JPH0333174B2 - - Google Patents

Info

Publication number
JPH0333174B2
JPH0333174B2 JP57215239A JP21523982A JPH0333174B2 JP H0333174 B2 JPH0333174 B2 JP H0333174B2 JP 57215239 A JP57215239 A JP 57215239A JP 21523982 A JP21523982 A JP 21523982A JP H0333174 B2 JPH0333174 B2 JP H0333174B2
Authority
JP
Japan
Prior art keywords
oxazoline
polyester
amount
cooh
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57215239A
Other languages
Japanese (ja)
Other versions
JPS59105025A (en
Inventor
Yoshihiro Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP21523982A priority Critical patent/JPS59105025A/en
Publication of JPS59105025A publication Critical patent/JPS59105025A/en
Publication of JPH0333174B2 publication Critical patent/JPH0333174B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】 本発明は、末端カルボキシル基の減少した耐熱
性ポリエステルの製造法に関するものである。 ポリエステルの熱安定性、すなわち高温での耐
加水分解性、耐アミン分解性を向上させるには、
末端カルボキシル基(以下〔COOH〕と記す)
を減少させることが果的であることはよく知られ
ている。ポリエステルの〔COOH〕を減少させ
る方法は種々提案されているが、その中でポリエ
ステルとエポキシ化合物を反応させる方法(特開
昭54−6051号等多数)及びポリエステルとオキサ
ゾリン化合物を反応させる方法(特開昭57−8222
号)が代表的な例として知られている。しかしな
がらこれらの方法について本発明者が検討したと
ころこれらの化合物の添加により〔COOH〕は
減少するが、重合度も低下するという問題がある
ことが判明した。 本発明者は、この問題を解決すべく鋭意研究の
結果、次の一般式(1)又は(2) (ただし、式中R1は一価の炭化水素基,R2
二価の炭化水素基である。)で表される分子中に
エステルを結合を有するオキサゾリン化合物を反
応させることが有効であることを見い出し、本発
明に到達したものである。 すなわち、本発明は芳香族ジカルボン酸と炭素
数2〜6のグリコール成分とからなるポリエステ
ルに前記一般式(1)又は(2)で表される分子中エステ
ル結合を有するオキサゾリン化合物0.2〜5重量
%(ポリエステルに対して)を反応させて
〔COOH〕を重合体106g当り15g当量以下とする
ことを特徴とする耐熱性ポリエステルの製造法を
要旨とするものである。 本発明においてポリエステルとは芳香族ジカル
ボン酸を炭素数2〜6のグリコールとの重縮合体
を意味し、その種類は特に限定されるものではな
い。また、ホモポリマー、コポリマーのいずれで
もよい。ポリエステルの重縮合法は従来公知の方
法をものまま採用できる。 本発明における前記一般式(1)又は(2)で示される
分子中にエステル結合を有するオキサゾリン化合
物の具体例としては、2−(p−アセトキシフエ
ニル)−2−オキサゾリン、2−(p−プロピオニ
ルオキシフエニル)−2−オキサゾリン、2−(p
−ブチルオキシフエニル)−2−オキサゾリン、
2−(アセトキシメチル)−2−オキサゾリン、2
−(プロピオニルオキシメチル)−2−オキサゾリ
ン、2−(ブチリルオキシメチル)−2−オキサゾ
リン、2−(アセトキシエチル)−2−オキサゾリ
ン、2−(プロピオニルオキシエチル)−2−オキ
サゾリン、2−ブチリルオキシエチル)−2−オ
キサゾリン、2−アセトキシシクロヘキシル)−
2−オキサゾリン、2−(プロピオニルオキシシ
クロヘキシル)−2−オキサゾリン、2−(ブチリ
ルオキシシクロヘキシル)−2−オキサゾリン、
2−(p−メトキシカルボニルフエニル)−2−オ
キサゾリン、2−(p−エトキシカルボニルフエ
ニル)−2−オキサゾリン、2−(p−プロポキシ
カルボニルフエニル)−2−オキサゾリン、2−
(p−ブトキシカルボニルフエニル)−2−オキサ
ゾリン、2−(メトキシカルボニルメチル)−2−
オキサゾリン、2−(エトキシカルボニルメチル)
−2−オキサゾリン、2−(ブトキシカルボニル
メチル)−2−オキサゾリン、2−(メトキシカル
ボニルエチル)−2−オキサゾリン、2−(エトキ
シカルボニルエチル)−2−オキサゾリン、2−
(ブトキシカルボニルエチル)−2−オキサゾリ
ン、2−(メトキシカルボニルシクロヘキシル)−
2−オキサゾリン、2−(エトキシカルボニルシ
クロヘキシル)−2−オキサゾリン、2−(ブトキ
シカルボニルシクロヘキシル)−2−オキサゾリ
ン、などをあげることができる。かかるオキサゾ
リン化合物は1種のみ単独で使用しても、2種以
上併用してもよい。 本発明で用いる前記一般式(1)又は(2)で示される
化合物の添加量はポリエステルに対して0.2〜5
重量%である。この量が少なすぎると〔COOH〕
の封鎖度合が低くなり、逆に多すぎる場合には反
応は十分に進むポリエステルのゲル化などが好ま
しからざる問題が併発する。 ポリエステルと前記一般式(1)又は(2)で示される
化合物との反応は、ポリエステルが0.50の固有粘
度に到達した以後の段階で、前記一般式(1)又は(2)
で示される化合物を添加し、通常ポリエステルの
溶融温度以上の温度で3分間以上の時間を要して
行われる。なお、ここで固有粘度はフエノール/
四塩化エタン(1/1重量比)混合溶媒を使用し
20℃で測定したものをいう。反応時に窒素ガスな
どの不活性ガスで雰囲気が満たされているか、も
しくは他の方法で酸素などのポリエステルの分解
を促進する活性ガスが遮断されていることはもち
ろん必要で、かつ反応は攪拌下に行われるべきで
ある。前記一般式(1)又は(2)で示される化合物はポ
リエステルの重縮合が完了する前に、添加、混合
してもよいが、重合完了後溶融状態のポリエステ
ルに添加、混合して溶融紡糸したり、粉粒状固体
ポリエステルと混合後、溶融紡糸して反応させる
方法も採用できる。反応は無触媒でも進むが、好
ましい触媒を用いてもよい。 本発明における前記一般式(1)又は(2)で示される
化合物の添加によりポリエステルの〔COOH〕
が減少するとともに、前記一般式(1)又は(2)で示さ
れる化合物は分子中にエステル結合を有している
ので、ポリエステルとエステル交換を行うと、こ
の部位から新たな分子鎖が延長される結果とな
り、これらの化合物の添加によりポリマーの重合
度低下は少なく、むしろポリエステル分子鎖が連
結されて実合度が上昇するという好ましい結果を
もたらす。 このように、ポリエステルに前記一般式(1)又は
(2)で示される化合物0.2〜5重量%を反応させて
〔COOH〕を重合体106g当り15g当量以下とする
ことにより、耐熱性の向上が達成されるのであ
る。 なお、本発明のポリエステルを得るうえで、ポ
リエステル中に他の目的で他の添加剤を添加する
ことももちろん可能である。 本発明におけるポリエステルの最終形状は繊
維、フイルム、その他の成形物などいずれでもよ
い。 本発明の方法で得られる〔COOH〕が減少し
たポリエステルは、熱安定性すなわち高温での加
水分解やアミン分解に対する抵抗性が極めて改良
されたものとなり、従来用途での性能アツプ、プ
ロセスの合理化、従来適用できなかつた分野への
新たな適用が可能など、その実用価値の向上は飛
躍的なものである。 以下、実施例にて本発明を具体的に説明する。 実施例 1 テレフタル酸とエチレングリコールとからなる
常法によつて得られた固有粘度が0.73、〔COOH〕
が重合体106g当り24g当量のポリエチレンテレ
フタレートチツプに対して2−(p−アセトキシ
フエニル)−2−オキサゾリン0.75重量%をブレ
ンドし、直径0.5mmの紡糸孔を192孔有する紡糸口
金を用いて紡糸した。紡糸条件は温度300℃、滞
留時間5〜15分間、吐出量300g/分、巻取り速
度317m/分であり、得られた糸条は8520d/192f
であつた。得られた未延伸糸を第1段において90
℃で3.8倍に延伸し、第2段において、200℃で
1.5倍に延伸し、次いで、220℃で緊張下熱処理を
し最終的に1500d/192fの延伸糸を得た。この延
