JPH0333176Y2 - - Google Patents

Info

Publication number
JPH0333176Y2
JPH0333176Y2 JP13200781U JP13200781U JPH0333176Y2 JP H0333176 Y2 JPH0333176 Y2 JP H0333176Y2 JP 13200781 U JP13200781 U JP 13200781U JP 13200781 U JP13200781 U JP 13200781U JP H0333176 Y2 JPH0333176 Y2 JP H0333176Y2
Authority
JP
Japan
Prior art keywords
magnetic
pole
stator
permanent magnet
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13200781U
Other languages
Japanese (ja)
Other versions
JPS5837784U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13200781U priority Critical patent/JPS5837784U/en
Publication of JPS5837784U publication Critical patent/JPS5837784U/en
Application granted granted Critical
Publication of JPH0333176Y2 publication Critical patent/JPH0333176Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)

Description

【考案の詳細な説明】 本考案は直流無刷子電動機に係り、特に、冷却
用フアンの駆動用電動機に使用して構造簡易で安
価に製作でき長寿命とすることのできる直流無刷
子電動機に関するものである。
[Detailed description of the invention] The present invention relates to a DC brushless motor, and in particular to a DC brushless motor that can be used as a motor for driving a cooling fan, has a simple structure, is manufactured at low cost, and has a long life. It is.

冷却用フアンの駆動用電動機としては、従来、
一般に交流の誘導電動機が採用されていた。この
理由は、誘導電動機は構造が簡単で安価に製造で
き、しかも摩耗する部分がなく寿命が長いという
特長があるためであつた。しかし、誘導電動機は
交流電源のある場所でしか使用できないという不
便があり、他方で電子機器等の小形化や広域での
普及を推進する過程で電子機器内の電源を直流低
電圧に統一するという要請が生じ、これに対処す
るように冷却用フアンの駆動用電動機も直流低電
圧で運転できるものが必要となつてきた。
Conventionally, electric motors for driving cooling fans are
Generally, AC induction motors were used. The reason for this is that induction motors have a simple structure, can be manufactured at low cost, and have a long lifespan as they have no parts that wear out. However, induction motors have the inconvenience of being able to be used only in places with AC power.On the other hand, in the process of miniaturizing electronic devices and promoting their widespread use over a wide area, the power supplies in electronic devices are being standardized to low voltage DC. In order to meet this demand, motors for driving cooling fans that can be operated at low DC voltage have become necessary.

この要請に対して駆動用電動機として整流子と
刷子を有する通常の直流電動機を使用すること
は、刷子から発生する摩耗粉が電子機器を汚染す
ること、電動機の寿命が誘導電動機に比し短かい
ことなどの不都合があるために、刷子を有しない
直流無刷子電動機の採用が提案されている。
In response to this request, using a normal DC motor with a commutator and brushes as a drive motor would result in abrasion particles generated from the brushes contaminating electronic equipment, and the life of the motor would be shorter than that of an induction motor. Because of these disadvantages, it has been proposed to use a DC brushless motor that does not have brushes.

直流無刷子電動機の従来例を第1図によつて説
明する。第1図aは要部構成を示す断面図、第1
図bは固定子巻線に直流を流す通電制御回路図で
ある。第1図において、1は回転子軸、2は回転
子ハブ、3は永久磁石であり、これらの1,2,
3で電動機の回転子を構成する。円筒状の永久磁
石3の半周はN極に、残りの半周はS極に着磁さ
れている。5−1〜5−4は固定子鉄芯のポール
シユー、6−1〜6−4は固定子磁極、7−1〜
7−4は各固定子磁極6−1〜6−4にそれぞれ
巻装された固定子巻線、8は固定子ヨーク、9−
1及び9−2は永久磁石3の磁極位置を検出する
磁気検出器、Q−1〜Q−4は各固定子巻線7−
1〜7−4の通電を制御するトランジスタ、R−
1〜R−8はそれぞれ抵抗である。4は永久磁石
3の外周面と固定子鉄芯のポールシユー5−1〜
5−4の内周面との間の空隙である。磁気検出器
9−1及び9−2は第1図の例ではそれぞれ固定
子磁極6−1及び6−2の中心線上の位置に固定
状に取付けられている。
A conventional example of a DC brushless motor will be explained with reference to FIG. Figure 1a is a sectional view showing the main part configuration;
FIG. b is an energization control circuit diagram for flowing direct current through the stator windings. In Fig. 1, 1 is a rotor shaft, 2 is a rotor hub, and 3 is a permanent magnet.
3 constitutes the rotor of the electric motor. Half the circumference of the cylindrical permanent magnet 3 is magnetized to the north pole, and the remaining half circumference is magnetized to the south pole. 5-1 to 5-4 are stator iron core pole shoes, 6-1 to 6-4 are stator magnetic poles, and 7-1 to 6-4 are stator magnetic poles.
7-4 is a stator winding wound around each stator magnetic pole 6-1 to 6-4, 8 is a stator yoke, and 9-
1 and 9-2 are magnetic detectors that detect the magnetic pole position of the permanent magnet 3, Q-1 to Q-4 are each stator winding 7-
Transistor R- for controlling energization of 1 to 7-4
1 to R-8 are resistors, respectively. 4 is the outer peripheral surface of the permanent magnet 3 and the pole shoe 5-1 of the stator iron core.
This is the gap between the inner circumferential surface of 5-4. In the example shown in FIG. 1, magnetic detectors 9-1 and 9-2 are fixedly mounted at positions on the center lines of stator magnetic poles 6-1 and 6-2, respectively.

