JPH03330B2 - - Google Patents

Info

Publication number
JPH03330B2
JPH03330B2 JP60219255A JP21925585A JPH03330B2 JP H03330 B2 JPH03330 B2 JP H03330B2 JP 60219255 A JP60219255 A JP 60219255A JP 21925585 A JP21925585 A JP 21925585A JP H03330 B2 JPH03330 B2 JP H03330B2
Authority
JP
Japan
Prior art keywords
carbon
fired
furnace
cylindrical surrounding
surrounding section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60219255A
Other languages
Japanese (ja)
Other versions
JPS6291411A (en
Inventor
Katsuji Sagawa
Hitoshi Hiroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP60219255A priority Critical patent/JPS6291411A/en
Publication of JPS6291411A publication Critical patent/JPS6291411A/en
Publication of JPH03330B2 publication Critical patent/JPH03330B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業状の利用分野〕 本発明は、等方性高密度組織を有する炭素焼成
体を高収率で黒鉛化する方法に関する。 〔従来の技術〕 黒鉛物品は、コークス粉粒などの骨材原料をタ
ールピツチのような結合材と共に捏合し、ついで
捏合物を成形、焼成、黒鉛化、加工の各工程を経
て製造される。 このうち黒鉛化工程は、アチソン型黒鉛化炉と
呼ばれる抵抗式電気炉に処理材となる炭素焼成体
を詰め、周囲をコークス、珪砂などの断熱パツキ
ング材で被包したのちターミナル電極を介して低
電圧大電流を通じ、炉内の炭素熱成体およびパツ
キング材の抵抗熱により2800〜3000℃の高温度に
昇温することによつておこなわれる。この際、炭
素焼成体の炉詰めは、通常、炉長方向に一定間隔
を置いて1列または2列に直配列する方法がとら
れる。電流は炉詰された炭素焼成体間を直列に流
れるが、黒鉛化は主にその電流通路に存在するパ
ツキング材の抵抗発熱を介しておこなわれる。 〔発明が解決しようとする問題点〕 上記したように、炭素焼成体の加熱に寄与する
主要な熱源は各焼成体の対応面間におけるパツキ
ング材のギヤツプ抵抗発熱に依存するから、その
伝熱温度はギヤツプの格差により大きな影響を受
ける。例えば、円柱状の炭素焼成体を炉長方向に
対して直角に縦詰配列した状態では、相互の対応
面が円形を呈するためにギヤツプ長に相違がで
き、電流通路のうち最もギヤツプの小さい中心部
分(高発熱部分)とギヤツプが大となる両端部分
(低発熱部分)とに著しい温度差が生じる。 近時、静水圧プレス(ラバープレス)を用いて
成形された等方性組織の高密度黒鉛材が各分野で
有用されているが、この種の高密度成形体は特に
熱応力による内部歪が発生しやすく、上述の伝熱
温度差を受けて比較的容易に亀裂あるいは破損現
象を招く問題点がある。 〔問題点を解決するための手段〕 本発明は、上記した従来方法の欠点を解消し、
高密度組織の炭素質焼成体であつても収率よく処
理することができる黒鉛化方法を提供するもので
ある。 すなわち、本発明による炭素焼成体の黒鉛化方
法は、ラバープレスによる成形体を焼成して得ら
れる等方性高密度組織を有する多数の炭素焼成体
をアチソン炉の炉長方向に直列かつ等間隔に配置
して黒鉛化する方法において、炭素焼成体を良熱
伝導性パツキング材に埋め込んだ状態で炭素質材
料により構成された筒状囲繞区画に装填し、その
周囲を通常のパツキング材で被包して通電するこ
とを構成的特徴とするものである。 以下、本発明を図面に基づいて詳細に説明す
る。 第1図は本発明による黒鉛化方法の適用例を示
したアチソン式黒鉛化炉の部分縦断面図、第2図
は第1図のA−A′線に沿う断面図で、図中1は
炉壁、2は炉床、3は導体11を取付けたターミ
ナル電極である。 4は、炭素もしくは黒鉛などの炭素質材料によ
つて構成された筒状囲繞区画で、同形状、等間隔
に炉長方向に直列配置されている。該筒状囲繞区
画4は、炭素質ブロツクから一体加工するか、板
状あるいは棒状の炭素質部材を衝立てるなど適宜
に組合せることによつて形成することができる。
また、形状は角筒、円筒いずれでも構わないが、
円筒形では対面する筒状囲繞区画間に場所的なギ
ヤツプ格差を生じて均熱効果を弱化させる傾向を
招く。したがつて、円筒形の場合には、第3図に
示すように筒状囲繞区画4の周辺に棒状炭素質部
材5を添設して四隅部分を形成する等の手段によ
り、各対応面6,6′が実質的に同一表面積の平
面形状を呈するように構成することが望ましい。 処理すべき炭素焼成体7は、黒鉛粉などの良熱
伝導性パツキング材8に埋込んだ状態で筒状囲繞
区画4に充填し、その周囲を通常のコークス粒パ
ツキング材9で被包して炉詰される。そして、最
終的に炉の上層部にシールド用の珪砂10を敷き
つめ、ターミナル電極3を介して炉に通電する。 〔作用〕 本発明の黒鉛化方法によれば、炭素焼成体が良
熱伝導性パツキング材に埋込まれた状態で炭素質
の筒状囲繞区画に装填されるから、ギヤツプ抵抗
発熱はこれら隔壁部材を介して間接的に炭素焼成
体に伝熱される。この間接伝熱作用により炭素焼
成体の場所的な温度分布差ならびに昇温速度の変
動は緩和され、優れた均熱効果が発揮される。こ
の均熱効果は、特に筒状囲繞区画の各対応面を同
一表面積の平面形状とした場合に顕著で、大きな
収率向上をもたらす機能をはたす。 実施例 1 ラバープレスによる成形体(かさ密度1.45g/
cm3)を焼成して得られた直径600mm、高さ700mmの
等方性高密度組織を有する円柱状炭素焼成体を準
備した。 黒鉛板(200mm)を組合せて構成した一辺900
mm、高さ1000mmの正方形筒状囲繞区画をアチソン
式黒鉛化炉の炉長方向に直列等間隔にセツトし、
この中心部に上記炭素焼成体を黒鉛粉パツキング
に埋込んだ状態に2ケ宛装填した。炉内にコーク
ス粉粒パツキングを充填して筒状囲繞区画を被包
し、上層部を珪砂10でシールドした。ついでタ
ーミナル電極に送電し、80時間で2800℃まで昇温
して黒鉛化処理をおこなつた。 得られた黒鉛化品の収率結果を表1に示した。 実施例 2 黒鉛ブロツクから一体加工した外径900mm、内
径700mm、高さ500mmの円筒を二段重ねした筒状囲
繞区画をアチソン式黒鉛化炉の炉長方向に直列等
間隔にセツトした。この円筒状囲繞区画に実施例
1と同一特性形状の炭素焼成体を黒鉛粉パツキン
グに埋込んだ状態に2ケ宛装填した。ついで実施
例1と同様にして黒鉛化処理をおこなつた。得ら
れた黒鉛化品の収率結果を表1に併載した。 実施例 3 実施例2で炉内にセツトした円筒状囲繞区画の
周辺に第3図のように黒鉛丸棒を添設して、各区
画対応面を実質的平面状に形成した。その他は実
施例2と同条件により黒鉛化処理を実施した。こ
のようにして得られた黒鉛化品の収率結果を表1
に併載した。 〔比較例〕 実施例1と同一の特性形状を有する炭素焼成体
を本発明による筒状囲繞区画を用いずに直接アチ
ソン式黒鉛化炉に炉詰した。その他の条件は実施
例1と同一にして黒鉛化した。得られた黒鉛化品
の収率結果を、表1に対比して示した。
