JPH0333007B2 - - Google Patents

Info

Publication number
JPH0333007B2
JPH0333007B2 JP61251058A JP25105886A JPH0333007B2 JP H0333007 B2 JPH0333007 B2 JP H0333007B2 JP 61251058 A JP61251058 A JP 61251058A JP 25105886 A JP25105886 A JP 25105886A JP H0333007 B2 JPH0333007 B2 JP H0333007B2
Authority
JP
Japan
Prior art keywords
magnetic field
gradient magnetic
signal
pulse
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61251058A
Other languages
Japanese (ja)
Other versions
JPS63105751A (en
Inventor
Tooru Shimazaki
Juji Inoe
Masao Moryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP61251058A priority Critical patent/JPS63105751A/en
Publication of JPS63105751A publication Critical patent/JPS63105751A/en
Publication of JPH0333007B2 publication Critical patent/JPH0333007B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、核磁気共鳴断層撮影装置に印加する
勾配磁場により生ずる渦電流の影響を除去するた
め、渦電流による勾配磁場応答を測定して勾配磁
場の減少量を補正する勾配磁場応答補正方法に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention measures gradient magnetic field responses due to eddy currents in order to eliminate the effects of eddy currents caused by gradient magnetic fields applied to nuclear magnetic resonance tomography equipment. The present invention relates to a gradient magnetic field response correction method for correcting the amount of decrease in a gradient magnetic field.

(従来の技術) 核磁気共鳴(以下NMRという)現象を用いて
特定原子核に注目した被検体の断層像を得る
NMR−CTは従来から知られている。このNMR
−CTの原理の概要を簡単に説明する。
(Conventional technology) Obtaining a tomographic image of a subject focusing on specific atomic nuclei using nuclear magnetic resonance (hereinafter referred to as NMR) phenomenon
NMR-CT has been known for a long time. This NMR
- Briefly explain the outline of the principle of CT.

原子核は磁気を帯びた回転している独楽と見る
ことができるが、それを例えばz軸方向の静磁場
H0の中におくと、前記の原子核は次式で示す角
速度ω0で歳差運動をする。これをラモアの歳差
運動という。
An atomic nucleus can be seen as a spinning top that is magnetically charged, but it can be interpreted by a static magnetic field in the z-axis direction.
When placed in H 0 , the above-mentioned atomic nucleus precesses at an angular velocity ω 0 given by the following equation. This is called Lamore's precession.

ω0=γH0 但し、γ:核磁気回転比 今、静磁場のあるz軸に垂直な軸、例えばx軸
に高周波コイルを配置し、xy面内で回転する前
記の角周波数ω0の高周波回転磁場を印加すると
磁気共鳴が起り、静磁場H0のもとでゼーマン分
裂をしていた原子核の集団は共鳴条件を満足する
高周波磁場によつて準位間の遷移を生じ、エネル
ギー準位の高い方の準位に遷移する。ここで、核
磁気回転比γは原子核の種類によつて異なるので
共鳴周波数によつて当該原子核を特定することが
できる。更にその共鳴の強さを測定すれば、その
原子核の存在量を知ることができる。共鳴後緩和
時間と呼ばれる時定数で定まる時間の間に高い準
位へ励起された原子核は低い準位へ戻つてエネル
ギーの放射を行う。
ω 0 = γH 0 However, γ: nuclear gyromagnetic ratio Now, a high-frequency coil is placed on an axis perpendicular to the z-axis with a static magnetic field, for example, the x-axis, and the high-frequency coil with the above-mentioned angular frequency ω 0 rotates in the xy plane. Magnetic resonance occurs when a rotating magnetic field is applied, and a population of atomic nuclei undergoing Zeeman splitting under the static magnetic field H 0 undergoes a transition between levels due to the high-frequency magnetic field that satisfies the resonance condition, and the energy level changes. Transition to a higher level. Here, since the nuclear gyromagnetic ratio γ differs depending on the type of atomic nucleus, the atomic nucleus can be specified by the resonance frequency. Furthermore, by measuring the strength of that resonance, we can determine the amount of that nucleus present. During a time determined by a time constant called the post-resonance relaxation time, the atomic nucleus excited to a higher level returns to a lower level and radiates energy.

ここのNMRの現象の観測方法のパルス法につ
いて第3図を参照しながら説明する。
The pulse method of observing NMR phenomena here will be explained with reference to FIG.

前述のように共鳴条件を満足する高周波パルス
(H1)を静磁場(z軸)に垂直な(x軸)方向に
印加すると、第3図イに示すように磁化ベクトル
Mは回転座標系でω′=γH1の角度周波数でzy面内
で回転を始める。今パルス幅をtDとするとH0
らの回転角θは次式で表わされる。
As mentioned above, when a high-frequency pulse (H 1 ) that satisfies the resonance condition is applied in the (x-axis) direction perpendicular to the static magnetic field (z-axis), the magnetization vector M changes in the rotating coordinate system as shown in Figure 3A. It starts rotating in the zy plane with an angular frequency of ω' = γH 1 . Letting the pulse width be tD , the rotation angle θ from H0 is expressed by the following equation.