この直流無刷子電動機は次のように駆動され
る。b図の電源供給端子,に所定の直流電圧
を印加すると、第1図aの磁気検出器9−1は図
示状態では永久磁石3の中性点(N極とS極の変
極点)に対向しているので磁気検出器9−1から
は出力はなく、従つてトランジスタQ−2及びQ
−4のベースには電流は流れず、固定子巻線7−
2及び7−4には電流が流れず、一方、磁気検出
器9−2は永久磁石3のS極と対向しているので
このS極を検出してトランジスタQ−1のベース
に正の電圧を、トランジスタQ−3のベースに負
の電圧を与え、これによりトランジスタQ−1が
導通して固定子巻線7−1に電流を流し、この電
流により生じる磁界により永久磁石3のS極に反
時計方向の回転力を発生し、回転子が反時計方向
に回転を始める。回転子が反時計方向に僅かに回
転した状態を考えると、磁気検出器9−1に対向
する永久磁石はS極となり、磁気検出器9−1は
S極の磁界を検出してトランジスタQ−2のベー
スに正の電圧を、Q−4のベースに負の出力を出
力し、トランジスタQ−2が導通して巻線7−2
にも電流を流し、回転子を反時計方向に回転させ
る回転力を発生し、巻線7−1と共に回転子を反
時計方向に回転させる。この巻線7−1に流れる
電流によつて発生する回転力は回転子が図示位置
より反時計方向に90度回転するまで続き、回転が
90度を越えると磁気検出器9−2と対向する永久
磁石はN極となり、磁気検出器9−2の出力はト
ランジスタQ−1のベースに負の電圧を、Q−3
のベースに正の電圧を与え、トランジスタQ−1
が不導通に、Q−3が導通に転じて巻線7−3に
電流が流れて回転子を反時計方向に回転させる回
転力を発生し、巻線7−2と共に回転子を回転さ
せる。以下、同様に動作して、常に隣接する2個
の巻線に電流を流し、回転子が90度回転する毎に
通電する巻線を、回転とは反対方向に位置する未
通電の巻線に切換えて連続的に一定方向(上記例
では反時計方向)の回転力を発生する。この構成
によれば、回転子の位置がいかなる位置にあつて
も通電すれば直ちに回転子を発生し、回転力が零
となる回転子位置が存在しないから電動機として
優れた特性を示し、多くの用途で賞用されてい
る。
This DC brushless motor is driven as follows. When a predetermined DC voltage is applied to the power supply terminal shown in Fig. b, the magnetic detector 9-1 shown in Fig. Therefore, there is no output from the magnetic detector 9-1, and therefore the transistors Q-2 and Q
No current flows through the base of stator winding 7-4.
2 and 7-4, and on the other hand, since the magnetic detector 9-2 faces the S pole of the permanent magnet 3, it detects this S pole and applies a positive voltage to the base of the transistor Q-1. , a negative voltage is applied to the base of the transistor Q-3, which makes the transistor Q-1 conductive and causes a current to flow through the stator winding 7-1, and the magnetic field generated by this current causes the S pole of the permanent magnet 3 to A counterclockwise rotational force is generated, and the rotor starts rotating counterclockwise. Considering a state in which the rotor is slightly rotated counterclockwise, the permanent magnet facing the magnetic detector 9-1 becomes the south pole, and the magnetic detector 9-1 detects the magnetic field of the south pole and turns on the transistor Q-. A positive voltage is output to the base of transistor Q-2 and a negative voltage is output to the base of transistor Q-4.
A current is applied to the winding 7-1 to generate a rotational force that rotates the rotor counterclockwise, thereby rotating the rotor together with the winding 7-1 in the counterclockwise direction. The rotational force generated by the current flowing through the winding 7-1 continues until the rotor rotates 90 degrees counterclockwise from the position shown in the figure, and the rotation stops.
When the angle exceeds 90 degrees, the permanent magnet facing the magnetic detector 9-2 becomes N-pole, and the output of the magnetic detector 9-2 applies a negative voltage to the base of the transistor Q-1, and a negative voltage to the base of the transistor Q-3.
Applying a positive voltage to the base of transistor Q-1
Q-3 becomes non-conductive, and Q-3 becomes conductive, and a current flows through the winding 7-3, generating a torque that rotates the rotor counterclockwise, thereby rotating the rotor together with the winding 7-2. Thereafter, it operates in the same way, constantly passing current to two adjacent windings, and each time the rotor rotates 90 degrees, the energized winding is replaced with the unenergized winding located in the opposite direction of rotation. The rotational force is continuously generated in a fixed direction (counterclockwise in the above example) by switching. According to this configuration, no matter what position the rotor is in, the rotor is immediately generated when energized, and there is no rotor position where the rotational force is zero, so it exhibits excellent characteristics as an electric motor, and can be used in many applications. It is prized for its purpose.

しかしながら、第1図の構成の無刷子電動機
は、固定子巻線を4個と、各巻線の通電を制御す
るトランジスタを4個と、磁気検出器を2個と、
抵抗R−1〜R−8などの関連する多くの回路部
品と複雑な組立て工程とを必要とし、高価となる
ので、従来は、計測器や情報処理装置等の高級な
用途に限定して使用されていた。従つて、安価な
誘導電動機を使用していたフアン駆動用電動機に
第1図の構成を持つ無刷子電動機を採用すること
は、性能的には充分に満足するが、価格の点で不
適当であつた。
However, the brushless motor with the configuration shown in FIG. 1 has four stator windings, four transistors that control the energization of each winding, and two magnetic detectors.
It requires many related circuit parts such as resistors R-1 to R-8 and a complicated assembly process, making it expensive, so conventionally it has been used only for high-end applications such as measuring instruments and information processing equipment. It had been. Therefore, adopting a brushless motor with the configuration shown in Figure 1 for the fan drive motor, which used to use an inexpensive induction motor, would be fully satisfactory in terms of performance, but would be inappropriate in terms of price. It was hot.

本考案は上述の問題点を解決してフアン駆動用
等の特定用途に適する構造簡易で安価な無刷子電
動機を提供しようとするものである。まず、フア
ン駆動用として必要な特性と、第1図に示す無刷
子電動機の特性とを比較検討してみる。フアン駆
動用電動機に必要な回転力特性は、フアン動力の
性質がフアンの回転速度の2乗にほぼ比例するこ
とから、起動時に要する起動回転力は軸受の摩擦
回転力に打勝つだけの僅かな回転力があれば充分
であり、起動後の加速中に発生回転力が増加し定
格速度近くで最大の回転力が得られるような特性
が望ましく、従来から使用されていた誘導電動機
の特性はフアン駆動用電動機として良く適合して
いたといえる。これに対し無刷子電動機は、一定
の供給電圧の下では起動時に最大回転力を発生
し、加速に伴つて電流が減少し回転力が減少する
垂下特性となつており、高速回転時にフアンが必
要とする回転力を発生するためには、起動時には
はるかに大きな回転力を発生する電動機とする必
要がある。そこで、本考案では、フアン駆動用と
しては過剰の特性となる第1図構成の無刷子電動
機の構成部品を減らし、性能と価格の平衡点を求
めることで、フアン駆動用電動機に適する安価で
構造簡易な直流無刷子電動機を提供しようとする
ものである。
The present invention aims to solve the above-mentioned problems and provide a brushless electric motor with a simple structure and low cost, which is suitable for specific uses such as driving a fan. First, let's compare and examine the characteristics required for fan drive and the characteristics of the brushless motor shown in FIG. The rotational force characteristics required for a fan drive electric motor are such that the nature of the fan power is approximately proportional to the square of the fan's rotational speed, so the starting rotational force required at startup is small enough to overcome the frictional rotational force of the bearing. It is sufficient if there is rotational force, and it is desirable that the generated rotational force increases during acceleration after startup and the maximum rotational force can be obtained near the rated speed.The characteristics of conventionally used induction motors are It can be said that it is well suited as a drive motor. On the other hand, brushless motors have a drooping characteristic in which they generate maximum rotational force at startup under a constant supply voltage, and as they accelerate, the current decreases and the rotational force decreases, so a fan is required when rotating at high speeds. In order to generate that much rotational force, it is necessary to use an electric motor that generates much greater rotational force at startup. Therefore, in the present invention, by reducing the number of components of the brushless motor of the configuration shown in Figure 1, which has excessive characteristics for fan drive use, and finding an equilibrium point between performance and price, we have created an inexpensive structure suitable for fan drive motors. The purpose is to provide a simple DC brushless motor.