[Industrial Application Field] The present invention relates to a method for graphitizing a carbon fired body having an isotropic high-density structure with high yield. [Prior Art] Graphite articles are manufactured by kneading aggregate raw materials such as coke powder with a binder such as tar pitch, and then molding the kneaded product through the following steps: calcining, graphitizing, and processing. The graphitization process involves filling a resistance electric furnace called an Acheson-type graphitization furnace with a carbon fired body as a processing material, surrounding it with a heat-insulating packing material such as coke or silica sand, and then passing it through a terminal electrode. It is carried out by raising the temperature to a high temperature of 2,800 to 3,000 degrees Celsius through high voltage and current, and by the resistance heat of the carbon thermal compact and packing material in the furnace. At this time, the carbon fired bodies are usually packed in the furnace by arranging them in one or two rows at regular intervals in the furnace length direction. Electric current flows in series between the fired carbon bodies packed in the furnace, but graphitization is mainly carried out through resistance heating of the packing material present in the current path. [Problems to be solved by the invention] As mentioned above, the main heat source that contributes to the heating of carbon fired bodies depends on the gap resistance heat generation of the packing material between the corresponding surfaces of each fired body, so the heat transfer temperature is is greatly affected by gap disparity. For example, when cylindrical carbon fired bodies are arranged vertically at right angles to the furnace length direction, the gap lengths differ because the mutually corresponding surfaces are circular, and the center of the current path with the smallest gap A significant temperature difference occurs between the portion (high heat generation portion) and both end portions (low heat generation portion) where the gap is large. Recently, high-density graphite materials with an isotropic structure formed using a hydrostatic press (rubber press) have been used in various fields, but this type of high-density compact is particularly susceptible to internal distortion due to thermal stress. There is a problem that cracks or breakage occur relatively easily due to the above-mentioned heat transfer temperature difference. [Means for Solving the Problems] The present invention eliminates the drawbacks of the conventional methods described above, and
The object of the present invention is to provide a graphitization method that can process even a carbonaceous fired body with a high density structure with good yield. That is, the method for graphitizing a carbon fired body according to the present invention involves arranging a large number of carbon fired bodies having an isotropic high-density structure obtained by firing a molded body using a rubber press in series and at regular intervals in the furnace length direction of an Acheson furnace. In this method, the fired carbon body is embedded in a packing material with good thermal conductivity and loaded into a cylindrical surrounding section made of carbonaceous material, and the surrounding area is covered with a normal packing material. Its structural feature is that it is energized. Hereinafter, the present invention will be explained in detail based on the drawings. FIG. 1 is a partial vertical sectional view of an Acheson graphitization furnace showing an example of application of the graphitization method according to the present invention, and FIG. 2 is a sectional view taken along line A-A' in FIG. A furnace wall, 2 a hearth, and 3 a terminal electrode to which a conductor 11 is attached. Reference numeral 4 denotes cylindrical surrounding sections made of a carbonaceous material such as carbon or graphite, which have the same shape and are arranged in series at equal intervals in the furnace length direction. The cylindrical surrounding section 4 can be formed by integrally processing a carbonaceous block, or by appropriately combining plate-shaped or rod-shaped carbonaceous members such as by cutting them.
Also, the shape can be either square or cylindrical, but