θ=γH1tD …(1) (1)式においてθ=90゜となるようなtDをもつパ
ルスを90゜パルスと呼ぶ。この90゜パルス直後では
磁化ベクトルMは第3図ロのようにxy面をω0
回転していることになり、例えばx軸においたコ
イルに誘導起電力を生じる。しかし、この信号は
時間と共に減衰していくので、この信号は自由誘
導減衰信号(FID信号)と呼ぶ。FID信号をフー
リエ変換すれば周波数領域での信号が得られる。
次に第3図ハに示すように90゜パルスからτ時間
後θ=180゜になるようなパルス幅の第2のパルス
(180゜パルス)を加えるとばらばらになつていた
磁気モーメントがτ時間後−y方向で再び焦点を
合せて信号が観測される。この信号をスピンエコ
ー(SE信号)と呼んでいる。このSE信号の強度
を測定して所望の像を得ることができる。NMR
の共鳴条件は ν=γH0/2π で与えられる。ここで、νは共鳴周波数、H0
静磁場の強さである。従つて共鳴周波数は磁場の
強さに比例することが分る。このため静磁場に線
形の磁場勾配を重畳させて、位置によつて異なる
強さの磁場を与え、共鳴周波数を変化させて位置
情報を得るNMRイメージングの方法がある。こ
の内フーリエ変換法について説明する。この手法
に用いる高周波磁場及び勾配磁場印加のパルスシ
ーケンスを第4図に示す。イ図において、x、
y、z軸に夫々Gx,Gy,Gzの勾配磁場を与え、
高周波磁場をx軸に印加する状態を示している。
ロ図は夫々の磁場を印加するタイミングを示す図
である。図においてRFは高周波の回転磁場で90゜
パルスと180゜パルスをx軸に印加する。Gxはx
軸に印加する固定の勾配磁場、Gyはy軸に印加
する時間によつて振幅を変化させる勾配磁場、
Gzはz軸に印加する固定の勾配磁場である。信
号は90゜パルス後のFID信号と180゜パルス後のSE
信号を示している。期間は各軸に与える勾配磁場
の信号の時期を示すために設けてある。期間1に
おいて90゜パルスと勾配磁場Gz+によつてz=0
を中心とするz軸に垂直な断層撮影におけるスラ
イス面内のスピンが選択的に励起される。期間2
のGx+はスピンの位相を乱れさせて180゜パルスで
反転させるためのもので、デイフエーズ勾配と呼
ばれる。Gz-はGz+によつて乱れたスピンの位相
を元に戻すためのものである。期間2ではGynも
印加する。これはy方向の位置に比例してスピン
の位相をずらしてやるためのもので、その強度は
毎周期異なるように制御される。期間3において
180゜パルスを与えて再び磁気モーメントを揃え、
その後に現われるSE信号を観察する。期間4の
Gx+は乱れた位相を揃え、SE信号を生じさせる
ための勾配磁場でリフエーズ勾配といい、リフエ
ーズ勾配とデイフエーズ勾配の面積が等しくなつ
たところにSE信号が現われる。
θ=γH 1 t D (1) In equation (1), a pulse with t D such that θ=90° is called a 90° pulse. Immediately after this 90° pulse, the magnetization vector M rotates at ω 0 in the xy plane as shown in FIG. However, since this signal attenuates over time, this signal is called a free induction decay signal (FID signal). By Fourier transforming the FID signal, a signal in the frequency domain can be obtained.
Next, as shown in Figure 3 C, when a second pulse (180° pulse) with a pulse width such that θ = 180° is applied after τ time from the 90° pulse, the magnetic moments that had been scattered are The signal is observed with refocusing in the back-y direction. This signal is called a spin echo (SE signal). A desired image can be obtained by measuring the intensity of this SE signal. NMR
The resonance condition is given by ν=γH 0 /2π. Here, ν is the resonant frequency and H 0 is the strength of the static magnetic field. Therefore, it can be seen that the resonant frequency is proportional to the strength of the magnetic field. For this reason, there is an NMR imaging method in which a linear magnetic field gradient is superimposed on a static magnetic field, giving a magnetic field of different strength depending on the position, and changing the resonance frequency to obtain positional information. Of these, the Fourier transform method will be explained. FIG. 4 shows a pulse sequence for applying a high frequency magnetic field and a gradient magnetic field used in this method. In figure A, x,
Apply gradient magnetic fields of Gx, Gy, and Gz to the y and z axes, respectively,
A state in which a high frequency magnetic field is applied to the x-axis is shown.
The figure B is a diagram showing the timing of applying each magnetic field. In the figure, RF is a high-frequency rotating magnetic field that applies 90° pulses and 180° pulses to the x-axis. Gx is x
A fixed gradient magnetic field is applied to the axis, Gy is a gradient magnetic field whose amplitude changes depending on the time applied to the y-axis,
Gz is a fixed gradient magnetic field applied to the z-axis. The signals are the FID signal after the 90° pulse and the SE after the 180° pulse.
Showing a signal. The period is provided to indicate the timing of the signal of the gradient magnetic field applied to each axis. In period 1, z=0 due to 90° pulse and gradient field Gz +
Spins in the slice plane in the tomography perpendicular to the z-axis centered at are selectively excited. Period 2
Gx + is used to disrupt the phase of the spins and reverse them with a 180° pulse, which is called the dephase gradient. Gz - is used to restore the spin phase disturbed by Gz + . In period 2, Gyn is also applied. This is to shift the phase of the spin in proportion to the position in the y direction, and its intensity is controlled to be different every cycle. In period 3
Apply a 180° pulse to align the magnetic moments again,
Observe the SE signal that appears after that. period 4
Gx + is a gradient magnetic field that aligns the disturbed phases and generates an SE signal, which is called a ref-phase gradient. An SE signal appears when the areas of the ref-phase gradient and the day-phase gradient become equal.