まず第1図の構成部品で複数個使用しているも
のを半減することを考えると、第2図に示すよう
に、回転子は1個であるからそのままとし、固定
子磁極と固定子巻線をそれぞれ4個から2個へと
半減し、磁気検出器も2個から1個へと半減し、
通電制御用トランジスタも4個から2個へと半減
することにより、抵抗も含めて回路部品が半減さ
れたことになり、構成が簡単になり、大幅な価格
低減が実現できそうであるが、この第2図構成に
は大きな不都合がある。第2図aにおいて、回転
子が外側に配置され、固定子が内側に配置されて
いて、第1図とは逆の配置となつているが、これ
は特に本質的な問題ではない。3がN極、S極に
着磁され、かつ回転可能に支持されている中空円
筒状の永久磁石、8が固定子ヨーク、6a及び6
bが固定子磁極、7a及び7bが固定子巻線、5
a及び5bが固定子磁極に設けたポールシユー、
9は磁気検出器、4はポールシユー5a,5bの
外周面と永久磁石3の内周面との間の空隙、10
は2つのポールシユー5a,5bの各先端での円
周方向の間隙、31及び32は永久磁石3の磁極
が反転する中性線である。第2図aの構成の無刷
子電動機において、固定子巻線7a及び7bに通
電しない状態で回転子を一回転させた時の永久磁
石3と固定子鉄芯との間の磁気抵抗の変化は第2
図cの曲線1に示すようになり、第2図aの図示
状態の位置、即ち永久磁石3の中性線31,32
を結ぶ線が固定子磁極6a,6bの中心線A−
A′と直交する位置で最小となり、永久磁石3が
現状位置から90度回転した位置で最大となり、以
後、回転子が90度回転する毎に最小、最大が繰返
される。その理由は、ポールシユー5a,5bの
配置形状から、固定子鉄芯内の磁気抵抗が、磁極
6a,6bの中心線A−A′の方向で最小となり、
これと直角の方向で最大となるからである。
First, considering reducing the number of components in Figure 1 by half, as shown in Figure 2, the rotor is one piece, so leave it as it is, and the stator magnetic poles and stator windings. halved from 4 to 2, and halved the number of magnetic detectors from 2 to 1.
By halving the number of energization control transistors from four to two, the number of circuit components including resistors has been halved, simplifying the configuration and potentially achieving a significant price reduction. The configuration shown in Figure 2 has a major disadvantage. In FIG. 2a, the rotor is placed on the outside and the stator is placed on the inside, which is the opposite arrangement to that in FIG. 1, but this is not a particularly essential problem. 3 is a hollow cylindrical permanent magnet magnetized to N and S poles and rotatably supported; 8 is a stator yoke; 6a and 6;
b is a stator magnetic pole, 7a and 7b are stator windings, 5
a and 5b are pole shoes provided on the stator magnetic poles;
9 is a magnetic detector; 4 is a gap between the outer peripheral surface of the pole shoes 5a and 5b and the inner peripheral surface of the permanent magnet 3; 10
is a gap in the circumferential direction at each tip of the two pole shoes 5a and 5b, and 31 and 32 are neutral lines where the magnetic poles of the permanent magnet 3 are reversed. In the brushless motor having the configuration shown in Fig. 2a, the change in magnetic resistance between the permanent magnet 3 and the stator iron core when the rotor is rotated once with no current applied to the stator windings 7a and 7b is as follows. Second
The position shown in the curve 1 of FIG. c is the same as that of the state shown in FIG.
The line connecting them is the center line A- of the stator magnetic poles 6a and 6b.
The minimum value is reached at a position orthogonal to A', the maximum value is reached when the permanent magnet 3 is rotated 90 degrees from the current position, and thereafter, the minimum and maximum values are repeated every time the rotor rotates 90 degrees. The reason for this is that due to the arrangement shape of the pole shoes 5a and 5b, the magnetic resistance within the stator core is minimum in the direction of the center line A-A' of the magnetic poles 6a and 6b.
This is because it is maximum in the direction perpendicular to this.

従つて固定子巻線7a,7bに通電しないで放
置すると、回転子は、永久磁石3とポールシユー
5a,5bとの磁気吸引力の作用で両者間の磁気
抵抗が最小となる位置、即ち永久磁石3の極中心
と磁極6a,6bの中心線A−A′とが一致する
第2図aの図示状態位置に静止し、その時の永久
磁石3の磁束の状態は第2図cの曲線2に示すよ
うになり、磁気検出器9を第2図aのように磁極
6a,6bの中心線A−A′と直角の方向に配置
したのでは、回転子が静止した時に磁気検出器9
は永久磁石3の中性線31−32上に位置するこ
とになり、磁気検出器9からの出力はなく、通電
制御装置は動作せず、従つて第2図bの制御回路
の,端子から電圧印加があつても固定子巻線
7a,7bには電流が流れず、静止点より自起動
することはできない。
Therefore, if the stator windings 7a and 7b are left unenergized, the rotor will move to the position where the magnetic resistance between the permanent magnets 3 and the pole shoes 5a and 5b is minimized by the action of the magnetic attraction between the permanent magnets 3 and the pole shoes 5a and 5b. The state of the magnetic flux of the permanent magnet 3 at that time is as shown in the curve 2 of Fig. 2c. If the magnetic detector 9 is arranged in a direction perpendicular to the center line A-A' of the magnetic poles 6a and 6b as shown in FIG.
is located on the neutral line 31-32 of the permanent magnet 3, there is no output from the magnetic detector 9, the energization control device does not operate, and therefore the terminal of the control circuit of FIG. Even if a voltage is applied, no current flows through the stator windings 7a and 7b, and they cannot be started automatically from a stationary point.

そこで、第2図aのような構成で自起動性能を
持たせるために従来採用されてきた手段に次のよ
うなものがある。即ち、磁性材料製の小片を、固
定子磁極6a,6bの中心線より回転子回転方向
にある角度だけ移動した位置のポールシユー5
a,5bの外周面上に配設することにより、この
小片と永久磁石3との吸引力で回転子の静止位置
を回転方向に移動させる方式である。又、他の手
段として、ポールシユー5a,5bの外周形状を
非同心形状とし、空隙4の径方向寸法を、固定子
磁極6a,6bの中心線を中心としたある角度の
間で、一方で増加し他方で減少する寸法とするこ
とで、回転子と固定子との間の磁気抵抗の値に変
化を与えて回転子の静止位置を移動させる方式の
ものが提案されている。
Therefore, the following methods have been conventionally employed to provide self-starting performance in the configuration shown in FIG. 2a. That is, a small piece made of magnetic material is moved from the center line of the stator magnetic poles 6a, 6b by a certain angle in the rotor rotation direction to the pole shoe 5.
By disposing them on the outer peripheral surfaces of the small pieces a and 5b, the static position of the rotor is moved in the rotational direction by the attractive force between the small pieces and the permanent magnets 3. Moreover, as another means, the outer circumferential shape of the pole shoes 5a, 5b is made non-concentric, and the radial dimension of the air gap 4 is increased on one hand between a certain angle around the center line of the stator magnetic poles 6a, 6b. On the other hand, a method has been proposed in which the static position of the rotor is moved by changing the value of magnetic resistance between the rotor and stator by reducing the dimensions.