伸糸の固有粘度は0.85であり、〔COOH〕は重合
体106g当り12g当量であつた。得られた延伸糸
について、まず40T/10cmのZ撚り、次いで2本
を合わせた後40T/10cmのS撚り加工を行い、
1500d×2の生コードを得た。この生コードを一
浴型接着液〔Pexul(ICI社製品)−RFL液〕に浸
漬し、コード当り1.0Kgの張力をかけた後、240℃
で3分間熱処理を行い処理コードとした。この処
理コードについて強力値を測定したところ、21.0
Kgであつた。次いで処理コードの耐熱性をみるた
め、170℃、100Kg/cm2,60分間の加硫条件で作成
したサンプルについて耐熱強力を測定したところ
17.0Kgであり、耐熱強力保持率は81%であつた。
次いで処理コードの接着力をH−テストで評価し
た。まずテストピースを150℃、100Kg/cm2、30分
間の加硫接着により作成し、接着力を測定したと
ころ18.5Kgを示した。 比較例 1 オキサゾリン化合物を添加しないこと以外は,
実施例1と同じ操作を繰り返して作成した延伸糸
及び処理コードの各特性値を表−1に示した。 〔COOH〕が減少せず、耐熱強力及び耐熱強
力保持率の値も低下し、接着力も好ましくないこ
とが判る。 実施例 2〜4 分子中にエステル結合を含有するオキサゾリン
化合物として2−(p−アセトキシフエニル)−2
−オキサゾリンの代わりに2−(アセトキシエチ
ル)−2−オキサゾリン(実施例2)、2−(p−
メトキシカルボニルフエニル)−2−オキサゾリ
ン(実施例3)、2−(メトキシカルボニルエチ
ル)−2−オキサゾリン(実施例4)を用いるこ
と以外は実施例1と同じ操作を繰り返して作成し
た延伸糸及び処理コードの各特性値を表−1に示
した。〔COOH〕が減少し、固有粘度が増大し耐
熱強力及び耐熱強力保持率が改善され、接着力も
良好な値を示していることが判る。 比較例 2,3 2−(p−アセトキシフエニル)−2−オキサゾ
リンの添加量を0.1重量%(比較例2)又は6重
量%(比較例3)とすること以外は実施例1と同
じ操作を繰り返して作成した延伸糸及び処理コー
ドの各特性値を表−1に示した。2−(p−アセ
トキシフエニル)−2−オキサゾリンの添加量が
少なすぎる(比較例2)場合、〔COOH〕の減少
量が少なく、耐熱強力及び耐熱強力保持率の改良
も低いことが判る。逆にこの添加量が多すぎる
(比較例3)場合、ポリマーのゲル化現象が起こ
り、紡糸不可能であつた。 比較例 4 分子中にエステル結合を有していないオキサゾ
リンとして、2−ブトキシ−2−オキサゾリンを
用いること以外は実施例1と同じ操作を繰り返し
て作成した延伸糸及び処理コードの各特性値を表
−1に示した。〔COOH〕は減少するが固有粘度
が減少し、強力及び耐熱強力の値が低いレベルで
あり、好ましくないことが判る。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a heat-resistant polyester with reduced terminal carboxyl groups. To improve the thermal stability of polyester, that is, its resistance to hydrolysis and amine decomposition at high temperatures,
Terminal carboxyl group (hereinafter referred to as [COOH])
It is well known that it is effective to reduce Various methods have been proposed for reducing [COOH] in polyester, among which a method of reacting polyester with an epoxy compound (many such as JP-A No. 54-6051) and a method of reacting polyester with an oxazoline compound (in JP-A No. 54-6051, etc.) Kaisho 57-8222
No.) is known as a representative example. However, when the present inventor investigated these methods, it was found that although the addition of these compounds reduces [COOH], there is a problem in that the degree of polymerization also decreases. As a result of intensive research to solve this problem, the inventor has determined that the following general formula (1) or (2) (However, in the formula, R 1 is a monovalent hydrocarbon group and R 2 is a divalent hydrocarbon group.) It is effective to react with an oxazoline compound having an ester bond in the molecule represented by the formula This is what we discovered and arrived at the present invention. That is, the present invention provides 0.2 to 5% by weight of an oxazoline compound having an ester bond in the molecule represented by the general formula (1) or (2) in a polyester consisting of an aromatic dicarboxylic acid and a glycol component having 2 to 6 carbon atoms. The gist of this invention is a method for producing heat-resistant polyester, which is characterized by reacting (with respect to polyester) and reducing the amount of [COOH] to 15 g equivalent or less per 10 6 g of polymer. In the present invention, polyester means a polycondensate of an aromatic dicarboxylic acid and a glycol having 2 to 6 carbon atoms, and the type thereof is not particularly limited. Moreover, either a homopolymer or a copolymer may be used. As the polycondensation method for polyester, conventionally known methods can be used as they are. Specific examples of the oxazoline compound having an ester bond in the molecule represented by the general formula (1) or (2) in the present invention include 2-(p-acetoxyphenyl)-2-oxazoline, 2-(p- propionyloxyphenyl)-2-oxazoline, 2-(p
-butyloxyphenyl)-2-oxazoline,
2-(acetoxymethyl)-2-oxazoline, 2
-(Propionyloxymethyl)-2-oxazoline, 2-(butyryloxymethyl)-2-oxazoline, 2-(acetoxyethyl)-2-oxazoline, 2-(propionyloxyethyl)-2-oxazoline, 2-butyryloxymethyl (lyloxyethyl)-2-oxazoline, 2-acetoxycyclohexyl)-