このMNR−CTにおいて、静磁場が大きいと
SN比が向上するので超電導磁石を使用する場合
増える傾向にあるが、ここで、渦電流の問題が発
生した。即ち、勾配磁場を印加すると、静磁場用
磁石の導体及び冷却用のヘリウム槽の容器等に勾
配磁場による渦電流が発生し、この渦電流によつ
て生ずる磁束により勾配磁場が打消されて弱くな
るという現象を生ずる。これは超電導磁石の導体
及びヘリウム槽の容器が超低温に冷却されている
ため抵抗値が極めて小さく0又は0に近い値にな
つていて、大きな渦電流を長い時定数で流すため
に特に問題になつたものである。又、渦電流はヘ
リウム槽の外部にあるクライオスタツトのステン
レス材等によるものもあり、これは常温なので抵
抗値が大きく時定数は短いが前記の渦電流に加わ
つて影響を及ぼす。又、渦電流は周波数の高い場
合に影響が大きく、従つて立上りの急峻な波形に
対して立上りを鈍らせ、良好なNMR像を得るこ
とを妨げている。
In this MNR-CT, when the static magnetic field is large,
There is a tendency to use superconducting magnets because they improve the signal-to-noise ratio, but the problem of eddy currents has arisen here. That is, when a gradient magnetic field is applied, eddy currents due to the gradient magnetic field are generated in the conductor of the static magnetic field magnet and the container of the helium bath for cooling, and the gradient magnetic field is canceled by the magnetic flux generated by this eddy current and weakens. This phenomenon occurs. This is especially a problem because the conductor of the superconducting magnet and the container of the helium bath are cooled to an ultra-low temperature, so the resistance value is extremely small, 0 or close to 0, and large eddy currents flow with a long time constant. It is something that Eddy currents may also be caused by the stainless steel material of the cryostat located outside the helium bath, which has a large resistance value and a short time constant since it is at room temperature, but it adds to the eddy currents and exerts an influence. In addition, eddy currents have a large effect when the frequency is high, and therefore, the rise of a waveform with a steep rise becomes blunt, making it difficult to obtain a good NMR image.

(発明が解決しようとする問題点) 以上のような渦電流の影響を補償する必要上か
ら渦電流による影響の量を次の方法で測定して補
償していた。
(Problems to be Solved by the Invention) Due to the need to compensate for the effects of eddy currents as described above, the amount of effects caused by eddy currents has been measured and compensated for by the following method.

(1) サーチコイルによる直接測定 勾配磁場を印加し、その近傍にサーチコイル
をおいて波形を観察する。実際には得る波形は
微分波形なので積分して観察するが、この測定
法はSN比が悪く、又、測定精度が悪い。
(1) Direct measurement using a search coil Apply a gradient magnetic field, place a search coil near it, and observe the waveform. In reality, the waveform obtained is a differential waveform, so it is integrated and observed, but this measurement method has a poor signal-to-noise ratio and poor measurement accuracy.