しかし、前者の磁性材料製の小片を取付ける方
式は、永久磁石の交番磁界の作用で振動騒音を発
生するという不都合が生じ、後者の空隙寸法を変
化させる構成は、ポールシユーの外周形状が複雑
化し量産性を悪化させ低価格化の問題解決にはな
らない不都合があつた。
However, the former method of attaching small pieces made of magnetic material has the inconvenience of generating vibration noise due to the action of the alternating magnetic field of the permanent magnet, and the latter method of changing the gap size makes the outer circumferential shape of the pole shoe complicated and mass production. There were inconveniences that worsened the quality and did not solve the problem of lower prices.

上記不都合を除去した構成とすべく、本考案者
は先に(イ)中空円筒形状に作られその半周はN極に
残りの半周はS極に着磁された永久磁石と、この
永久磁石を回転自在に支持する回転ハブとで形成
される回転子と、(ロ)円筒状の固定子ヨークと、こ
の固定子ヨークの外周部に外周を2分するように
放射状に植設される2つの固定子磁極と、最先端
外周面が前記永久磁石の内周面と小空隙を介して
対向するように各固定子磁極の先端部にそれぞれ
固着されるポールシユーと、これらのポールシユ
ーとポールシユーとの間にそれぞれ位置するよう
に前記固定子ヨークの外周部に放射状に植設され
る外周面と永久磁石内周面との間の磁束空隙長と
ほぼ等しく決められており、(ハ)ポールシユー先端
と中間磁極先端との間の円周方向空隙の中心と固
定子ヨーク中心とを結ぶ中心線よりポールシユー
側に僅かに移動した位置の磁束空隙中に固定配置
されて永久磁石の回転位置を検出する1個の磁気
検出器と、(ニ)この磁気検出器出力を受けて各固定
子巻線に流す電流を制御して回転子を一定方向に
駆動制御する通電制御回路とを備えた構成を有す
る電動機を提案した(特願昭56−15613号参照)。
In order to create a structure that eliminates the above disadvantages, the present inventor first developed (a) a permanent magnet made into a hollow cylindrical shape, with half the circumference magnetized to the N pole and the remaining half circumference to the S pole, and this permanent magnet. A rotor formed by a rotating hub that is rotatably supported; (b) a cylindrical stator yoke; A stator magnetic pole, a pole shoe fixed to the tip of each stator magnetic pole so that the outermost peripheral surface faces the inner peripheral surface of the permanent magnet through a small gap, and between these pole shoes. The length of the magnetic flux gap is determined to be approximately equal to the length of the magnetic flux gap between the outer circumferential surface radially planted on the outer circumferential part of the stator yoke and the inner circumferential surface of the permanent magnet, so that the pole shoe tip and the intermediate One piece that is fixedly placed in the magnetic flux gap at a position slightly moved toward the pole shoe side from the center line connecting the center of the circumferential gap between the tip of the magnetic pole and the center of the stator yoke to detect the rotational position of the permanent magnet. a magnetic detector, and (d) an energization control circuit that receives the output of the magnetic detector and controls the current flowing through each stator winding to drive the rotor in a fixed direction. (Refer to Japanese Patent Application No. 15613/1983).

以下、上記提案内容を、さらに具体的に第3
図、第4図により説明する。第3図の断面図にお
いて、3は永久磁石で中空円筒形状に作られその
半周はN極に残りの半周はS極に着磁されてお
り、図示しない回転ハブによつて回転自在に支持
されて電動機の回転子を形成している。31,3
2は永久磁石3の中性線である。8は円筒状の固
定子ヨークで、この固定子ヨーク8の外周部に外
周を2分するように(図示例では固定子ヨークの
中心を通るXY直交座標軸のY軸方向とY′軸方向
に)放射状に2つの固定子磁極6a,6bが植設
されており、これらの固定子磁極6a,6bの先
端部にそれぞれポールシユー5a,5bがその最
先端外周面が永久磁石3の内周面と小空隙4を介
して対向するように固着されており、さらに、前
記固定子ヨーク8の外周部にはX軸方向とX′軸
方向に突出するように、かつポールシユー5aと
ポールシユー5bとの間に位置するように、中間
磁極11,11′が植設されており、これらの固
定子ヨーク8、固定子磁極6a,6b、ポールシ
ユー5a,5b及び中間磁極11,11′はいず
れも磁性材料で作られて電動機の固定子を形成し
ている。7a,7bはそれぞれ固定子磁極6a,
6bに巻装された固定子巻線である。中間磁極1
1,11′には巻線を巻装しない。中間磁極11,
11′の外周面と永久磁石3内周面との間の磁束
空隙長は、ポールシユー5a,5bの外周面と永
久磁石3内周面との間の磁束空隙長(第3図では
4)とほぼ等しくなるように決められており、さ
らに円周方向でのポールシユー先端と中間磁極先
端との間の4個所の空隙12(1),12(2),12
(3),12(4)もそれぞれほぼ等しい空隙長となるよ
うに作られる。B−B′は空隙12(1)の中心と空
隙12(3)の中心とを結び、従つて固定子ヨークの
中心を通る中心線であり、同様にC−C′は空隙1
2(2)の中心と空隙12(4)の中心とを結ぶ中心線で
ある。βは中心線B−B′とX−X′軸との間の角
であると同時に、中心線C−C′とX−X′軸との
間の角である。9は永久磁石3の回転位置を検出
するための磁気検出器、例えばホール素子であり
第3図実施例では中心線C−C′よりポールシユー
5b側に僅かに移動した位置の磁束空隙内に固定
状に取付けられる。γは磁気検出器9の中心を通
る中心線と前記中心線C−C′とのなす角である。
なお、磁気検出器9の取付け位置として、第3図
実施例では図示位置としたが、同様の関係にある
〇印で示す3個所のいずれの一つに置いても本発
明は同じように動作する。
Below, we will discuss the above proposal in more detail in the third section.
This will be explained with reference to FIG. In the cross-sectional view of Fig. 3, 3 is a permanent magnet made into a hollow cylindrical shape, half of its circumference is magnetized to N pole, and the remaining half circumference is magnetized to S pole, and is rotatably supported by a rotating hub (not shown). This forms the rotor of the electric motor. 31,3
2 is a neutral wire of the permanent magnet 3. Reference numeral 8 denotes a cylindrical stator yoke, and the outer periphery of the stator yoke 8 is divided into two parts (in the illustrated example, there is a cylindrical stator yoke in the Y-axis direction and the Y'-axis direction of the XY orthogonal coordinate axis passing through the center of the stator yoke). ) Two stator magnetic poles 6a and 6b are installed radially, and pole shoes 5a and 5b are installed at the tips of these stator magnetic poles 6a and 6b, respectively, so that the outer circumferential surface of the outermost tip thereof is the inner circumferential surface of the permanent magnet 3. They are fixed so as to face each other with a small gap 4 interposed therebetween, and furthermore, on the outer circumferential portion of the stator yoke 8, there are provided holes protruding in the X-axis direction and the X'-axis direction, and between the pole shoe 5a and the pole shoe 5b. The stator yoke 8, the stator magnetic poles 6a, 6b, the pole shoes 5a, 5b, and the intermediate magnetic poles 11, 11' are all made of magnetic material. It is made to form the stator of an electric motor. 7a and 7b are stator magnetic poles 6a and 7b, respectively.
This is the stator winding wound around 6b. intermediate magnetic pole 1
1 and 11' are not wound with windings. intermediate magnetic pole 11,
The length of the magnetic flux gap between the outer circumferential surface of pole shoe 11' and the inner circumferential surface of permanent magnet 3 is equal to the magnetic flux gap length (4 in FIG. 3) between the outer circumferential surface of pole shoes 5a, 5b and the inner circumferential surface of permanent magnet 3. In addition, there are four air gaps 12(1), 12(2), 12 between the tip of the pole shoe and the tip of the intermediate magnetic pole in the circumferential direction.
(3) and 12(4) are also made to have approximately the same gap length. B-B' is the center line connecting the center of gap 12(1) and the center of gap 12(3), and therefore passes through the center of the stator yoke; similarly, C-C' is the center line connecting the center of gap 12(1) and the center of gap 12(3);
2(2) and the center of the void 12(4). β is the angle between the centerline B-B' and the X-X' axis, as well as the angle between the centerline C-C' and the X-X' axis. Reference numeral 9 denotes a magnetic detector, such as a Hall element, for detecting the rotational position of the permanent magnet 3, and in the embodiment shown in FIG. installed in a shape. γ is the angle between the center line passing through the center of the magnetic detector 9 and the center line C-C'.
Although the magnetic detector 9 is installed at the position shown in the embodiment shown in FIG. 3, the present invention operates in the same way even if it is installed at any one of the three positions indicated by the circle in the same relationship. do.