2-oxazoline, 2-(propionyloxycyclohexyl)-2-oxazoline, 2-(butyryloxycyclohexyl)-2-oxazoline,
2-(p-methoxycarbonylphenyl)-2-oxazoline, 2-(p-ethoxycarbonylphenyl)-2-oxazoline, 2-(p-propoxycarbonylphenyl)-2-oxazoline, 2-
(p-butoxycarbonylphenyl)-2-oxazoline, 2-(methoxycarbonylmethyl)-2-
Oxazoline, 2-(ethoxycarbonylmethyl)
-2-oxazoline, 2-(butoxycarbonylmethyl)-2-oxazoline, 2-(methoxycarbonylethyl)-2-oxazoline, 2-(ethoxycarbonylethyl)-2-oxazoline, 2-
(Butoxycarbonylethyl)-2-oxazoline, 2-(methoxycarbonylcyclohexyl)-
Examples include 2-oxazoline, 2-(ethoxycarbonylcyclohexyl)-2-oxazoline, 2-(butoxycarbonylcyclohexyl)-2-oxazoline, and the like. Such oxazoline compounds may be used alone or in combination of two or more. The amount of the compound represented by the general formula (1) or (2) used in the present invention is 0.2 to 5% based on the polyester.
Weight%. If this amount is too small [COOH]
On the other hand, if the amount is too high, the reaction will proceed sufficiently, resulting in undesirable problems such as gelation of the polyester. The reaction between the polyester and the compound represented by the general formula (1) or (2) is carried out after the polyester reaches an intrinsic viscosity of 0.50.
The compound represented by is added, and the process is usually carried out at a temperature higher than the melting temperature of the polyester for 3 minutes or more. Note that the intrinsic viscosity here is phenol/
Using a mixed solvent of tetrachloroethane (1/1 weight ratio)
Measured at 20℃. During the reaction, it is of course necessary that the atmosphere is filled with an inert gas such as nitrogen gas, or that active gases such as oxygen that promote the decomposition of polyester are blocked by other methods, and the reaction must be carried out under stirring. It should be done. The compound represented by the above general formula (1) or (2) may be added or mixed before the polycondensation of the polyester is completed, but it may be added or mixed with the molten polyester after the completion of the polymerization and melt-spun. Alternatively, a method can also be adopted in which the mixture is mixed with powdery solid polyester and then melt-spun and reacted. Although the reaction proceeds without a catalyst, a preferred catalyst may be used. [COOH] of polyester by adding the compound represented by the general formula (1) or (2) in the present invention.
As the compound represented by the above general formula (1) or (2) has an ester bond in its molecule, when it is transesterified with polyester, a new molecular chain is extended from this site. As a result, the addition of these compounds does not reduce the polymerization degree of the polymer, but rather brings about the favorable result that the polyester molecular chains are connected and the polymerization degree increases. In this way, the general formula (1) or
Heat resistance can be improved by reacting 0.2 to 5% by weight of the compound represented by (2) to reduce the amount of [COOH] to 15 g equivalent or less per 10 6 g of polymer. In addition, in obtaining the polyester of the present invention, it is of course possible to add other additives to the polyester for other purposes. The final shape of the polyester in the present invention may be any fiber, film, or other molded product. The polyester with reduced [COOH] obtained by the method of the present invention has significantly improved thermal stability, that is, resistance to hydrolysis and amine decomposition at high temperatures, which improves performance in conventional applications, streamlines processes, Its practical value has been dramatically improved, including the possibility of new applications in fields that were previously inapplicable. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 Intrinsic viscosity obtained by a conventional method consisting of terephthalic acid and ethylene glycol was 0.73, [COOH]