(2) FID信号のステツプ勾配磁場に対する応答特
性を測定し、勾配磁場の伝達関数を計算する 渦電流があるとFID信号の波形が第5図に示す
ように標準状態では指数関数曲線で振幅が減少す
るが、渦電流の存在によつて時定数が長くなり波
形が指数関数曲線でなくなる。この曲線のずれの
量で勾配磁場の伝達関数を計算するのであるが、
この測定法は静磁場が不均一な場合その影響を受
けるので、静磁場が不均一による擾乱か、渦電流
によるものかの区別がしにくい。従つて、補正の
必要があり、勾配磁場の無いときの状態を予め測
つておくとか、多数回の測定によつて平均化して
この影響を除去しなければならないので時間が掛
かる。又、位相歪の影響もあり、FID信号の減衰
曲線が急峻なこともあつて良好な測定精度が得ら
れない。
(2) Measure the response characteristics of the FID signal to the step gradient magnetic field and calculate the transfer function of the gradient magnetic field. When there is an eddy current, the waveform of the FID signal changes in amplitude to an exponential curve as shown in Figure 5 in the standard state. However, due to the presence of eddy currents, the time constant becomes longer and the waveform no longer resembles an exponential function curve. The transfer function of the gradient magnetic field is calculated by the amount of deviation of this curve.
This measurement method is affected by non-uniform static magnetic fields, so it is difficult to distinguish between disturbances caused by non-uniform static magnetic fields and eddy currents. Therefore, it is necessary to make corrections, and it is time-consuming because it is necessary to measure in advance the state in the absence of a gradient magnetic field, or to eliminate this influence by averaging a large number of measurements. Furthermore, due to the influence of phase distortion, the attenuation curve of the FID signal is steep, making it difficult to obtain good measurement accuracy.

本発明は上記の点に鑑みてなされたもので、そ
の目的は、渦電流による勾配磁場の応答を正確に
測定し、それを補償して高品質の画質を得ること
のできる勾配磁場応答補正方法を得るにある。
The present invention has been made in view of the above points, and its purpose is to accurately measure the response of a gradient magnetic field due to eddy currents, and compensate for the gradient magnetic field response, thereby obtaining a high-quality image. is to obtain.

(問題点を解決するための手段) 前記した問題点を解決する本発明は、核磁気共
鳴断層撮影装置に印加する勾配磁場により生ずる
渦電流の影響を除去するため、渦電流による勾配
磁場応答を測定して勾配磁場の減少量を補正する
勾配磁場応答補正方法において、180゜パルスによ
るSE信号のパルスシーケンスを用いて、デイフ
エーズ勾配磁場の印加時間と180゜パルスの印加時
期との時間間隔の変化に対するSE信号の発生時
期と90゜パルス起点のTE点との時間間隔の変化の
関係から、渦電流による勾配磁場応答特性を求
め、それに基づいて勾配磁場の渦電流補償を行う
ことを特徴とするものである。
(Means for Solving the Problems) The present invention solves the above-mentioned problems by reducing the gradient magnetic field response due to eddy currents in order to eliminate the influence of eddy currents caused by gradient magnetic fields applied to a nuclear magnetic resonance tomography apparatus. In the gradient magnetic field response correction method that measures and corrects the amount of decrease in the gradient magnetic field, a pulse sequence of SE signals with 180° pulses is used to calculate the change in the time interval between the application time of the day-phase gradient magnetic field and the application timing of the 180° pulse. The gradient magnetic field response characteristic due to eddy current is determined from the relationship between the time interval change between the SE signal generation timing and the T E point of the 90° pulse origin, and the eddy current compensation of the gradient magnetic field is performed based on this. It is something to do.

(作用) デイフエーズ勾配磁場の印加時点及び又は振幅
を調整して、SE信号を90゜パルスを起点とする時
間TE点に発生せしめ、デイフエーズ勾配磁場の
印加時期と180゜パルスの印加時期との時間間隔
(δ)を次第に小さくしながらSE信号がTE点を離
隔する量(ε)を測定する。δとεとの関係か
ら、渦電流による勾配磁場応答特性を求め、それ
に基づいて勾配磁場の渦電流補償を行う。
(Operation) The application time and/or amplitude of the day-phase gradient magnetic field is adjusted to generate an SE signal at the time T E point starting from the 90° pulse, and the difference between the application time of the day-phase gradient magnetic field and the application time of the 180° pulse is While gradually decreasing the time interval (δ), measure the amount (ε) by which the SE signal separates from the T E point. A gradient magnetic field response characteristic due to eddy current is determined from the relationship between δ and ε, and eddy current compensation of the gradient magnetic field is performed based on it.

(実施例) 以下、図面を参照して本発明の方法を詳細に説
明する。尚、本発明の方法を実施するNMR−
CTの構成は通常のものでよい。
(Example) Hereinafter, the method of the present invention will be explained in detail with reference to the drawings. In addition, NMR-
The configuration of the CT may be a normal one.

