JPH0332504A - Boring tool - Google Patents

Boring tool

Info

Publication number
JPH0332504A
JPH0332504A JP1163301A JP16330189A JPH0332504A JP H0332504 A JPH0332504 A JP H0332504A JP 1163301 A JP1163301 A JP 1163301A JP 16330189 A JP16330189 A JP 16330189A JP H0332504 A JPH0332504 A JP H0332504A
Authority
JP
Japan
Prior art keywords
shank
neck
sectional area
boring tool
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1163301A
Other languages
Japanese (ja)
Inventor
Osamu Tsujimura
修 辻村
Masaaki Nakayama
正彰 中山
Masayuki Okawa
大川 昌之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1163301A priority Critical patent/JPH0332504A/en
Priority to KR1019900006946A priority patent/KR910000280A/en
Priority to DE69028998T priority patent/DE69028998T2/en
Priority to EP94104604A priority patent/EP0609908B1/en
Priority to EP90112122A priority patent/EP0405443B1/en
Priority to US07/544,176 priority patent/US5156503A/en
Priority to DE69013411T priority patent/DE69013411T2/en
Publication of JPH0332504A publication Critical patent/JPH0332504A/en
Priority to US07/917,189 priority patent/US5261767A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/08Cutting tools with blade- or disc-like main parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)

Abstract

PURPOSE:To obtain a boring tool having a good vibration resistance by setting the sectional area at a sectional view in a direction crossing a shank axis at a neck part larger than the sectional area at a sectional view of a shank. CONSTITUTION:The sectional area of a neck part 12 is set larger than the sectional area of a shank 13, so the rigidity of the side of the shank 13 as the support side becomes lower than the side of the neck part 12 when a boring tool is installed in a machine tool by cantilever support, and the whole structure becomes a soft structure with which different vibrations are likely to be produced corresponding to the mass and rigidity at each part. In this constitution, as the sectional area is larger at the neck part 12 than on the side of the shank to make the mass per unit length of the neck part 12 larger than on the side of the shank 13, vibration becomes uncontinuous at a connection part between these. The vibration produced at a blade tip part 11 corresponding to fluctuation of cutting resistance is not transmitted to the shank 13 uniformly, and vibrations of different phases and frequency numbers are produced with the connection part of the neck part 12 with the shank 13 as the boundary, thereby growth of chattering vibration is prohibited by interference of these vibrations.

Description

【発明の詳細な説明】 「産業上の利用分!IF] この発明は、旋削加工において、被削材の内径加工を行
う際に用いられろ中ぐりバイトに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application! IF] The present invention relates to a boring tool used when machining the inner diameter of a workpiece in turning processing.

[従来の技術] 従来、この種の中ぐりバイトとしては、例えば、第21
図ないし第23図、あるいは第24図ないし第26図に
示すように、先端の一側部にスローアウェイチップ(以
下、チップと略称する。)lが装着された刃先部2と、
この刃先部2の基端側に形成された円柱状の首部3と、
この首部3の基端側に形成された略円柱状のシャンク4
とから概略構成されてなるものが知られている。
[Prior Art] Conventionally, as this type of boring tool, for example, the 21st
As shown in FIGS. 23 to 23 or 24 to 26, a cutting edge portion 2 has a throw-away tip (hereinafter abbreviated as a tip) l attached to one side of the tip;
A cylindrical neck portion 3 formed on the base end side of this cutting edge portion 2;
A substantially cylindrical shank 4 formed on the base end side of this neck portion 3
It is known that it is roughly constructed from the following.

ここで、上記チップlは、平面視略菱形をなすもので、
対向する二の角部に形成された切刃5のいずれか一方が
上記刃先部2の先端及び外周から突出された状態で上記
刃先部2に着脱自在に装着されている。
Here, the chip l has a substantially rhombic shape in plan view,
One of the cutting edges 5 formed at the two opposing corners is detachably attached to the cutting edge part 2 in a state of protruding from the tip and outer periphery of the cutting edge part 2.

また、上記首部3の直径d、は、上記シャンク4の直径
dlより小さく、すなわち、上記刃先部2と同一径(第
21図)、若しくは刃先部2よりも小径(第23図)に
設定され、より具体的には、上記刃先部2のシャンク軸
線方向からの正面視におけるシャンク軸線Oからチップ
lの切刃5までの距離Sに対して1.4s以下に定めら
れている。
Further, the diameter d of the neck portion 3 is set to be smaller than the diameter dl of the shank 4, that is, the same diameter as the cutting edge portion 2 (Fig. 21), or a smaller diameter than the cutting edge portion 2 (Fig. 23). More specifically, the distance S from the shank axis O of the cutting edge portion 2 to the cutting edge 5 of the tip l in a front view from the shank axis direction is set to 1.4 seconds or less.

