeds 6/10 of the halogen-containing organic flame retardant, the mechanical properties of the molded article will be poor. Furthermore, processing aids such as antioxidants, stabilizers, and lubricants may be added to improve the properties of the products of the present invention. Specifically, as the antioxidant, a phenolic antioxidant, a sulfur-based antioxidant, and a phosphorus-based antioxidant are used. The amount of antioxidant added is preferably 0.01 to 4 parts by weight per 100 parts by weight of the resin. As the stabilizer, metal soaps, inorganic acid salts, organic tin compounds, and composite stabilizers are used. The amount of stabilizer added is based on 100 parts by weight of resin.
0.01 to 4 parts by weight is preferred. As lubricants, paraffin and hydrocarbon resins,
Fatty acids, fatty acid amides, fatty acid esters, fatty alcohols, and partial esters of fatty acids and polyhydric alcohols are used. The amount of lubricant added is 0.01 per 100 parts by weight of resin.
~4 parts by weight is preferred. Next, in the method for producing the resin composition of the present invention, first, an ethylenically unsaturated nitrile-diene rubber-aromatic vinyl copolymer in various shapes such as powder, beads, and pellets, or an ethylenically unsaturated nitrile-diene rubber-aromatic vinyl copolymer in various shapes, It consists of a mixture of saturated nitrile and an aromatic vinyl copolymer, as well as an ethylene-propylene terpolymer, carbon fiber, a flame retardant, and a flame retardant aid.
Diene rubber-aromatic vinyl copolymer is available in powder form,
It is more preferable to use the ethylenically unsaturated nitrile-aromatic vinyl copolymer in the form of beads. In order to make the composition of the present invention uniform, mixing and kneading is carried out in a kneader or extruder such as a Banbury mixer, co-kneader, single-screw extruder, or twin-screw extruder, and further, a kneader, Before mixing and kneading in an extruder, preliminary mixing may be performed using a means such as a tumbler or a high-speed mixer. The resin composition obtained by performing this mixing and kneading is
Injection using the resin composition of the present invention is performed by feeding the resin composition into the hopper of an injection molding machine, melting it in a plastic cylinder, injecting it into an injection mold, and taking out the molded product that has cooled and solidified in the mold. Similarly, the resin composition of the present invention can be obtained by feeding the resin composition into the hopper of an extrusion molding machine, melting it in the plasticizing cylinder, and extruding it from the die installed at the tip of the extruder. It is possible to obtain an extrusion molded product using a material. The present invention will be explained in more detail below with reference to Examples and Comparative Examples. Examples 1 to 8 As the resin, a powdered acrylonitrile-butadiene-styrene copolymer resin (ABB resin) having a composition ratio of 10% by weight of acrylonitrile, 50% by weight of polybutadiene, and 40% by weight of styrene, and 30% by weight of acrylonitrile and 70% by weight of styrene were used. Using bead-shaped acrylonitrile-styrene copolymer resin (AS resin) consisting of % by weight, ethylene-propylene-
As a terpolymer, ethylene-propylene-
Dicyclopentadiene resin, Mitsui Petrochemical Industries, Ltd.
The product name "EPT-#1045" was used. Next, the carbon fiber was a chopped strand of polyacrylonitrile carbon fiber manufactured by Toho Rayon Co., Ltd.
The halogen-containing organic flame retardant used was Tetrabromobisphenol A, the Teijin Kasei Co., Ltd. product name Fire Guard 2000 was used, and the flame retardant auxiliary agent was Nippon Mining Co., Ltd. Antimony trioxide manufactured by Co., Ltd. was used. Furthermore, 1 part by weight each of an antioxidant, a stabilizer consisting of tribasic lead, and zinc stearate were added to 100 parts by weight of the resin, and the composition was blended as shown in Table 1, and the mixture was heated at 140°C. The mixture was put into a Banbury mixer heated to 190℃ and melted and kneaded.
When the temperature reached ℃, it was taken out, immediately cooled into a sheet shape using a mixing roll, and crushed into pellets. The pellets are fed into the hopper of an 8 ounce injection molding machine, melted in a plasticizing cylinder, and injected into an injection mold. The injection mold had a housing shape of 15 cm square with a thickness of 3 m/m, and the gate used was a direct gate with a diameter of 2 mmφ. The molded product obtained in this way has mechanical properties,