第1図は本発明の一実施例の方法の説明図であ
る。図において、勾配磁場の印加はx軸のみと
し、他の2軸はオフにしてある。1はRF軸に印
加する高周波の回転磁場の90゜パルスで、FID信
号2を受信コイル(図示せず)に誘起させる。3
はx軸に印加したスピンの位相を乱れさせるデイ
フエーズ勾配磁場信号で、そのパルス幅はTD
ある。4はデイフエーズパルス後、RF軸に印加
し、スピンを反転させる180゜パルス、5は180゜パ
ルス4の後で位相を整えてSE信号6を誘起させ
るリフエーズ勾配磁場信号で、そのパルスの立上
りとSE信号6との間隔をTRとする。TE点7は90゜
パルスと180゜パルスとの時間間隔TE/2の2倍の
時間間隔TEにおける点である。δはデイフエー
ズ勾配磁場信号3の終端と180゜パルス4との時間
間隔、εはSE信号6とTE点7との時間間隔、GD
はデイフエーズ勾配磁場信号3の振幅、GRはリ
フエーズ勾配磁場信号5の振幅である。
FIG. 1 is an explanatory diagram of a method according to an embodiment of the present invention. In the figure, the gradient magnetic field is applied only to the x-axis, and the other two axes are turned off. 1 is a 90° pulse of a high frequency rotating magnetic field applied to the RF axis, which induces an FID signal 2 in a receiving coil (not shown). 3
is a dephase gradient magnetic field signal that disturbs the phase of spins applied to the x-axis, and its pulse width is T D. 4 is a 180° pulse that is applied to the RF axis after the day-phase pulse to reverse the spin, and 5 is a rephase gradient magnetic field signal that adjusts the phase after 180° pulse 4 and induces SE signal 6. Let T R be the interval between the rising edge and SE signal 6. T E point 7 is a point at a time interval T E that is twice the time interval T E /2 between the 90° pulse and the 180° pulse. δ is the time interval between the end of day phase gradient magnetic field signal 3 and 180° pulse 4, ε is the time interval between SE signal 6 and T E point 7, G D
is the amplitude of the day-phase gradient magnetic field signal 3, and G R is the amplitude of the day-phase gradient magnetic field signal 5.

次に、実施例の方法の原理及び方法の実施を説
明する。マグネツト中に適当な体積の水フアント
ムを置き、デイフエーズ勾配磁場信号3の印加時
期(以下時間軸上で位置という)をSE信号の中
心が丁度TE点7に来るように、即ちε=0とな
るように初期設定をし、そのときのδをδ0、デイ
フエーズ勾配磁場信号3の位置を図の点線3′の
位置とする。初期設定の調整はGD又はGRを調整
すればよい。このとき GD・TD=GR・TRとなる。
Next, the principle of the method and the implementation of the method will be explained. A water phantom of an appropriate volume is placed in the magnet, and the application timing of the day phase gradient magnetic field signal 3 (hereinafter referred to as the position on the time axis) is set so that the center of the SE signal is exactly at the T E point 7, that is, ε = 0. The initial setting is made so that δ at that time is δ 0 and the position of the day phase gradient magnetic field signal 3 is the position indicated by the dotted line 3' in the figure. To adjust the initial settings, just adjust G D or G R. In this case, G D・T D =G R・T R.

次に他のパラメータは一切変えないで次第にδ
→Oにしながらその都度εを測定すると勾配磁場
の渦電流による変化分がεという進みになつて観
察される。この状態を第2図に示す。図におい
て、第1図と同じ部分には同じ符号及び同じ記号
を用いてある。図に示すように、デイフエーズ勾
配磁場信号が鈍つて実効面積が減少するために
SE信号は進んで図の位置に来ることになる。従
つて、εの変化を読むことによりTRの変化が分
り、渦電流による勾配磁場への影響を知ることが
できる。この感度SはS=GD・TD/GR・ΔTで
表わされる。
Next, without changing any other parameters, gradually δ
→ When ε is measured each time while setting O, the change due to the eddy current in the gradient magnetic field is observed as a progression of ε. This state is shown in FIG. In the figure, the same reference numerals and symbols are used for the same parts as in FIG. As shown in the figure, the day phase gradient magnetic field signal becomes dull and the effective area decreases.
The SE signal will advance to the position shown in the figure. Therefore, by reading the change in ε, the change in T R can be determined, and the influence of the eddy current on the gradient magnetic field can be determined. This sensitivity S is expressed as S=G D ·T D /G R ·ΔT.

但し、ΔTは読取り精度である。 However, ΔT is the reading accuracy.

例えば、 GD=0.5G/cm、TD=10ms、 GR=0.01G/cm、ΔT=0.1msとすれば S=0.5×0.01/0.01×10-4=5000 即ち、0.02%の高精度で勾配の応答特性を測る
ことができる。
For example, if G D = 0.5 G/cm, T D = 10 ms, G R = 0.01 G/cm, ΔT = 0.1 ms, then S = 0.5 x 0.01/0.01 x 10 -4 = 5000, that is, high accuracy of 0.02%. The response characteristics of the slope can be measured using .