さらに、上記刃先部2には、上記切刃5で生成される切
屑を滞りなく排出させるためのチップポケット7が形成
され、このチップポケット7の先端側は、上記チップI
のすくい面6と略面−とされている。
Furthermore, a chip pocket 7 is formed in the cutting edge portion 2 for smoothly discharging chips generated by the cutting blade 5, and the tip side of this chip pocket 7 is connected to the chip I.
It is assumed that the rake face 6 and the approximately face -.

このように構成された中ぐりバイトを用いて被削材の内
径加工、すなわち、被削材にあらかじめ形成された穴部
を拡径するには、まず、シャンク4を図示せぬホルダを
介して工作機械の工具把持部(例えば、旋盤の心押台)
に装着する一方で、上記被削材を、工作機械のワーク把
持部(例えば、旋盤のチャック)に、その穴部の軸線が
上記シャンク4の軸線Oと平行方向を向くように装着す
る。
In order to process the inner diameter of a workpiece using the boring tool configured as described above, that is, to expand the diameter of a hole previously formed in the workpiece, first, the shank 4 is moved through a holder (not shown). Tool grips of machine tools (e.g. tailstock of lathes)
At the same time, the workpiece is mounted on a work gripping part of a machine tool (for example, a chuck of a lathe) so that the axis of the hole faces parallel to the axis O of the shank 4.

そして、上記被削材をその穴部の軸線回りに回転させつ
つ、上記工作機械の工具把持部とワーク把持部との間に
上記シャンク4の軸線方向の相対運動を与えて上記刃先
部2及び0部3を上記被削(4の穴部に仲人してゆくこ
とにより、チップIの切刃5で被削材の穴部を切削して
所定寸法に拡径してゆく。
Then, while rotating the workpiece material around the axis of the hole, a relative movement in the axial direction of the shank 4 is applied between the tool gripping part and the workpiece gripping part of the machine tool, so that the cutting edge part 2 and By inserting part 0 3 into the hole of the workpiece (4), the cutting edge 5 of the tip I cuts the hole of the workpiece to enlarge the diameter to a predetermined size.

[発明が解決しようとする課題] ところで、上述した従来の中ぐりバイトを用いた内径加
工においては、中ぐりバイトの刃先部2及び首部3が工
作機械の工具把持部から突出したいわゆる片持ち支持の
状態で切削が行われろため、切削中に、上記刃先部2か
ら首部3にかけての部分にびびり振動が極めて生じ易く
、このため、切削面の面粗度の劣化や切刃の欠損等の事
故を招き易いという欠点があった。
[Problems to be Solved by the Invention] By the way, in internal diameter machining using the conventional boring tool described above, the cutting edge portion 2 and neck portion 3 of the boring tool are supported in a so-called cantilever manner protruding from the tool gripping portion of the machine tool. During cutting, chatter vibration is extremely likely to occur in the area from the cutting edge 2 to the neck 3, which can lead to accidents such as deterioration of the surface roughness of the cutting surface and breakage of the cutting edge. The disadvantage was that it was easy to invite

このような欠点を解消せんとして、従来より、首部3と
シャンク4とを超硬合金で一体化して刃先部2とロウ付
けしたり、あるいは首部3の直径dlに比してシャンク
4の直径dtをなるべく大きく形成するなど、工具剛性
やシャンク4の取付剛性の向上を図ることによってびび
り振動を押さえ込もうとする試みがなされていた。しか
しながら、これらの手段では、剛性がある一定限度を超
えろともはや剛性を向上させてもびびり振動が期待した
程減少せず、その効果に一定の限界か存7Eするという
問題があった。また、超硬合金の多用により原料コスト
が著しく上昇するという欠点もあった。
In an attempt to overcome these drawbacks, the neck 3 and shank 4 have conventionally been integrated with cemented carbide and brazed to the cutting edge 2, or the diameter dt of the shank 4 has been made smaller than the diameter dl of the neck 3. Attempts have been made to suppress chatter vibration by increasing tool rigidity and mounting rigidity of the shank 4, such as by making the shank as large as possible. However, with these means, there is a problem that once the stiffness exceeds a certain limit, chatter vibration is no longer reduced as expected even if the stiffness is improved, and there is a certain limit to its effectiveness. Another drawback was that the heavy use of cemented carbide significantly increased raw material costs.

この発明は、このような背景の下になされたもので、従
来とは異なる新規な構造を有した防振性能に優れる中ぐ
りバイトを提供することを目的とする。
The present invention was made against this background, and an object of the present invention is to provide a boring tool having a novel structure different from conventional ones and having excellent vibration-proofing performance.

[課題を解決するための手段] 上記課題を解決するために、この発明の中ぐりバイトは
、首部のシャンク軸線と直交する方向の断面視における
断面積を、シャンクの上記断面視における断面積よりら
大きくした乙のである。
[Means for Solving the Problems] In order to solve the above problems, the boring tool of the present invention has a cross-sectional area of the neck in a cross-sectional view perpendicular to the shank axis, which is smaller than the cross-sectional area of the shank in the above-mentioned cross-sectional view. This is the one that was made larger.