0.75% by weight of 2-(p-acetoxyphenyl)-2-oxazoline was blended with 24g equivalent of polyethylene terephthalate chips per 106g of polymer, and a spinneret having 192 spinning holes with a diameter of 0.5mm was used. It was spun. The spinning conditions were a temperature of 300°C, a residence time of 5 to 15 minutes, a discharge rate of 300 g/min, and a winding speed of 317 m/min, and the obtained yarn was 8520 d/192 f.
It was hot. The obtained undrawn yarn was heated to 90% in the first stage.
Stretched 3.8 times at ℃, then stretched at 200℃ in the second stage.
The yarn was stretched 1.5 times and then heat treated at 220° C. under tension to finally obtain a drawn yarn of 1500 d/192 f. The drawn yarn had an intrinsic viscosity of 0.85, and [COOH] was equivalent to 12 g per 10 6 g of polymer. The obtained drawn yarn was first Z-twisted at 40T/10cm, then the two yarns were combined and S-twisted at 40T/10cm.
I got the raw code of 1500d×2. This raw cord was immersed in a one-bath adhesive solution [Pexul (product of ICI) - RFL liquid], and after applying a tension of 1.0 kg per cord, it was heated to 240°C.
A heat treatment was performed for 3 minutes to obtain a treated code. When we measured the strength value for this processing code, it was 21.0.
It was Kg. Next, in order to examine the heat resistance of the treated cord, we measured the heat resistance strength of a sample prepared under vulcanization conditions of 170℃, 100Kg/cm 2 , and 60 minutes.
The weight was 17.0Kg, and the heat resistance strength retention rate was 81%.
The adhesion of the treated cords was then evaluated using the H-test. First, a test piece was prepared by vulcanization adhesion at 150° C. and 100 Kg/cm 2 for 30 minutes, and the adhesive strength was measured and found to be 18.5 Kg. Comparative Example 1 Except for not adding an oxazoline compound,
Table 1 shows the characteristic values of the drawn yarn and treated cord produced by repeating the same operations as in Example 1. It can be seen that [COOH] does not decrease, the heat-resistant strength and heat-resistant strength retention values also decrease, and the adhesive strength is also unfavorable. Examples 2 to 4 2-(p-acetoxyphenyl)-2 as an oxazoline compound containing an ester bond in the molecule
-2-(acetoxyethyl)-2-oxazoline (Example 2), 2-(p-
A drawn yarn created by repeating the same operation as in Example 1 except that methoxycarbonylphenyl)-2-oxazoline (Example 3) and 2-(methoxycarbonylethyl)-2-oxazoline (Example 4) were used. Table 1 shows each characteristic value of the processing code. It can be seen that [COOH] decreases, the intrinsic viscosity increases, the heat-resistant strength and heat-resistant strength retention rate are improved, and the adhesive strength also shows good values. Comparative Examples 2, 3 Same operation as Example 1 except that the amount of 2-(p-acetoxyphenyl)-2-oxazoline added was 0.1% by weight (Comparative Example 2) or 6% by weight (Comparative Example 3) Table 1 shows the characteristic values of the drawn yarn and treated cord produced by repeating the above steps. It can be seen that when the amount of 2-(p-acetoxyphenyl)-2-oxazoline added is too small (Comparative Example 2), the amount of reduction in [COOH] is small and the improvement in heat-resistant strength and heat-resistant strength retention is also low. Conversely, when the amount added was too large (Comparative Example 3), gelation of the polymer occurred and spinning was impossible. Comparative Example 4 Characteristic values of drawn yarn and treated cord produced by repeating the same operations as in Example 1 except for using 2-butoxy-2-oxazoline as the oxazoline that does not have an ester bond in the molecule are shown. -1. [COOH] decreases, but the intrinsic viscosity decreases, and the values of tenacity and heat-resistant tenacity are at low levels, which is unfavorable. 【table】