以上の構成において、固定子巻線7a,7bに
通電しない状態での固定子の磁気抵抗の変化は第
4図の曲線1のようになる。磁気抵抗が最小にな
る位置は、中間磁極11,11′の影響を受けて、
Y軸及びY′軸方向とはならず、Y軸及びY′軸よ
り角度βだけ離れた位置となる。従つて、固定子
巻線7a,7bに通電しないで永久磁石3を自由
に放置すると、永久磁石3は中心線31,32を
結ぶ線が中心線B−B′あるいはC−C′に一致する
位置に停止し、その時のN極及びS極の磁極最大
位置は、Y軸及びY′軸より角度βだけ離れた位
置となり、磁束の変化状態は第4図の曲線2ある
いは2′のようになる。曲線2は永久磁石3の中
性線31,32を結ぶ線が中心線B−B′と一致
した位置で停止したとき、曲線2′は同じく中心
線C−C′と一致した位置で停止したときのそれぞ
れの磁束変化を示している。この停止位置での永
久磁石3の、例えばS極の磁極最大位置はそれぞ
れY軸より角度βだけずれている。
In the above configuration, the change in magnetic resistance of the stator when no current is applied to the stator windings 7a, 7b is as shown by curve 1 in FIG. 4. The position where the magnetic resistance is minimum is influenced by the intermediate magnetic poles 11 and 11',
It is not in the Y-axis and Y'-axis directions, but is at a position separated by an angle β from the Y-axis and Y'-axis. Therefore, if the permanent magnet 3 is left freely without energizing the stator windings 7a and 7b, the line connecting the center lines 31 and 32 of the permanent magnet 3 will coincide with the center line B-B' or C-C'. At that time, the maximum magnetic pole positions of the N and S poles are at angle β away from the Y axis and Y' axis, and the state of change in magnetic flux is as shown by curve 2 or 2' in Figure 4. Become. Curve 2 stopped at a position where the line connecting the neutral wires 31 and 32 of permanent magnet 3 coincided with center line B-B', and curve 2' also stopped at a position where it coincided with center line C-C'. It shows the change in magnetic flux at each time. For example, the maximum magnetic pole position of the S pole of the permanent magnet 3 at this stop position is shifted from the Y axis by an angle β.

次に直流無刷子電動機としての動作を説明す
る。固定子巻線7a,7bに通電しない時の永久
磁石3の静止位置を第4図曲線2の位置(永久磁
石の中性線が中心線B−B′に一致して静止した
位置)とすると磁気検出器9は永久磁石3のN極
を検出して通電制御回路(回路構成は第2図bと
同じ)を介して固定子巻線7bに電流を流し、ポ
ールシユー5bにN極を生成し、一方N極の磁極
最大位置はY′軸より角度βだけ右側に移動した
位置にあるので、ポールシユー5bに生成したN
極と永久磁石3のN極との反撥力は回転子を反時
計方向に回転させる。回転子が反時計方向に図示
位置よりπ−(2β+γ)の角度だけ回転すると磁
気検出器9は出力が零となり固定子巻線7bに流
れる電流も零となるが、回転子は慣性によつて回
転を続ける。これにより磁気検出器9はS極を検
出し、固定子巻線7aに電流が流れ、ポールシユ
ー5aにN極を生成し、対向する回転子のN極と
反撥して同一方向に回転力が発生して継続して回
転し、電動機として動作する。従つてこの電動機
の発生トルクはほぼ180度回転ごとに零となる脈
動形となるが、フアン駆動用としては実用上何等
の問題はない。
Next, the operation as a DC brushless motor will be explained. If the static position of the permanent magnet 3 when the stator windings 7a and 7b are not energized is the position of curve 2 in Figure 4 (the static position where the neutral line of the permanent magnet coincides with the center line B-B'). The magnetic detector 9 detects the north pole of the permanent magnet 3 and causes current to flow through the stator winding 7b via the energization control circuit (the circuit configuration is the same as in FIG. 2b), thereby generating a north pole in the pole shoe 5b. , On the other hand, the maximum magnetic pole position of the N pole is at a position shifted to the right by the angle β from the Y' axis, so the N generated in the pole shoe 5b
The repulsive force between the poles and the north pole of the permanent magnet 3 rotates the rotor counterclockwise. When the rotor rotates counterclockwise from the illustrated position by an angle of π-(2β+γ), the output of the magnetic detector 9 becomes zero and the current flowing through the stator winding 7b also becomes zero, but the rotor is rotated due to inertia. Continue rotating. As a result, the magnetic detector 9 detects the S pole, current flows through the stator winding 7a, generates an N pole in the pole shoe 5a, and is repelled by the N pole of the opposing rotor, generating rotational force in the same direction. It rotates continuously and operates as an electric motor. Therefore, although the torque generated by this electric motor is of a pulsating type that becomes zero approximately every 180 degree rotation, there is no problem in practical use for driving a fan.