この場合、首部の上記断面視における断面形状は適賞定
めて良いが、その直径が、刃先部のシャンク軸線方向の
正面視に才3けるシャンク軸線から切刃先端までの距離
Sに対してl 6S〜1.9Sの範I用内の円形に形成
することが好適である。また、0部の長さについては、
シヤンク4III線方向における切刃の先端から首部の
基端までの距離Qが、上記距離Sに対して6S〜IOs
の範囲にあるように定めることが好適である。
In this case, the cross-sectional shape of the neck in the above-mentioned cross-sectional view may be determined as appropriate, but the diameter is l with respect to the distance S from the shank axis to the tip of the cutting blade when viewed from the front in the direction of the shank axis of the cutting edge. It is preferable to form it in a circular shape within the range I of 6S to 1.9S. Also, regarding the length of part 0,
Shank 4III The distance Q from the tip of the cutting blade to the base of the neck in the line direction is 6S to IOs with respect to the above distance S.
It is preferable to set it within the range of .

[作用 ] 上記構成によれば、首部の断面積がシヤンクの断面積よ
りら大きく定められているために、当該中ぐりバイトを
工作機械に片持ち支持の状態で装着した際に支持側とな
るシャンク側の剛性が首部側よりし低下し、全体の構造
は各部の質量や剛性(換言すればバネ定数)に応じて兄
なる振動が生じ易い柔軟構造となる。
[Function] According to the above configuration, since the cross-sectional area of the neck is set larger than the cross-sectional area of the shank, it becomes the support side when the boring tool is mounted on a machine tool in a cantilevered state. The rigidity of the shank side is lower than that of the neck side, and the overall structure becomes a flexible structure that is prone to vibration depending on the mass and rigidity (in other words, the spring constant) of each part.

ここにおいて、上記構成によれば、首部の断面積がシャ
ンク側よりも大きくて首部の単位長さ当たりの質量がシ
ャンク側よりし大きいから、これらの接合部において振
動が不連続となる。このため、切削抵抗の変動に伴って
刃先部に生じた振動は、シャンクまで一様に伝達されず
、この結果、首部とシャンクとの接合部を境として位相
や周波数が異なる振動が生じ、これらの振動の干渉によ
りびびり振動の成長が阻止される。
Here, according to the above configuration, the cross-sectional area of the neck portion is larger than that of the shank side, and the mass per unit length of the neck portion is larger than that of the shank side, so that vibration is discontinuous at these joints. Therefore, vibrations generated at the cutting edge due to fluctuations in cutting resistance are not uniformly transmitted to the shank, and as a result, vibrations with different phases and frequencies occur at the joint between the neck and shank. The growth of chatter vibration is inhibited by the interference of the vibrations.

[実施例] 以下、第1図ないし第3図を参照して、本発明の詳細な
説明する。
[Example] The present invention will be described in detail below with reference to FIGS. 1 to 3.

第り図に示すように、本実流ρjの中ぐりバイトは、先
端の一側部にチップlOが装着された刃先部11の基端
側に、円柱状をなす首部12及び略円柱状をなすシャン
ク13が順次形成されてなるしのである。
As shown in Fig. 2, the boring tool of this actual flow ρj has a cylindrical neck portion 12 and a substantially cylindrical neck portion on the proximal end side of a cutting edge portion 11 with a tip lO attached to one side of the tip. The eggplant shank 13 is formed in sequence.

第1図ないし第3図に示すように、上記チップ10は、
超硬合金を平面視略菱形をなす板状に成形してなるもの
で、対向する二の角部に形成された切刃14のいずれか
一方が上記刃先部!1の先端及び外周から突出された状
態で、かつ、そのすくい面10aに正のすくい角か与え
られた状態で刃先illに着脱自在に装着されている。
As shown in FIGS. 1 to 3, the chip 10 includes:
It is made by molding cemented carbide into a plate shape that is approximately rhombic in plan view, and one of the cutting edges 14 formed at the two opposing corners is the above-mentioned cutting edge! It is detachably attached to the cutting edge ill in a state in which it protrudes from the tip and outer periphery of the blade 1 and has a positive rake angle on its rake face 10a.

そして、上記切刃14の高さは、当該チップlOの側面
視(第3図)において、上記シャンク13の軸線Oとほ
ぼ同一高さに定められている。
The height of the cutting edge 14 is set to be substantially the same as the axis O of the shank 13 when viewed from the side of the tip IO (FIG. 3).