Claims (1)

【特許請求の範囲】 1 芳香族ジカルボン酸と炭素数2〜6のグリコ
ール成分とからなるポリエステルに、次の一般式
(1)又は(2) (ただし、式中R1は一価の炭化水素基、R2
二価の炭化水素基である。)で表される分子中に
エステル結合を有するオキサゾリン化合物0.2〜
5重量%(ポリエステルに対して)を反応させて
末端カルボキシル基量を重合体106g当たり15g
当量以下とすることを特徴とする耐熱性ポリエス
テル製造法。
[Scope of Claims] 1. A polyester consisting of an aromatic dicarboxylic acid and a glycol component having 2 to 6 carbon atoms has the following general formula:
(1) or (2) (However, in the formula, R 1 is a monovalent hydrocarbon group and R 2 is a divalent hydrocarbon group.) Oxazoline compound having an ester bond in the molecule 0.2 to
5% by weight (based on polyester) to reduce the amount of terminal carboxyl groups to 15g per 106g of polymer.
A method for producing heat-resistant polyester, characterized in that the amount is equal to or less than the equivalent amount.
JP21523982A 1982-12-07 1982-12-07 Production of heat-resistant polyester Granted JPS59105025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21523982A JPS59105025A (en) 1982-12-07 1982-12-07 Production of heat-resistant polyester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21523982A JPS59105025A (en) 1982-12-07 1982-12-07 Production of heat-resistant polyester