In the case of a cylindrical shape, there is a tendency for local gap differences to occur between the facing cylindrical surrounding sections, which weakens the heat uniformity effect. Therefore, in the case of a cylindrical shape, as shown in FIG. , 6' preferably have a planar shape with substantially the same surface area. The carbon fired body 7 to be treated is filled in the cylindrical surrounding section 4 while being embedded in a packing material 8 with good thermal conductivity such as graphite powder, and the periphery thereof is covered with a normal coke grain packing material 9. It is packed in a furnace. Finally, the upper layer of the furnace is covered with silica sand 10 for shielding, and electricity is applied to the furnace via the terminal electrode 3. [Function] According to the graphitization method of the present invention, the fired carbon body is loaded into the carbonaceous cylindrical surrounding section while being embedded in the packing material with good thermal conductivity, so that gap resistance heat generation is caused by the gap resistance generated by these partition wall members. The heat is indirectly transferred to the carbon fired body through the carbon sintered body. Due to this indirect heat transfer effect, local temperature distribution differences in the carbon fired body and fluctuations in temperature increase rate are alleviated, and an excellent heat uniformity effect is exhibited. This heat-uniforming effect is particularly remarkable when each corresponding surface of the cylindrical surrounding section has a planar shape with the same surface area, and serves to greatly improve the yield. Example 1 Molded product by rubber press (bulk density 1.45g/
A cylindrical carbon fired body having an isotropic high-density structure and having a diameter of 600 mm and a height of 700 mm was prepared. 900mm on each side, constructed by combining graphite plates (200mm)
Square cylindrical surrounding sections with a height of 1000 mm and a height of 1000 mm were set in series at equal intervals in the furnace length direction of the Acheson graphitization furnace.
Two pieces of the above-mentioned fired carbon bodies were embedded in graphite powder packing and loaded into the center. The furnace was filled with coke powder packing to enclose the cylindrical surrounding section, and the upper layer was shielded with silica sand 10. Next, power was transmitted to the terminal electrode, and the temperature was raised to 2800°C over 80 hours to perform graphitization. Table 1 shows the yield results of the graphitized product obtained. Example 2 A cylindrical surrounding section consisting of two stacked cylinders having an outer diameter of 900 mm, an inner diameter of 700 mm, and a height of 500 mm, which were integrally machined from a graphite block, was set in series at equal intervals in the furnace length direction of an Acheson type graphitization furnace. Two carbon fired bodies having the same characteristics and shape as those of Example 1 were loaded into this cylindrical surrounding compartment in a state where they were embedded in graphite powder packing. Then, graphitization treatment was performed in the same manner as in Example 1. The yield results of the graphitized product obtained are also listed in Table 1. Example 3 As shown in FIG. 3, round graphite rods were attached to the periphery of the cylindrical surrounding compartment set in the furnace in Example 2, so that the surfaces corresponding to each compartment were formed into a substantially planar shape. Graphitization treatment was otherwise performed under the same conditions as in Example 2. Table 1 shows the yield results of the graphitized product thus obtained.
Published in . [Comparative Example] A carbon fired body having the same characteristic shape as in Example 1 was directly charged into an Acheson type graphitization furnace without using the cylindrical surrounding section according to the present invention. Other conditions were the same as in Example 1 for graphitization. The yield results of the graphitized products obtained are shown in Table 1 in comparison.