このようにして、δを変化させてεの変化量を
測定すると第6図のような関係が得られる。図に
おいて、縦軸は対数目盛りで刻んだ軸上にε(m
s)を、横軸にδ(ms)を取つてある。実線は
δを変化させてεをプロツトした曲線で、点線は
実線の曲線を直線近似したものである。渦電流の
時定数τは第6図の関係から次のようにして求め
られる。ε軸上において、次式を満足させるよう
に2点a,bを選ぶと、 b=a/e 但し、eは自然対数の底 2点a,bに対応するδ軸上の2点c,d間の
長さδ1が求める時定数τに相当する。
In this way, when δ is changed and the amount of change in ε is measured, a relationship as shown in FIG. 6 is obtained. In the figure, the vertical axis is ε(m
s) and δ (ms) is plotted on the horizontal axis. The solid line is a curve obtained by plotting ε while changing δ, and the dotted line is a linear approximation of the solid curve. The time constant τ of the eddy current can be obtained from the relationship shown in FIG. 6 as follows. If two points a and b are selected on the ε-axis so as to satisfy the following formula, then b=a/e, where e is the base of the natural logarithm.Two points c on the δ-axis corresponding to the two points a and b, The length δ 1 between d corresponds to the required time constant τ.

τ=δ1(ms) …(2) 一方、デイフエーズ勾配磁場信号に対する渦電
流の割合Aは次のようにして求められる。
τ=δ 1 (ms) (2) On the other hand, the ratio A of the eddy current to the dephase gradient magnetic field signal is determined as follows.

勾配及び渦電流により発生する磁場による磁場
ベクトルの位相回転量を求める。第7図で斜線を
施した部分(D1〜D4)がデイフエーズ勾配磁場
信号方向の位相(ここではプラスの位相とする)
を、R1〜R3の部分がリフエーズ勾配磁場信号の
位相(ここではマイナス方向の位相とする)を与
える。渦電流をA・e--t/〓とする。(A:ゲイン、
τ:時定数) プラスの位相量の各々は次のように与えられ
る。
Find the amount of phase rotation of the magnetic field vector due to the magnetic field generated by the gradient and eddy current. The shaded portion (D 1 to D 4 ) in Figure 7 is the phase in the direction of the day phase gradient magnetic field signal (here, it is assumed to be a positive phase)
, the portions R 1 to R 3 give the phase of the rephasing gradient magnetic field signal (here, the phase is in the negative direction). Let the eddy current be A・e --t/ 〓. (A: gain,
τ: time constant) Each of the positive phase amounts is given as follows.

D1;GD・TD マイナスの位相量の各々は次のように与えられ
る。
D 1 ; G D・T D Each of the negative phase quantities is given as follows.

以上から、1プラスの位相量1−1マイナスの
位相量1=0を計算すると という関係が成立つ。これから よつて、第6図で求めた直線近似において、δ=
0でのεの値ε1を用いることにより、割合Aは次
式で求まる。
From the above, if we calculate 1 plus phase amount 1 - 1 minus phase amount 1 = 0 This relationship is established. from now Therefore, in the linear approximation obtained in Figure 6, δ=
By using the value ε 1 of ε at 0, the ratio A can be found by the following equation.

と求まる。 That's what I find.

このようにして、デイフエーズ勾配磁場に対す
る渦電流の初期値の割合Aと、減衰の時定数τが
分かる。
In this way, the ratio A of the initial value of the eddy current to the day phase gradient magnetic field and the decay time constant τ are found.

時定数が複数個ある場合は折線近似し、各々1
つずつ時定数について計算すればよい。
If there are multiple time constants, use a broken line approximation, each with 1
All you have to do is calculate each time constant.

(2)式、(3)式から求めたN個の時定数に基づくN
組の渦電流成分τn、An(n=1〜N)を勾配電源
の補正回路定数として補正回路を構成すれば、入
力に正確に対応する勾配磁場が得られる。
N based on N time constants obtained from equations (2) and (3)
If a correction circuit is constructed using the set of eddy current components τn and An (n=1 to N) as correction circuit constants of the gradient power source, a gradient magnetic field that accurately corresponds to the input can be obtained.