永久磁石3の最初の静止位置が第4図の曲線
2′の場合、即ち永久磁石3の中性線が中心線C
−C′と一致して静止している時は、磁気検出器9
は永久磁石3のN極を検出し、固定子巻線7bに
電流を流してポールシユー5bにN極を生成す
る。一方、N極の磁極最大位置はY′軸より角度
βだけ左側にあるので、ポールシユー5bと永久
磁石のN極との間で働く反撥力は回転子を時計方
向に回転させる。回転子が時計方向に角度γだけ
移動すると磁気検出器9と対向する回転子の位置
は中性線32となり、磁気検出器9の出力が零と
なり、固定子巻線7bに流れる電流も零となり、
回転トルクは消失するが回転子は慣性で時計方向
に回転を続け、中性線32が僅かに磁気検出器9
の位置を時計方向に行き過ぎると、磁気検出器9
はS極を検出して固定子巻線7aに電流を流し、
ポールシユー5aにN極を生成し、永久磁石のS
極との間の吸引力で反時計方向に回転子を回転さ
せ、回転子の慣性で中性線32が中心線C−C′を
越えて中心線B−B′の位置に達すると、以後は
前述の反時計方向の動作に従つて反時計方向の回
転を継続する。
When the initial stationary position of the permanent magnet 3 is curve 2' in FIG. 4, that is, the neutral line of the permanent magnet 3 is the center line C.
- When it is stationary in agreement with C', the magnetic detector 9
detects the north pole of the permanent magnet 3 and causes current to flow through the stator winding 7b to generate a north pole at the pole shoe 5b. On the other hand, since the maximum magnetic pole position of the N pole is on the left side of the Y' axis by the angle β, the repulsive force acting between the pole shoe 5b and the N pole of the permanent magnet rotates the rotor clockwise. When the rotor moves clockwise by an angle γ, the position of the rotor facing the magnetic detector 9 becomes the neutral wire 32, the output of the magnetic detector 9 becomes zero, and the current flowing through the stator winding 7b also becomes zero. ,
Although the rotational torque disappears, the rotor continues to rotate clockwise due to inertia, and the neutral wire 32 slightly touches the magnetic detector 9.
If you go too far in the clockwise direction, the magnetic detector 9
detects the S pole and sends a current to the stator winding 7a,
Generate a N pole on the pole shoe 5a, and
The rotor is rotated counterclockwise by the attractive force between the poles, and when the neutral line 32 crosses the center line C-C' and reaches the center line B-B' due to the inertia of the rotor, from then on, continues to rotate counterclockwise in accordance with the counterclockwise motion described above.

固定子巻線7a,7bに通電しない状態での回
転子の静止位置は上述の曲線2及び2′の他に、
永久磁石3のN極、S極が反対になる位置がある
が、この場合は静止状態で磁気検出器9が検出す
る磁石の極性がS極となるから、最初に通電する
巻線が77aになる点が異なるだけで、他は全く
同じ作用で回転子は反時計方向に回転する。
In addition to the above-mentioned curves 2 and 2', the rest position of the rotor when the stator windings 7a and 7b are not energized is as follows:
There is a position where the N and S poles of the permanent magnet 3 are opposite, but in this case, the polarity of the magnet detected by the magnetic detector 9 in a stationary state is the S pole, so the first winding to be energized is 77a. The only difference is that the rotor rotates counterclockwise, with the other effects being exactly the same.

磁気検出器9の設置位置として図示位置の他
に、〇印の任意の一つの位置としても、同様に電
動機として動作することは以上の動作説明より容
易に類推できる。ただし、中心線C−C′の近傍の
ポールシユー寄りに設置する場合と、中心線B−
B′の近傍のポールシユー寄りに設置する場合と
では回転子の規定の回転方向が逆になる。また、
これまでは固定子巻線7a,7bに通電した時に
ポールシユー5a,5bはN極に磁化されるもの
として説明してきたが、S極に磁化されるように
しても、回転方向が逆になるだけで電動機として
の回転動作は同じである。
It can be easily inferred from the above operation explanation that the magnetic detector 9 can be installed at any one of the positions marked with a circle in addition to the position shown in the figure, and similarly operates as an electric motor. However, when installing near the pole shoe near the center line C-C', and when installing near the center line B-C',
The prescribed rotation direction of the rotor is opposite to that when the rotor is installed near the pole shoe near B'. Also,
Up to now, we have explained that the pole shoes 5a and 5b are magnetized to the north pole when the stator windings 7a and 7b are energized, but even if they are magnetized to the south pole, the direction of rotation is simply reversed. The rotational operation as an electric motor is the same.

以上のように、提案構成によれば、従来の電動
機に比べて主要部品をほぼ半減し、生産性の良
い、安価な製品とすることができる利点がある
が、しかし、前述したように、固定子巻線に通電
しない時の回転子の静止位置が、曲線2の位置に
なるか2′の位置になるかは不確定であり、その
静止位置によつては、通電直後に回転子が僅かに
逆方向に移動した後に正規の方向に回転する動作
を行なうことがあるという問題点を残していた。
上記した通電直後の回転子の回転方向が不確定で
あるという問題は、この電動機をフアン駆動用に
使用する場合には実用上何等の支障はないが、し
かし一般用途に使用する場合には好ましい問題で
はない。
As described above, the proposed configuration has the advantage of reducing the number of major parts by almost half compared to conventional electric motors, making it a highly productive and inexpensive product. It is uncertain whether the rotor's resting position when the child winding is not energized will be at the position of curve 2 or 2', and depending on the resting position, the rotor may be slightly However, there remains a problem in that the robot may rotate in the normal direction after moving in the opposite direction.
The above-mentioned problem that the direction of rotation of the rotor is uncertain immediately after energization does not pose any practical problem when this electric motor is used to drive a fan, but it is preferable when used for general purposes. is not a problem.

本考案の目的は、先の提案構成における上記し
た問題点を解決し、通電直後の回転子の回転方向
を確実に正規の方向とすることのできる直流無刷
子電動機を提供するにある。
An object of the present invention is to provide a direct current brushless motor that can solve the above-mentioned problems in the previously proposed configuration and ensure that the rotor rotates in the normal direction immediately after energization.

本考案の特徴は、上記目的を達成するために、
前記提案構成イ,ロ,ハ,ニ,ホのうちのイ,
ロ,ハ,ホはそのままとし、ニの構成を、ポール
シユー先端と中間磁極先端との間に生じる4個所
の円周方向空隙を円周方向に順にG1,G2,G
3,G4としてG1,G3の円周方向空隙長をG
2,G4のそれよりも大きくすると共に、G2,
G4の中心を結ぶ中心線よりポールシユー側に僅
かに移動した位置の磁束空隙中に固定配置されて
永久磁石の回転位置を検出する位置を検出する1
個の磁気検出器を設ける構成とするにある。
The features of this invention are, in order to achieve the above objectives,
A of the above proposed configurations A, B, C, D, and H,
Leave B, C, and E as they are, and change the configuration of D to G1, G2, and G in the four circumferential gaps that occur between the pole shoe tip and the intermediate magnetic pole tip in the circumferential direction.
3. G4 is the circumferential gap length of G1 and G3.
2, make it larger than that of G4, and make G2,
Fixedly placed in the magnetic flux gap at a position slightly moved toward the pole shoe side from the center line connecting the centers of G4 to detect the rotational position of the permanent magnet 1
The present invention has a configuration in which two magnetic detectors are provided.