It was excellent in both heat resistance, flame retardancy, and electromagnetic wave shielding effect. Examples 9 to 11 The composition shown in Table 1 was pelletized in the same manner as in Example 1, and the pellets were fed into the hopper of an extruder with a diameter of 40 m/m (L/D = 24) and melted. The sample is then fed to a single layer sheet die at 200℃. The width of the die was adjusted to 600 m/m and the lip was adjusted to 3.5 m/m, resulting in a single layer sheet with a thickness of 3 m/m. As shown in Table 1, the obtained single-layer sheet had excellent mechanical properties, heat resistance, flame retardancy, and electromagnetic wave shielding effect. Examples 12-13 Instead of the powdered acrylonitrile-butadiene-styrene copolymer resin of Example 1, a powdered methacrylonitrile-butadiene-styrene copolymer resin consisting of 50% by weight of methacrylonitrile, 10% by weight of polybutadiene, and 40% by weight of styrene was used. A polymer resin (MBS resin) was used, and the composition other than that shown in Table 1 was pelletized in the same manner as in Example 1, and injection molded products were obtained using this pellet. As a result of measuring the physical properties, it was found to be excellent in mechanical properties, heat resistance, flame retardancy, and electromagnetic wave shielding effect. Example 14 Acrylonitrile 20% by weight, polybutadiene 20%
A pelletized acrylonitrile-butadiene-styrene copolymer resin (ABS resin) consisting of 60% by weight of styrene and 60% by weight of styrene was used, and the other compositions were as shown in Table 1, and the composition was pelletized in the same manner as in Example 1. An injection molded product was obtained using this. As a result of measuring the physical properties, the obtained molded product had mechanical strength,
It had excellent heat resistance, flame retardancy, and electromagnetic shielding effect. Examples 15 to 16 Instead of the ethylene-propylene-dicyclopentadiene resin in Example 1, ethylene-propylene-ethylidene norbornene resin, trade name "EPT-#3045" manufactured by Mitsui Petrochemical Industries, Ltd., was used, and others The compositions shown in Table 1 were pelletized in the same manner as in Example 1, and injection molded products were obtained using the pellets. As a result of measuring the physical properties, it was found to be excellent in mechanical strength, heat resistance, flame retardance, and electromagnetic wave shielding effect. Comparative Examples 1 to 2 Example 1 except that ethylene-propylene-dicyclopentadiene resin was added in an amount that did not reach the claimed range or exceeded the claimed range in the formulation shown in Table 2. An injection molded product was obtained in the same manner as above. Table 2 shows the results of measuring the physical properties of this injection molded product. Comparative Examples 3 to 4 Injection was carried out in the same manner as in Example 1, except that carbon fiber was added in an amount that was below the claimed range or in an amount that exceeded the claimed range, with the composition shown in Table 2. A molded product was obtained. Table 2 shows the results of measuring the physical properties of this injection molded product.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 なお、実施例及び比較例に示す成形品物性は、
下記の方法により測定を行なつた。 (1) 電磁波遮蔽効果:デンカ法により、図面に示
す電磁波遮蔽効果測定装置を使用し、トラツキ
ングジエネレータにて励起した高周波電圧を発
信アンテナに印加し、試料を介して受信した受
信電圧と発信電圧との比をスペクトラムアナラ
イザーにて測定した。 (2) 引張強度:JIS K−6871準拠法 (3) 曲げ強度、曲げ弾性率:ASTM D−790準
拠法 (4) アイゾツト衝撃強度:JIS K−681準拠法
(ノツチ付) (5) 熱変形温度:JIS K−7207(硬質プラスチツ
クの荷重たわみ温度試験)準拠法 (6) UL−94難燃試験:UL−96垂直燃焼試験準拠
法 (7) 酸素指数:JIS K−7201準拠法
[Table] The physical properties of the molded products shown in Examples and Comparative Examples are as follows:
Measurements were carried out by the following method. (1) Electromagnetic shielding effect: Using the Denka method to measure the electromagnetic shielding effect shown in the drawing, a high-frequency voltage excited by a tracking generator is applied to the transmitting antenna, and the received voltage received through the sample and the transmitter are measured. The ratio to the voltage was measured using a spectrum analyzer. (2) Tensile strength: JIS K-6871 compliant (3) Bending strength, flexural modulus: ASTM D-790 compliant (4) Izot impact strength: JIS K-681 compliant (notched) (5) Thermal deformation Temperature: JIS K-7207 (load deflection temperature test of hard plastics) compliant method (6) UL-94 flame retardant test: UL-96 vertical combustion test compliant method (7) Oxygen index: JIS K-7201 compliant method