上記刃先部11は、円柱体の一部に、当該中ぐりバイト
の先端及び上方に向かって開口するデツプポケットI5
が形成されてなるものである。
The cutting edge portion 11 has a deep pocket I5 that opens toward the tip and upward of the boring tool in a part of the cylindrical body.
It is formed by the formation of

このチップポケット15は、上記チップ10のすくい面
10aに沿って成長する切屑を滞りなく排出するための
もので、その壁面は、上記シャンク13の軸線Oとほぼ
同一の高さに設定された先端部から刃先部!■の基端に
向かうに従って漸次上方に傾斜する傾斜面状に形成され
ている。また、チップポケット15の上記チップIOの
後端に臨む位置には、上記首部12の先端外周面のチッ
プ10に臨む側に開口するぬすみ部16か形成され、こ
のぬすみ部16の底面16aは、上記チップすくい面1
0aと路面−に設定されている。
This chip pocket 15 is for smoothly discharging chips growing along the rake surface 10a of the chip 10, and its wall surface is formed at a tip end set at approximately the same height as the axis O of the shank 13. From the part to the cutting edge part! (2) It is formed in the shape of an inclined surface that gradually slopes upward toward the base end. Further, a recess 16 is formed at a position of the chip pocket 15 facing the rear end of the chip IO, which opens on the side facing the chip 10 on the outer circumferential surface of the distal end of the neck portion 12, and the bottom surface 16a of the recess 16 is as follows: Above chip rake face 1
It is set to 0a and road surface -.

また、上記首部12は上記刃先部11と同一径かつ同軸
の円柱体で、その直径dtは後述するシャンク13の直
径dlよりも大きく定められている。
Further, the neck portion 12 is a cylindrical body having the same diameter and the same axis as the cutting edge portion 11, and its diameter dt is set larger than the diameter dl of the shank 13, which will be described later.

この首部12の直径dlは、切削条件等に応じて適宜定
めて良いが、なるべくは上記刃先部!【の上記シャンク
1IilII線方向の正面視における1:記シャンク軸
線Oから上記切刃14の先端までの距離sに対して1.
6s〜1.98の範囲に定めることか好ましい。首部1
2の直径dlが1.esに満たないと、後述する質量変
化によるびびり振動回避効果が十分に発揮されないおそ
れがあり、他方直径dlが1.9sを超えると、首部1
2か被削材の穴部に挿入された際の首部!2外周面と上
記穴部内壁との間の隙間が不足して、上記チップポケッ
ト15から首部12の周面を経由して排出される切屑の
排出性が悪化するおそれが生じるからである。
The diameter dl of this neck portion 12 may be determined as appropriate depending on the cutting conditions, etc., but preferably the diameter dl of the above-mentioned cutting edge portion! [1] when viewed from the front in the direction of the shank 1IilII: 1 for the distance s from the shank axis O to the tip of the cutting blade 14.
It is preferable to set it in the range of 6s to 1.98. Neck 1
The diameter dl of 2 is 1. If the diameter dl exceeds 1.9s, the effect of avoiding chatter vibration due to mass change, which will be described later, may not be sufficiently exhibited.On the other hand, if the diameter dl exceeds 1.9s, the neck
2. The neck when inserted into the hole of the workpiece! This is because there is a possibility that there is insufficient clearance between the outer peripheral surface of the chip pocket 15 and the inner wall of the hole, which may deteriorate the evacuation of chips discharged from the chip pocket 15 via the peripheral surface of the neck portion 12.

また、首部12の長さは、切削対象となる被削材の穴部
の軸方向の長さに応じて適宜定めて良いが、上記切刃1
4の先端から首部12の基端までのシャンク軸線方向に
おける距離Qが6S〜10Sの範囲となるように定める
ことか好ましい。距離Qが68に満たないと、全体を柔
軟構造と(7たことによる防振効果が十分に発揮されな
いおそれが生じ、他方、距離Ul l OSを超えろと
首部I2の切削抵抗による撓み量が大きくなり過ぎて加
工情度が劣化するおそれが生じるからである。
Further, the length of the neck portion 12 may be determined as appropriate depending on the length in the axial direction of the hole of the workpiece to be cut.
It is preferable that the distance Q in the shank axis direction from the distal end of the neck part 4 to the proximal end of the neck part 12 be set in the range of 6S to 10S. If the distance Q is less than 68, there is a risk that the vibration-proofing effect due to the flexible structure (7) will not be sufficiently exerted. This is because there is a risk that the machining quality will deteriorate if the temperature becomes too high.

そして、上記シャンク13は、その直径dlが上記首部
12の直径dlよりも小さい円柱体の外周面に、当該シ
ャンク13の軸方向はぼ全長に渡って延びる切欠部17
を形成してムるもので、図示せぬホルダに嵌装されて工
作機械の工具把持部に装着されるようになっている。
The shank 13 has a notch 17 on the outer peripheral surface of a cylindrical body whose diameter dl is smaller than the diameter dl of the neck 12, which extends over almost the entire length of the shank 13 in the axial direction.
It is designed to be fitted into a holder (not shown) and attached to a tool gripping part of a machine tool.