【表】 〔発明の効果〕 本発明によれば、筒状囲繞区画の均熱化作用に
基づいて黒鉛化処理過程における炭素焼成体の亀
裂・破損現象は効果的に減少する。したがつて、
高密度組織の炭素焼成体であつても、常に高収率
で黒鉛化することができる。
[Table] [Effects of the Invention] According to the present invention, cracking and breakage phenomena of the carbon fired body during the graphitization process are effectively reduced based on the heat-uniforming effect of the cylindrical surrounding section. Therefore,
Even a carbon fired body with a high density structure can be graphitized with a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の適用例を示したアチソン式黒
鉛化炉の部分縦断面図、第2図は第1図のA−
A′線に沿う断面図である。第3図は筒状囲繞区
画の1例を示した部分拡大横断面図である。 4……筒状囲繞区画、5……棒状炭素部材、7
……炭素焼成体、8……良熱伝導性パツキング
材。
FIG. 1 is a partial vertical sectional view of an Acheson graphitization furnace showing an example of application of the present invention, and FIG.
FIG. 3 is a sectional view taken along line A'. FIG. 3 is a partially enlarged cross-sectional view showing one example of a cylindrical surrounding section. 4... Cylindrical surrounding section, 5... Rod-shaped carbon member, 7
... Carbon fired body, 8 ... Packing material with good thermal conductivity.