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明のプラスチツク成形体の電磁波
遮蔽効果の測定装置の概略図である。 符号、1……シールドボツクス、2……プラス
チツク成形品、3……発信アンテナ、4……受信
アンテナ、5……スペクトラムアナライザー、6
……トラツキングジエネレーター。
The drawing is a schematic diagram of an apparatus for measuring the electromagnetic wave shielding effect of a plastic molded body according to the present invention. Code, 1... Shield box, 2... Plastic molded product, 3... Transmitting antenna, 4... Receiving antenna, 5... Spectrum analyzer, 6
...Tracking Generator.

Claims (1)

【特許請求の範囲】 1 エチレン性不飽和ニトリル−ジエンゴム−芳
香族ビニル共重合体又はこれとエチレン性不飽和
ニトリル−芳香族ビニル共重合体との混合物35〜
75重量% 2 エチレン−プロピレンターポリマー2〜20重
量% 3 炭素繊維5〜40重量% 4 含ハロゲン有機難燃剤2〜30重量%及び 5 難燃助剤0.4〜18重量% を含有してなることを特徴とする、難燃性を有す
る電磁波遮蔽性樹脂組成物。
[Scope of Claims] 1. Ethylenically unsaturated nitrile-diene rubber-aromatic vinyl copolymer or mixture thereof with ethylenically unsaturated nitrile-aromatic vinyl copolymer 35-
75% by weight 2. 2-20% by weight of ethylene-propylene terpolymer 3. 5-40% by weight of carbon fiber 4. 2-30% by weight of a halogen-containing organic flame retardant and 5. 0.4-18% by weight of a flame retardant aid. An electromagnetic wave shielding resin composition having flame retardancy, characterized by:
JP24706883A 1983-09-07 1983-12-28 Flame-resistant, electromagnetic-wave-shielding resin composition Granted JPS60139747A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP24706883A JPS60139747A (en) 1983-12-28 1983-12-28 Flame-resistant, electromagnetic-wave-shielding resin composition
US06/645,938 US4602051A (en) 1983-09-07 1984-08-30 Resin composition having electromagnetic wave shielding effort
EP84110394A EP0137290B1 (en) 1983-09-07 1984-08-31 Resin composition having electromagnetic wave shielding effect
DE8484110394T DE3467826D1 (en) 1983-09-07 1984-08-31 Resin composition having electromagnetic wave shielding effect
CA000462546A CA1226391A (en) 1983-09-07 1984-09-06 Resin composition having electromagnetic wave shielding effect
US06/720,194 US4604413A (en) 1983-09-07 1985-04-05 Resin composition having electromagnetic wave shielding effect
US06/800,004 US4696956A (en) 1983-09-07 1985-11-20 Resin composition having electromagnetic wave shielding effect
US06/820,493 US4704413A (en) 1983-09-07 1986-01-17 Resin composition having electromagnetic wave shielding effect
CA000529629A CA1260180A (en) 1983-09-07 1987-02-12 Resin composition having electromagnetic wave shielding effect
CA000529630A CA1260181A (en) 1983-09-07 1987-02-12 Resin composition having electromagnetic wave shielding effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24706883A JPS60139747A (en) 1983-12-28 1983-12-28 Flame-resistant, electromagnetic-wave-shielding resin composition

Publications (2)

Publication Number Publication Date
JPS60139747A JPS60139747A (en) 1985-07-24
JPH0333190B2 true JPH0333190B2 (en) 1991-05-16

Family

ID=17157945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24706883A Granted JPS60139747A (en) 1983-09-07 1983-12-28 Flame-resistant, electromagnetic-wave-shielding resin composition

Country Status (1)

Country Link
JP (1) JPS60139747A (en)

Also Published As

Publication number Publication date
JPS60139747A (en) 1985-07-24

Similar Documents

Publication Publication Date Title
US4604413A (en) Resin composition having electromagnetic wave shielding effect
JPH0333190B2 (en)
JPH043426B2 (en)
JP3298987B2 (en) Manufacturing method of conductive resin masterbatch
JP4810734B2 (en) Carbon fiber reinforced resin composition, molding material and molded article thereof
JPH0380177B2 (en)
JP2002234950A (en) Electromagnetic-wave shield moldings and thermoplastic resin composition for electromagnetic wave shield moldings
JPH0417229B2 (en)
CN110982212A (en) Low-smoke flame-retardant antistatic ABS material and preparation method thereof
KR100985356B1 (en) Flame retardant resin composition having good elongation
JPS6123629A (en) Resin composition having electromagnetic wave shielding ability
KR100866588B1 (en) A flame retardant composite
JP3313459B2 (en) Conductive polyolefin masterbatch
CA1260180A (en) Resin composition having electromagnetic wave shielding effect
JPH037158B2 (en)
JPH0322904B2 (en)
JPH0344583B2 (en)
KR100774819B1 (en) Flame retardant thermoplastic resin composition
JP3298988B2 (en) Manufacturing method of conductive resin masterbatch
JP2622737B2 (en) Heat-resistant polyolefin composition
JPH06102739B2 (en) Flame-retardant polyolefin composition
JPH0819279B2 (en) Flame-retardant polyolefin composition
CN115651383A (en) Polycarbonate alloy material and preparation method and application thereof
JPS60190446A (en) Resin composition having electromagnetic wave shielding property
CN114133683A (en) Composite flame-retardant stabilizer for PVC (polyvinyl chloride), and preparation method and application thereof