Publications (2)

Publication Number Publication Date
JPS59105025A JPS59105025A (en) 1984-06-18
JPH0333174B2 true JPH0333174B2 (en) 1991-05-16

Family

ID=16669017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21523982A Granted JPS59105025A (en) 1982-12-07 1982-12-07 Production of heat-resistant polyester

Country Status (1)

Country Link
JP (1) JPS59105025A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940771A (en) * 1989-01-30 1990-07-10 General Electric Company Reactive polycarbonate end capped with hydroxy phenyl oxazoline
US7575081B2 (en) 2004-03-29 2009-08-18 Kubota Corporation Work vehicle
PL2719529T3 (en) 2012-10-10 2017-08-31 Armacell Enterprise Gmbh & Co. Kg Prevention of depolymerization of polyalkylene terephthalate in laminated structures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578222A (en) * 1980-06-18 1982-01-16 Teijin Ltd Production of low terminal-carboxyl content polyester
JPS5749620A (en) * 1980-09-11 1982-03-23 Teijin Ltd Improvement of polyester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578222A (en) * 1980-06-18 1982-01-16 Teijin Ltd Production of low terminal-carboxyl content polyester
JPS5749620A (en) * 1980-09-11 1982-03-23 Teijin Ltd Improvement of polyester

Also Published As

Publication number Publication date
JPS59105025A (en) 1984-06-18

Similar Documents

Publication Publication Date Title
JP5459842B2 (en) Crosslinkable aramid copolymer
US3386967A (en) Polycaproamide having excess number of carboxyl end groups over amino end groups
EP0595814A1 (en) Copolyesters for high modulus fibers
US4594388A (en) Method of manufacturing shaped articles with excellent heat resistance and adhesiveness to rubber from a composition comprising polyester and epoxidized polybutadiene and adhering said articles to rubber
EP0607256A1 (en) Copolyetherester elastomer
JPS60219224A (en) Polyester and its production
JPH0333174B2 (en)
JPS59157118A (en) Production of heat-resistant polyester
CN1035395C (en) Fibers with improved hydrolytic stability
US4520175A (en) Method of making heat-resistant polyester by reacting with a N,N,diglycidyl-acidamide
US4459391A (en) Method of making and a polymer of heat resistant polyester using diglycidil substituted diimides
EP1810993A2 (en) Method of preparation of polyethylenetherephthalate nanocomposite fiber with enhanced modulus
US4459390A (en) Method of making and polymer of heat resistant polyester using diglycidilarylimidazolones, and diglycidilalkyl ureas
JPS6076532A (en) Production of heat-resistant polyester
JPS59100132A (en) Production of heat-resistant polyester
JPS59105026A (en) Production of heat-resistant polyester
US4520174A (en) Method of making heat-resistant polyester
JPH04306225A (en) Production of heat resistant polyester having high polymerization degree
JPS6079037A (en) Preparation of heat-resistant polyester
JPS59102923A (en) Production of heat-resistant polyester
JPS6079038A (en) Preparation of heat-resistant polyester
JPS6328127B2 (en)
EP0020944B1 (en) Process for producing aromatic polyesters having an increased degree of polymerisation, these aromatic polyesters, process for producing molded articles composed thereof, and these molded articles
JPH09316727A (en) Melt spinning of polyester
JPS60161427A (en) Preparation of polyester having high polymerization degree