第5図、第6図により本考案の一実施例を説明
する。第5図は実施例断面図、第6図は第5図実
施例に対する磁気抵抗及び磁束の変化図を示す。
第5図において、G1,G2,G3,G4はポー
ルシユー5a,5bの先端と中間磁極11,1
1′の先端との間に生じる4個所の円周方向空隙
であり、第3図の場合の12(1),12(2),12
(3),12(4)に相当する。そして、本考案において
は、G1及びG3の円周方向空隙長をG2,G4
の円周方向空隙長より大となるように決める。こ
のように決めることにより、永久磁石3と固定子
との間の磁気抵抗の変化は第6図の曲線1のよう
になり、磁束の変化状態は曲線2あるいは2′の
ようになる。曲線2は永久磁石3の中性線31,
32を結ぶ線が空隙G1,G3の中心線B−
B′と一致した位置で停止したとき、曲線2′は同
じく空隙G2,G4の中心線C−C′と一致した位
置で停止したときの磁束変化である。この停止位
置での永久磁石3のS極の磁極最大位置はそれぞ
れY軸より角度β〔曲線2のとき〕及び角度β′〔曲
線2′のとき〕だけずれている。
An embodiment of the present invention will be explained with reference to FIGS. 5 and 6. FIG. 5 is a sectional view of the embodiment, and FIG. 6 is a diagram showing changes in magnetic resistance and magnetic flux for the embodiment of FIG.
In FIG. 5, G1, G2, G3, G4 are the tips of the pole shoes 5a, 5b and the intermediate magnetic poles 11, 1.
There are four circumferential gaps created between the tip of 1' and 12(1), 12(2), 12 in the case of
(3), corresponds to 12(4). In the present invention, the circumferential gap lengths of G1 and G3 are set to G2 and G4.
The length of the gap in the circumferential direction is determined to be larger than the length of the gap in the circumferential direction. With this determination, the magnetic resistance between the permanent magnet 3 and the stator changes as shown by curve 1 in FIG. 6, and the magnetic flux changes as shown by curve 2 or 2'. Curve 2 is the neutral line 31 of the permanent magnet 3,
The line connecting 32 is the center line B- of the gaps G1 and G3
Curve 2' is the change in magnetic flux when stopped at a position coincident with B', and curve 2' is also a change in magnetic flux when stopped at a position coincident with center line C-C' of gaps G2 and G4. At this stop position, the maximum magnetic pole position of the S pole of the permanent magnet 3 is shifted from the Y axis by an angle β (for curve 2) and an angle β' (for curve 2').

以上の構成としたことにより、固定子巻線7
a,7bに通電しない状態で永久磁石3を放置す
ると、永久磁石3はその中性線31,32が空隙
G1,G3の中心線B−B′と一致する線上に停
止する確率が、中心線C−C′と一致する線上に停
止する確率よりはるかに大となり、前記した第3
図提案構成での問題点が解決される。実験結果に
より、空隙G1,G3の空隙長を空隙G2,G4
の空隙長の1.5倍とすることで、確実に上記問題
点を解決できることが確認された。
With the above configuration, the stator winding 7
If the permanent magnet 3 is left with no current flowing through a and 7b, the probability that the neutral wires 31 and 32 of the permanent magnet 3 will stop on the line that coincides with the center line B-B' of the gaps G1 and G3 is This is much larger than the probability of stopping on the line that coincides with C-C', and the third
Problems with the diagram proposed configuration are resolved. According to the experimental results, the gap lengths of the gaps G1 and G3 are changed to the gap lengths of the gaps G2 and G4.
It was confirmed that the above problem can be reliably solved by making the gap length 1.5 times the void length of

第5図は本考案の直流無刷子電動機を駆動源と
して用いる電動フアンの一例を示す断面図で、5
1は回転子軸、52は回転子のボス、53は永久
磁石、54は磁気ヨークを兼ねる回転子ハブ、5
5は固定子鉄芯、57は固定子巻線、59は磁気
検出器、60は通電制御回路を実装した回路支持
板、61は軸受、62はフアンブレードを取付け
るハブ、63はフアンブレード、64はベンチユ
リー、65はフアン電動機を支持する支柱、66
は電動機カバーである。
FIG. 5 is a sectional view showing an example of an electric fan using the DC brushless motor of the present invention as a drive source.
1 is a rotor shaft, 52 is a rotor boss, 53 is a permanent magnet, 54 is a rotor hub that also serves as a magnetic yoke, 5
5 is a stator iron core, 57 is a stator winding, 59 is a magnetic detector, 60 is a circuit support plate on which an energization control circuit is mounted, 61 is a bearing, 62 is a hub to which a fan blade is attached, 63 is a fan blade, 64 is a bench lily, 65 is a column supporting the fan motor, 66
is the motor cover.

以上説明したように、本考案によれば、従来の
直流無刷子電動機に比し主要部品をほぼ半減し、
起動用の磁性材料製の小片を必要とせず、磁束空
隙長を一様にした生産性の良い、安価な製品とす
ることができるようになり、さらに、通電直後の
回転子の回転方向が不確定であるという従来構成
での問題点を解決し、常に正規の方向に回転起動
させることができる効果がある。
As explained above, according to the present invention, the number of main parts is reduced by almost half compared to conventional DC brushless motors,
A small piece of magnetic material for starting is not required, and the magnetic flux gap length is made uniform, making it possible to create a highly productive and inexpensive product.Furthermore, the rotation direction of the rotor immediately after energization can be changed. This solves the problem with the conventional configuration that it is fixed, and has the effect of always being able to start rotation in the normal direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の断面図と通電制御回路図、第
2図は従来の固定子磁極を2極とした例の断面
図、通電制御回路図及び磁気抵抗、磁束の変化
図、第3図はさらに別の従来例の断面図、第4図
は第3図に対する磁気抵抗及び磁束の変化図、第
5図は本考案の一実施例の断面図、第6図は第5
図に対する磁気抵抗及び磁束の変化図、第7図は
本考案を使用した電動フアンの断面図である。 符号の説明、3……永久磁石、5a,5b……
ポールシユー、6a,6b……固定子磁極、7
a,7b……固定子巻線、8……固定子ヨーク、
9……磁気検出器、10,12(1)〜12(4),G1
〜G4……空隙、11,11′……中間磁極、3
1,32……中性線、51……回転子軸、52…
…回転子のボス、53……永久磁石、54……回
転子ハブ、55……固定子鉄芯、57……固定子
巻線、59……磁気検出器、61……軸受、62
……フアンブレード取付け用ハブ、63……フア
ンブレード、64……ベンチユリー。
Figure 1 is a sectional view and energization control circuit diagram of a conventional example, Figure 2 is a sectional view of a conventional example with two stator magnetic poles, an energization control circuit diagram, and a diagram of changes in magnetic resistance and magnetic flux. is a sectional view of yet another conventional example, FIG. 4 is a diagram of changes in magnetic resistance and magnetic flux with respect to FIG. 3, FIG. 5 is a sectional view of an embodiment of the present invention, and FIG.
FIG. 7 is a cross-sectional view of an electric fan using the present invention. Explanation of symbols, 3...Permanent magnet, 5a, 5b...
Pole shoe, 6a, 6b...Stator magnetic pole, 7
a, 7b...Stator winding, 8...Stator yoke,
9...Magnetic detector, 10, 12(1) to 12(4), G1
~G4... air gap, 11, 11'... intermediate magnetic pole, 3
1, 32...neutral wire, 51...rotor shaft, 52...
... Rotor boss, 53 ... Permanent magnet, 54 ... Rotor hub, 55 ... Stator core, 57 ... Stator winding, 59 ... Magnetic detector, 61 ... Bearing, 62
...Hub for attaching fan blade, 63...Fan blade, 64...Bench lily.