以上のように構成された中ぐりバイトを用いて被削材の
内径加工を行うには、上述した従来の中ぐりバイトど同
様に、上記シャンク13をホルダを介して工作機械の工
具把持部に装着し、この後、工作機械のワーク把持部に
把持された被削材をその穴部の軸線回りに回転させつつ
、上記工作機械の工具把持部とワーク把持部との間に上
記シャンク13の軸線方向の相対運動を与えて上記刃先
11及び首部12を上記被削材の穴部H(第2図参照)
に挿入してゆくことにより、チップ10の切刃14で被
削材の穴部Hを切削して所定寸広に拡径してゆく。
In order to perform internal diameter machining of a workpiece using the boring tool configured as described above, the shank 13 is attached to the tool gripping part of the machine tool via the holder, as in the conventional boring tool described above. After that, while rotating the workpiece gripped by the workpiece gripping part of the machine tool around the axis of the hole, the shank 13 is inserted between the tool gripping part of the machine tool and the workpiece gripping part. A relative movement in the axial direction is applied to move the cutting edge 11 and neck 12 into the hole H of the workpiece (see Figure 2).
As the cutting edge 14 of the tip 10 is inserted into the hole H of the workpiece, the hole H is expanded to a predetermined size.

このとき、上記チップIOの切刃I4と被削材との間に
は切削抵抗の変動に伴って振動が発生する。この場合、
上述した従来の中ぐりバイトのように全体の剛性が高い
ものでは、全体がひとつの剛体として振動するため、切
削抵抗の変動に起因する振動が刃先部11から首部12
を介してシャンク13まで一様に伝達されて、中ぐりバ
イトにおける上記工作機械の工具把持部から突き出され
た部分、すなわち、上記刃先部11から4部12にかけ
ての部分(以下、突き出し部分と略称する。
At this time, vibration occurs between the cutting edge I4 of the tip IO and the workpiece due to fluctuations in cutting resistance. in this case,
In the conventional boring tool mentioned above, which has high overall rigidity, the entire body vibrates as one rigid body, so vibrations caused by fluctuations in cutting resistance are transmitted from the cutting edge 11 to the neck 12.
is uniformly transmitted to the shank 13 via do.

)にびびり振動か発生する。) Chatter vibration occurs.

ところが、本実施例の中ぐりバイトにおいては、首部1
2のシャンク軸線Oと直交する方向の断面積をシャンク
13のそれよりも大きく定めているため、シャンク13
側の剛性が首部12側よりも低下し、全体の構造は、各
部の質量、あるいは剛性(換言すればバネ定数)に応じ
て振動数や位相が異なる振動が発生し易い柔軟構造とな
る。
However, in the boring tool of this embodiment, the neck 1
Since the cross-sectional area of the shank 13 in the direction perpendicular to the shank axis O of the shank 13 is set larger than that of the shank 13, the shank 13
The rigidity of the side is lower than that of the neck 12 side, and the entire structure becomes a flexible structure that tends to generate vibrations with different frequencies and phases depending on the mass or rigidity (in other words, spring constant) of each part.

ここにおいて、本実施例の中ぐりバイトでは、首部12
の単位長さ当たりの質量がシャンク13よすも大きいか
ら、これらの接合部を挟んで振動が不連続となる。この
ため、切削抵抗の変動に伴って刃先部IIに生じた振動
は、シャンク13まで一様に伝達されず、この結果、首
部とシャンクとの接合部を境として位相や周波数が異な
る振動が生じ、これらの振動の干渉によってびびり振動
の成長が阻止されるのである。
Here, in the boring tool of this embodiment, the neck portion 12
Since the mass per unit length of the shank 13 is larger than that of the shank 13, the vibration becomes discontinuous across these joints. Therefore, vibrations generated in the cutting edge II due to fluctuations in cutting resistance are not uniformly transmitted to the shank 13, and as a result, vibrations with different phases and frequencies are generated at the joint between the neck and the shank. , the growth of chatter vibration is inhibited by the interference of these vibrations.

また、本実施例の中ぐりバイトによれば、首部12の直
径dlがシャンク径d、よりも大きいために、首部端面
12aをホルダ端面に突き当てることにより、切削中に
中ぐりバイトの軸方向シャンク側へ向けて加わる送り分
力を受けILめて、切刃14のシヤンク軸線方向への移
動を確実に拘束することができる。
Further, according to the boring tool of this embodiment, since the diameter dl of the neck 12 is larger than the shank diameter d, by abutting the neck end surface 12a against the holder end surface, the axial direction of the boring tool can be adjusted during cutting. By receiving the feed force IL applied toward the shank side, movement of the cutting blade 14 in the shank axis direction can be reliably restrained.

なお、本実施例においては、特にデツプ10を着脱自在
に装着しているが、本発明はこれに限るものではなく、
ロウ付げによるもの、あるいは切刃からシャンクまでの
すべて一体成形するものであっても当然に適用されるも
のである。
In addition, in this embodiment, the dip 10 is attached detachably, but the present invention is not limited to this.
Naturally, it is applicable even if it is made by brazing or if everything from the cutting edge to the shank is integrally molded.

また、本実施例では特に首部12の断面形状を円形とし
たが、本発明はこれに限るものではなく、多角形状など
適宜変形可能である。
Further, in this embodiment, the cross-sectional shape of the neck portion 12 is particularly circular, but the present invention is not limited to this, and can be appropriately modified such as a polygonal shape.