τn=Rn・Cn,An=RnA/R0 …(4) 渦電流補償回路を付加した勾配磁場電源の増幅
回路を第8図に示す。図において、11は抵抗
R0、オペアンプE0から成る勾配磁場電源の増幅
回路、12はコンデンサC1…Cn、抵抗R1…Rnか
ら成る微分回路を入力回路とし、R1A…RnAのフ
イードバツク回路を有するオペアンプE1…Enか
ら成る渦電流補償回路である。R1…Rnは半固定
の抵抗で、C1…Cnと共に(4)式の時定数τ1…τnを
満足させる微分回路を構成し、フイードバツク抵
抗R1A…RnAも半固定の抵抗で、(4)式を満足する
ようにゲインを調整している。渦電流補償回路1
2の各増幅回路は渦電流発生源と同数設けてあつ
て、各発生源を補償する部品定数を選定してい
る。増幅回路11と渦電流補償回路12の出力は
勾配磁場電源回路13に入力される。
τn=Rn・Cn, An=Rn A /R 0 (4) Figure 8 shows an amplifier circuit for a gradient magnetic field power supply with an eddy current compensation circuit added. In the figure, 11 is a resistance
R 0 is an amplifier circuit for a gradient magnetic field power supply consisting of an operational amplifier E 0 , 12 is an operational amplifier E 1 having a differential circuit consisting of a capacitor C 1 ...Cn and a resistor R 1 ...Rn as an input circuit, and a feedback circuit of R 1A ...Rn A. ...This is an eddy current compensation circuit consisting of En. R 1 ...Rn are semi-fixed resistors, and together with C 1 ...Cn, they form a differentiating circuit that satisfies the time constant τ 1 ...τn of equation (4), and the feedback resistors R 1A ...Rn A are also semi-fixed resistors, The gain is adjusted to satisfy equation (4). Eddy current compensation circuit 1
The number of each amplifier circuit No. 2 is equal to the number of eddy current generation sources, and component constants are selected to compensate for each generation source. The outputs of the amplifier circuit 11 and the eddy current compensation circuit 12 are input to a gradient magnetic field power supply circuit 13.

以上説明したように、デイフエーズ勾配の印加
時期を動かして、SE信号の移動量を測定するこ
とにより、高精度で過電流による勾配磁場応答が
測定でき、的確な補償回路を構成して高品質の画
像を得ることができるようになつた。尚、本発明
は本実施例に限定されるものではない。例えば、
δ−ε関係を直線近似して求めたが、最小二乗法
で算術的に展開して求めてもよい。又、補償回路
の形式もこの回路に限ることなく、同じ効果を生
ずる回路を適宜選ぶことが出来る。
As explained above, by changing the application timing of the day phase gradient and measuring the amount of movement of the SE signal, the gradient magnetic field response due to overcurrent can be measured with high precision, and an accurate compensation circuit can be configured to achieve high quality. Now I can get images. Note that the present invention is not limited to this example. for example,
Although the δ-ε relationship was obtained by linear approximation, it may also be obtained by arithmetically expanding it using the method of least squares. Further, the type of the compensation circuit is not limited to this circuit, and any circuit that produces the same effect can be appropriately selected.

(発明の効果) 以上詳述に説明したように、本発明によれば、
渦電流による勾配磁場の減少量及び時定数が高精
度に測定できて、それに基づいて磁場の減少量を
完全に補正でき、高品質の画像を得ることができ
るようになり、実用上の効果は大きい。
(Effects of the Invention) As explained in detail above, according to the present invention,
The amount of decrease in the gradient magnetic field due to eddy currents and the time constant can be measured with high precision, and based on this, the amount of decrease in the magnetic field can be completely corrected, making it possible to obtain high-quality images, and the practical effect is big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の方法を説明図、第
2図は測定原理の説明図、第3図はNMR−CT
のパルス法の原理の説明図、第4図はNMR−
CTの磁場のパルスシーケンスを示す図、第5図
はFID信号の応答の測定の説明図、第6図はδ−
ε曲線図、第7図は渦電流の影響の説明図、第8
図は渦電流補償回路を付加した勾配磁場電源回路
の図である。 1……90゜パルス、2……FID信号、3,3′…
…デイフエーズ勾配磁場信号、4……180゜パル
ス、5……リフエーズ勾配磁場信号、6……SE
信号、7……TE点、11……勾配磁場増幅回路、
12……渦電流補償回路、13……勾配磁場電源
回路。
Figure 1 is an explanatory diagram of the method of one embodiment of the present invention, Figure 2 is an explanatory diagram of the measurement principle, and Figure 3 is NMR-CT.
Figure 4 is an explanatory diagram of the principle of the pulse method of NMR-
A diagram showing the pulse sequence of the CT magnetic field, Figure 5 is an explanatory diagram of the measurement of the FID signal response, and Figure 6 is a diagram showing the δ-
ε curve diagram, Figure 7 is an explanatory diagram of the influence of eddy current, Figure 8
The figure is a diagram of a gradient magnetic field power supply circuit to which an eddy current compensation circuit is added. 1...90° pulse, 2...FID signal, 3,3'...
... Day phase gradient magnetic field signal, 4... 180° pulse, 5... Rephase gradient magnetic field signal, 6... SE
Signal, 7...T E point, 11...Gradient magnetic field amplification circuit,
12... Eddy current compensation circuit, 13... Gradient magnetic field power supply circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 核磁気共鳴断層撮影装置に印加する勾配磁場
により生ずる渦電流の影響を除去するため、渦電
流による勾配磁場応答を測定して勾配磁場の減少
量を補正する勾配磁場応答補正方法において、
180゜パルスによるSE信号のパルスシーケンスを
用いて、デイフエーズ勾配磁場の印加時期と180゜
パルスの印加時期との時間間隔の変化に対する
SE信号の発生時期と90゜パルス起点のTE点との時
間間隔の変化の関係から、渦電流による勾配磁場
応答特性を求め、それに基づいて勾配磁場の渦電
流補償を行うことを特徴とする勾配磁場応答補正
方法。
1. In a gradient magnetic field response correction method that measures the gradient magnetic field response due to the eddy current and corrects the amount of decrease in the gradient magnetic field, in order to remove the influence of eddy currents caused by the gradient magnetic field applied to a nuclear magnetic resonance tomography apparatus,
Using the pulse sequence of the SE signal with 180° pulses, the change in the time interval between the time of application of the day-phase gradient magnetic field and the time of application of the 180° pulse
The gradient magnetic field response characteristic due to eddy current is determined from the relationship between the time interval change between the SE signal generation timing and the T E point of the 90° pulse origin, and the eddy current compensation of the gradient magnetic field is performed based on this. Gradient magnetic field response correction method.
JP61251058A 1986-10-22 1986-10-22 Gradient magnetic field response correction method Granted JPS63105751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61251058A JPS63105751A (en) 1986-10-22 1986-10-22 Gradient magnetic field response correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61251058A JPS63105751A (en) 1986-10-22 1986-10-22 Gradient magnetic field response correction method