Claims (1)

【実用新案登録請求の範囲】 (イ) 中空円筒形状に作られその半周はN極に残り
の半周はS極に着磁された永久磁石と、この永
久磁石を回転自在に支持する回転ハブとで形成
される回転子と、 (ロ) 円筒状の固定子ヨークと、この固定子ヨーク
の外周部に外周を2分するように放射状に植設
される2つの固定子磁極と、最先端外周面が前
記永久磁石の内周面と小空隙を介して対向する
ように各固定子磁極の先端部にそれぞれ固着さ
れるポールシユーと、これらのポールシユーと
ポールシユーとの間にそれぞれ位置するように
前記固定子ヨークの外周部に放射状に植設され
る中間磁極とで形成される磁性材料製の固定子
と、 (ハ) 前記固定子磁極にはそれぞれ固定子巻線が巻
回されており、前記中間磁極の外周面と永久磁
石内周面との間の磁束空隙長は前記ポールシユ
ーの外周面と永久磁石内周面との間の磁束空隙
長と等しく決められており、 (ニ) ポールシユー先端と中間磁極先端との間に生
じる4個所の円周方向空隙を円周方向に順にG
1,G2,G3,G4としてG1,G3の円周
方向空隙長をG2,G4のそれよりも大きくす
ると共に、G2,G4の中心を結ぶ中心線より
ポールシユー側に移動した位置の磁束空隙中に
固定配置されて永久磁石の回転位置を検出する
1個の磁気検出器と、 (ホ) この磁気検出器出力を受けて各固定子巻線に
流す電流を制御して回転子を一定方向に駆動制
御する通電制御回路と を備えたことを特徴とする直流無刷子電動機。
[Scope of Claim for Utility Model Registration] (a) A permanent magnet made into a hollow cylindrical shape with half its circumference magnetized as N pole and the remaining half circumference as S pole, and a rotating hub that rotatably supports this permanent magnet. (b) A cylindrical stator yoke, two stator magnetic poles installed radially on the outer periphery of the stator yoke so as to bisect the outer periphery, and (b) a cylindrical stator yoke; a pole shoe fixed to the tip of each stator magnetic pole so that its surface faces the inner circumferential surface of the permanent magnet through a small gap; a stator made of a magnetic material and formed of intermediate magnetic poles installed radially around the outer periphery of the child yoke; (c) a stator winding is wound around each of the stator magnetic poles; The length of the magnetic flux gap between the outer circumferential surface of the magnetic pole and the inner circumferential surface of the permanent magnet is determined to be equal to the magnetic flux gap length between the outer circumferential surface of the pole shoe and the inner circumferential surface of the permanent magnet. G the four circumferential gaps created between the magnetic pole tip and the magnetic pole in order in the circumferential direction.
1, G2, G3, G4, the circumferential gap length of G1, G3 is made larger than that of G2, G4, and in the magnetic flux gap at a position moved to the pole shoe side from the center line connecting the centers of G2, G4. One magnetic detector is fixedly arranged and detects the rotational position of the permanent magnet; (e) The rotor is driven in a fixed direction by controlling the current flowing through each stator winding in response to the output of this magnetic detector. A direct current brushless motor characterized by comprising an energization control circuit for controlling the current flow.
JP13200781U 1981-09-07 1981-09-07 DC brushless motor Granted JPS5837784U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13200781U JPS5837784U (en) 1981-09-07 1981-09-07 DC brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13200781U JPS5837784U (en) 1981-09-07 1981-09-07 DC brushless motor

Publications (2)

Publication Number Publication Date
JPS5837784U JPS5837784U (en) 1983-03-11
JPH0333176Y2 true JPH0333176Y2 (en) 1991-07-15

Family

ID=29925560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13200781U Granted JPS5837784U (en) 1981-09-07 1981-09-07 DC brushless motor

Country Status (1)

Country Link
JP (1) JPS5837784U (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144027U (en) * 1985-02-26 1986-09-05
JP2652048B2 (en) * 1988-09-30 1997-09-10 日本電産株式会社 motor
JPH09240649A (en) * 1996-03-08 1997-09-16 Fuiide:Kk Liquid vessel
JP5151487B2 (en) * 2007-04-09 2013-02-27 セイコーエプソン株式会社 Brushless motor

Also Published As

Publication number Publication date
JPS5837784U (en) 1983-03-11

Similar Documents

Publication Publication Date Title
JPH0117344B2 (en)
US4563622A (en) Simple brushless DC fan motor
USRE37261E1 (en) Axially compact small fan
US4804873A (en) Unidirectional brushless motor
JPS6039356A (en) Brushless field reversing dc fan motor
JP2004129478A (en) Single-phase motor
JPH07213041A (en) Single-phase brushless motor
JPH0333176Y2 (en)
JPS601823B2 (en) DC motor with non-overlapping armature windings
CA1205115A (en) Simple brushless dc fan motor
JPH062465Y2 (en) Disk type single-phase brushless motor that rotates only in one direction
EP0221459A2 (en) Axial-flow fan apparatus
JPH09312958A (en) Motor
JPH062466Y2 (en) One-phase disc type brushless motor with one position sensing element
KR100427792B1 (en) Brushless d.c. motor assembly
JP3407010B2 (en) Bearing structure of rotating electric machine
JPH03110197U (en)
JPH036148Y2 (en)
JPH0474956B2 (en)
JPS6145738Y2 (en)
JPH03110198U (en)
JP2001162227A (en) Dc vibration motor and armature structure thereof
JPS62104452A (en) Fan integrated with motor
JPH0974730A (en) Compact and flat motor-fan cooler
JPH0810980B2 (en) Rotating electric machine