さらに、以」二の実施例において(よ、チップポケット
15の形状については、従来の中ぐりバイトと特に際立
った差異を設けていないが、特に、本実施例では首部1
2の直径dlか大きく、首部12の外周面側からの切屑
排出性が若干劣る場合もあることから、その対策として
首部12に切屑排出用の溝等を設けても良い。以下、首
部I2の幾つかの変形例を第4図ないし第19図を参照
して説明する。
Furthermore, in the second embodiment, the shape of the chip pocket 15 is not particularly different from that of the conventional boring tool, but in this embodiment, the neck 15 is
If the diameter dl of the neck 12 is large, the ability to discharge chips from the outer circumferential surface of the neck 12 may be slightly inferior, so as a countermeasure, a groove for discharging chips or the like may be provided in the neck 12. Hereinafter, some modifications of the neck portion I2 will be explained with reference to FIGS. 4 to 19.

(第1変形例) 第4図ないし第7図に示す変形例は、上記首部12の外
周面に、上記デツプポケットI5のぬすみ部16に開口
し、かつ、首部!2の先端から基端側に向かうに従い、
工具先端側からみて時計方向に漸次捩れる捩れ溝20を
形成したしのである。
(First Modification) The modification shown in FIGS. 4 to 7 has an opening in the outer circumferential surface of the neck 12 in the hollow part 16 of the depth pocket I5, and a neck! From the tip of 2 toward the proximal side,
A torsion groove 20 is formed that gradually twists clockwise when viewed from the tool tip side.

この捩れ)酵20は、首部!2のシャンク軸線Oと直交
する方向の断面視(第7図参照)において、首部12の
中心近傍から外周面に向かってほぼ一直線に延びる第1
の壁部21と、この第1の壁部21の内方側の端部を始
点として当該第1の壁部21から離間する測へ湾111
Jしつつ外周面に向かって延びる第2の壁部22とから
構成され、上記第1の壁部21は、ぬずみ部16の底面
に連続してチップずくい面10aと而−に形成されてい
る。
This twist) fermentation 20 is the neck! In a cross-sectional view in a direction perpendicular to the shank axis O of No. 2 (see FIG. 7), the first portion extends in a substantially straight line from near the center of the neck portion 12 toward the outer circumferential surface.
a wall 21 and a bay 111 spaced apart from the first wall 21 starting from the inner end of the first wall 21;
and a second wall portion 22 extending toward the outer circumferential surface while forming a groove, and the first wall portion 21 is continuous with the bottom surface of the recessed portion 16 and is formed between the chip recess surface 10a and the recessed portion 16. ing.

ここで、捩れ溝20の断面1広は、被削材のt4質等に
応じて適宜定めて良いが、捩れ溝20を形成することに
よって首部12の断面積がシャンク13の断面積を下回
らないように注意を要する。
Here, the width of the cross section of the torsion groove 20 may be determined as appropriate depending on the T4 quality of the work material, etc., but by forming the torsion groove 20, the cross-sectional area of the neck 12 will not be less than the cross-sectional area of the shank 13. Please be careful.

また、捩れ溝の捩れ角、捩れ方向は、チップIOのすく
い角に応じて適宜定めて良い。
Further, the twist angle and twist direction of the twist groove may be determined as appropriate depending on the rake angle of the chip IO.

以上の変形例においては、切刃14で生成されてチップ
ポケット15のぬすみ部16に排出される切屑が、首部
12の外周面側に排出されることなく、捩れ溝20を介
して首部12の基端側へと排出されるため、首部12の
周面と被削材の穴部内壁との間を切屑が通過する場合に
比して、切屑排出性が顕著に向上する。このため、特に
首部t2の直径d、か太い中ぐりバイトにおいてら、切
屑詰まり等による切削面の面粗度の劣化などの事故を未
然に回避できるという効果を奏する。
In the above modification, the chips generated by the cutting blade 14 and discharged to the hollow part 16 of the chip pocket 15 are not discharged to the outer peripheral surface side of the neck part 12, but are passed through the torsion groove 20 to the neck part 12. Since the chips are discharged toward the base end side, the chip discharge performance is significantly improved compared to the case where the chips pass between the circumferential surface of the neck portion 12 and the inner wall of the hole of the workpiece. For this reason, it is possible to avoid accidents such as deterioration of the surface roughness of the cut surface due to clogging of chips, etc., especially in the case of a boring tool with a thick diameter d of the neck portion t2.

(第2変形例) 第8図ないし第11図に示す変形例(よ、上記首部12
外周而の上記チップ10に連なる側に、首部12の軸方
向はぼ全長に渡って延び、かつ上記チップポケット15
のぬすみ叩!6に開口する切欠部30を形成したもので
ある。
(Second Modification) Modifications shown in FIGS. 8 to 11 (the neck portion 12
On the side of the outer periphery connected to the chip 10, the neck part 12 extends over almost the entire length in the axial direction, and has the chip pocket 15.
Nosumi hit! A notch 30 opening at 6 is formed.