Publications (2)

Publication Number Publication Date
JPS63105751A JPS63105751A (en) 1988-05-11
JPH0333007B2 true JPH0333007B2 (en) 1991-05-15

Family

ID=17216994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61251058A Granted JPS63105751A (en) 1986-10-22 1986-10-22 Gradient magnetic field response correction method

Country Status (1)

Country Link
JP (1) JPS63105751A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189057A (en) * 1986-01-03 1987-08-18 ゼネラル・エレクトリツク・カンパニイ Method for compensating eddy current by magnetic field gradient
JPS62240040A (en) * 1986-04-11 1987-10-20 株式会社日立製作所 Magnetic resonance imaging apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189057A (en) * 1986-01-03 1987-08-18 ゼネラル・エレクトリツク・カンパニイ Method for compensating eddy current by magnetic field gradient
JPS62240040A (en) * 1986-04-11 1987-10-20 株式会社日立製作所 Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JPS63105751A (en) 1988-05-11

Similar Documents

Publication Publication Date Title
JP3431203B2 (en) Method of shimming magnetic field in examination space
Boesch et al. Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems
KR100481740B1 (en) A method for measuring and compensating for spatially and temporally varying magnetic fields induced by eddy currents
US4623844A (en) NMR inhomogeneity compensation system
JP2009000538A (en) Method and system for measuring and compensating for eddy currents induced during nmr imaging operations
US4978919A (en) Measurement and calibration of eddy currents for magnetic resonance imagers
JP2716889B2 (en) High-speed magnet correction method
US5207222A (en) Method and apparatus for measuring temperature of subject
US6335620B1 (en) Method of acquiring eddy currents that are caused by switched magnetic field gradients of a magnetic resonance apparatus and that contain cross-terms
US6906515B2 (en) Magnetic resonance imaging device and method
US5451877A (en) Method for the compensation of eddy currents caused by gradients in a nuclear magnetic resonance apparatus
JPH11322A (en) Measuring method for reversible contribution quantity to lateral directional relaxation speed in magnetic resonance imaging method (mri)
JPS6117054A (en) Nuclear magnetic resonance tomography apparatus
EP0223279B1 (en) Method of and device for the phase correction of mr inversion recovery images
JP2000262490A (en) Magnetic resonance imaging method and magnetic resonance imaging device
US5025217A (en) Method of and device for eddy current compensation in MR apparatus
JPH01141656A (en) Method for correcting magnetic field drift of nmr imaging apparatus
JPH0333007B2 (en)
JPH0331451B2 (en)
JP3868754B2 (en) Magnetic resonance imaging system
Reese et al. MR gradient response modeling to ensure excitation coherence
JP3337157B2 (en) Nuclear magnetic resonance equipment
JPH04189344A (en) Magnetic resonance diagnosing device
JPS60149953A (en) Nmr imaging apparatus
JPH0436813Y2 (en)