Claims (1)

【特許請求の範囲】 1 ラバープレスによる成形体を焼成して得られ
る等方性高密度組織を有する多数の炭素焼成体を
アチソン炉の炉長方向に直列かつ等間隔に配置し
て黒鉛化する方法において、炭素焼成体を良熱伝
導性パツキング材に埋め込んだ状態で炭素質材料
により構成された筒状囲繞区画に装填し、その周
囲を通常のパツキング材で被包して通電すること
を特徴とする炭素焼成体の黒鉛化方法。 2 筒状囲繞区画が、炭素質ブロツクから一体加
工されるか、板状あるいは棒状の炭素質部材を組
合せることにより形成される特許請求の範囲第1
項記載の炭素焼成体の黒鉛化方法。 3 筒状囲繞区画を、各対応面が実質的に同一表
面積の平面形状を呈するように構成する特許請求
の範囲第1項記載の炭素焼成体の黒鉛化方法。
[Claims] 1. A large number of carbon fired bodies having an isotropic high-density structure obtained by firing a molded body using a rubber press are arranged in series and at equal intervals in the furnace length direction of an Acheson furnace and graphitized. The method is characterized in that the fired carbon body is embedded in a packing material with good thermal conductivity and loaded into a cylindrical surrounding section made of a carbonaceous material, and the periphery thereof is covered with a normal packing material and energized. A method for graphitizing a fired carbon body. 2. Claim 1 in which the cylindrical surrounding section is formed by integrally processing a carbonaceous block or by combining plate-shaped or rod-shaped carbonaceous members.
A method for graphitizing a carbon fired body as described in . 3. The method for graphitizing a carbon fired body according to claim 1, wherein the cylindrical surrounding section is configured such that each corresponding surface has a planar shape with substantially the same surface area.
JP60219255A 1985-10-03 1985-10-03 Method for graphitizing carbon baked body Granted JPS6291411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60219255A JPS6291411A (en) 1985-10-03 1985-10-03 Method for graphitizing carbon baked body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60219255A JPS6291411A (en) 1985-10-03 1985-10-03 Method for graphitizing carbon baked body

Publications (2)

Publication Number Publication Date
JPS6291411A JPS6291411A (en) 1987-04-25
JPH03330B2 true JPH03330B2 (en) 1991-01-07

Family

ID=16732651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60219255A Granted JPS6291411A (en) 1985-10-03 1985-10-03 Method for graphitizing carbon baked body

Country Status (1)

Country Link
JP (1) JPS6291411A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847021A (en) * 1986-06-26 1989-07-11 Union Carbide Corporation Process for producing high density carbon and graphite articles
DK2373580T3 (en) * 2008-10-27 2018-09-10 Imerys Graphite & Carbon Switzerland S A PROCEDURE FOR THE MANUFACTURING AND TREATMENT OF GRAPHITE POWDER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155610A (en) * 1976-06-21 1977-12-24 Tokai Carbon Kk Graphitization of lengthened carbon articles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155610A (en) * 1976-06-21 1977-12-24 Tokai Carbon Kk Graphitization of lengthened carbon articles

Also Published As

Publication number Publication date
JPS6291411A (en) 1987-04-25

Similar Documents

Publication Publication Date Title
EP2373580B1 (en) Process for the production and treatment of graphite powders
US702758A (en) Method of graphitizing electrodes.
US1357290A (en) Method of manufacturing graphite articles
JPH03330B2 (en)
JP4311777B2 (en) Method for producing graphite material
CN112521152A (en) Preparation process of phi 700mm ultrahigh-power graphite electrode
US3268633A (en) Method of continuously forming carbon articles
JPH0159207B2 (en)
US1390823A (en) Burning of carbon electrodes
US2840458A (en) Heating finely divided solid reactants
CN113429207A (en) Graphite negative material block sintering graphitization method
JPH0158126B2 (en)
US941339A (en) Process of producing silicon carbid.
JPS6359986B2 (en)
US786859A (en) Method of heating carbon articles.
US3715439A (en) Electric smelting furnace electrode having a wooden core
JPH0238548B2 (en)
SU743950A1 (en) Method of producing graphitized articles
JPH09227232A (en) Graphitization method for carbonaceous molding
US749418A (en) Method of making carbon articles
US3522006A (en) Process for the manufacture of carbon products
SU998337A1 (en) Method for making packages of cylindrical carbon blanks in graphitization furnaces
JPH0674123B2 (en) Graphitizing method for carbonaceous compact
JPS58213610A (en) Preparation of carbonaceous material
SU996835A1 (en) Electric furnace for graphitizing of carbon blanks