ここで、上記切欠部30の切欠量、すなわち、首部12
の細線と直交する断面視(第11図)において、首部1
2の外周而に沿って描いた円弧nに対する切欠部30の
径方向への後退mmは、被削材の材質等に応じて適宜定
めて良いが、と述の第1変形例と同様に首部12の断面
積がシヤンク13の断面積よりも小さくならない[1囲
で定める必要がある。
Here, the notch amount of the notch 30, that is, the neck 12
In the cross-sectional view (Fig. 11) perpendicular to the thin line of
The recess mm in the radial direction of the notch 30 with respect to the arc n drawn along the outer periphery of the cutout 30 may be determined as appropriate depending on the material of the workpiece, etc.; The cross-sectional area of shank 12 must not be smaller than the cross-sectional area of shank 13 [need to be determined by one circle.

本変形例によれば、上記ぬすみ部!6に排出される切屑
が、切欠部16と被削材の穴部内壁との間の隙間を介し
て首部120基端側へ排出されるので、上述の第1変形
例と同様に切屑排出性が向上するという効果を奏すると
共に、その加工ら単に首部12を一方向に切り欠くとい
う一工程でまかない得ろものであるため、上述の第1変
形例よりも容易に形成できるという効果を奏する。
According to this modification, the above-mentioned hollow part! 6 is discharged to the proximal end of the neck 120 through the gap between the notch 16 and the inner wall of the hole of the workpiece, so the chip discharge performance is improved as in the first modification example described above. This has the advantage that the neck portion 12 is improved in one direction, and the neck portion 12 can be formed in one step by simply cutting out the neck portion 12 in one direction, so that it can be formed more easily than the first modification described above.

(第3変形例) 第12図ないし第15図に示す変形例は、上記首部12
の外周而に、先端が上記ぬすみ部16に開口し、かつ首
部12の先端から基端側へ向かって直線状に延在する溝
部40を形成してなるものである。
(Third Modification) In the modification shown in FIGS. 12 to 15, the neck 12
A groove portion 40 is formed on the outer periphery of the neck portion 12, the tip of which opens into the recessed portion 16 and extends linearly from the tip of the neck portion 12 toward the proximal end.

この溝部40は、上記ぬすみ部16と而−をなす平坦な
第1の壁部41と、この第1の壁部41と直交する方向
からの平面視において、首部12の先端から基端側に向
かうに従って漸次ンヤンク袖線Oから離間する方向に傾
斜する第2の壁部42とから構成され、各壁部41.4
2の形状、寸法は、上記第1、第2変形例と同様に、首
部12の断面積がシャンク13の断面積を下回らムい範
囲で定める必要がある。
This groove portion 40 extends from the distal end of the neck portion 12 to the proximal end side in a plan view from a direction perpendicular to the flat first wall portion 41 that forms the space between the hollow portion 16 and the first wall portion 41. and a second wall portion 42 that is inclined in a direction that gradually separates from the yank sleeve line O as the direction increases, and each wall portion 41.4
The shape and dimensions of 2 need to be determined within a range such that the cross-sectional area of the neck portion 12 is not less than the cross-sectional area of the shank 13, as in the first and second modified examples.

このような変形例によれば、溝部40を介して切屑が排
出されるので、上記第1変形例と同様の効果を奏する池
、溝部40を形成することによる首部12の断面積の減
少が首部12の先端側から基端側に向かうに従って小さ
くなり、結果と(、て首部12全体の質量の減少か上述
の第1、第2変形例よりも小さくて済むので、溝部40
を形成することによる首部12のびびり振動回避効果の
l員失か最小で済むという効果を奏する。
According to this modification, chips are discharged through the groove 40, so that the cross-sectional area of the neck 12 is reduced by forming the pond and groove 40, which has the same effect as the first modification. The groove portion 40 becomes smaller as it goes from the distal end to the proximal end of the neck portion 12, and as a result, the mass of the entire neck portion 12 is reduced compared to the first and second modifications described above.
This has the effect of minimizing the loss of chatter vibration avoidance effect of the neck portion 12 by forming the neck portion 12.

なお、この場合、首部12の質量に余裕がある場合には
、第16図ないし第19図に示すように、上記第2の壁
部42をシャンク細線Oと平行ム方向に延びる平坦面と
して、溝幅一定の溝部40を形成しても良い。
In this case, if the neck portion 12 has sufficient mass, the second wall portion 42 may be formed as a flat surface extending in the direction parallel to the thin shank wire O, as shown in FIGS. 16 to 19. A groove portion 40 having a constant groove width may be formed.

[実験例] 次に、実験例を挙げて本発明の効果を明らかにする。[Experiment example] Next, an experimental example will be given to clarify the effects of the present invention.

■実験例・・・・・・上記実施例の中ぐりバイトを用意
し、これを第20図に示すようにホルダhを介して旋盤
に装着して被削tオWの穴部Hの内径加工を行った。
■Experimental example: Prepare the boring tool of the above example, and attach it to a lathe via a holder h as shown in Fig. 20. Processed.

このとき、ホルダh端面から切刃14までの突出部71
1.とンヤンクi¥DC第1図における(j、)との比
1./Dを3通り変化させ、各々の場合について、びび
り笥の身圧レベル、仕上げ而の面粗度、真円度の測定と
、仕上げ而の目視評価を行った。
At this time, the protrusion 71 from the end surface of the holder h to the cutting edge 14
1. The ratio of (j,) in Toyank i\DC Figure 1 is 1. /D was varied in three ways, and for each case, the body pressure level of the chattering bowl, the surface roughness of the finished product, and the roundness were measured, and the finished product was visually evaluated.

この結果を第1表に示す。The results are shown in Table 1.

■比較例・・・第24図ない(、第26図に示す従来の
中ぐりバイトをm0し、旋盤に装着して内径加工をiテ
った。このとき、実験例と同様に、突出量りとシャンク
径りとの比L / Dを3通り変化させ、それぞれにつ
いてびびり音の音圧レベル、仕上げ面の面Ifi度及び
真円度の測定と、仕上げ面の目視評1i15を行った。
■Comparative example: Figure 24 (not shown) A conventional boring tool shown in Figure 26 was set to m0, mounted on a lathe, and subjected to internal machining. The ratio L/D between the diameter and the shank diameter was changed in three ways, and the sound pressure level of the chatter sound, the surface Ifi degree and roundness of the finished surface were measured, and the finished surface was visually evaluated 1i15.

この結果を第1表に示す。The results are shown in Table 1.

f、i に、上記実施例及び比較例においてびびり音の
ぎ圧レベルの測定周波数は4H[zに設定した。
In f, i, the measurement frequency of the chatter pressure level in the above Examples and Comparative Examples was set to 4Hz [z].

これは、通常の切削条件で中ぐり加工を行ったとき、4
kHz近傍のびびり音が生じることが多いためである。
This means that when boring under normal cutting conditions, 4
This is because chatter noise in the vicinity of kHz is often generated.

また、実験例及び比較例における上記L/Dの値は、第
1表に示すように設定した。さらに、実験例及び比較例
における中ぐりバイトの各部寸法、被削材の材質及び寸
法、切削条件等は以下に示す通りである。
Further, the values of L/D in the experimental examples and comparative examples were set as shown in Table 1. Further, the dimensions of each part of the boring tool, the material and dimensions of the workpiece, cutting conditions, etc. in the experimental examples and comparative examples are as shown below.

・シャンク軸線から切刃までの距H8 ・・・・・・実験例 8II1m ・・・・・・比較例 8mm ・首部の直径d、    ・・・・・・実験例 14.
5mm・・・・・・比較例 11.5+nm ・シャンク直径d、  ・・・・・・実験例 12mm
・・・・・比較例 12I ・被削材の穴径Dw・・・・・・18+nm・被削材の
穴深さd、・・・・・・20+++m・被削材材質・・
・・・・S0M440(硬度)(RC28)・送り速度
・・・・・・70m/min。
- Distance from the shank axis to the cutting edge H8...Experimental example 8II1m...Comparative example 8mm -Neck diameter d,...Experimental example 14.
5mm...Comparative example 11.5+nm ・Shank diameter d,...Experimental example 12mm
...Comparative example 12I ・Hole diameter Dw of workpiece material...18+nm ・Hole depth d of workpiece material...20+++m ・Material of workpiece material...
...S0M440 (hardness) (RC28), feed speed...70m/min.

・送り量−・−・0 、1 ram/ rev。・Feed amount -・-・0, 1 ram/rev.

・切り込みjla・・・・・・0.5+nm以下余白 第 表 第1表から明らかなように、本発明の中ぐりバイトによ
れば、従来の中ぐりバイトよりもびびり振動の発生が効
果的に抑制されるので、切削中のびびり音が減少し、ま
た仕上げ面の面粗度、真円度か向上することが確認され
た。
・Cut jla...0.5+nm or less Margin As is clear from Table 1, the boring tool of the present invention is more effective in reducing chatter vibration than the conventional boring tool. As a result, it was confirmed that the chatter noise during cutting was reduced, and the surface roughness and roundness of the finished surface were improved.

[発明の効果] 以上説明したように、この発明によれば、首部断面積を
シャンクの断面積よりも大きく定めたために、シャンク
側の剛性が首部制よりも低下して全体の構造が柔軟構造
となり、しかも、首部の単位長さ当たりの質量がシャン
クのそれよりも大きいから、これらの接合部を挟んで振
動が不連続となる。このため、切削抵抗の変動に伴って
刃先部に生じた振動は、シャンクまで一様に伝達されず
、この結果、首部とシャンクとの接合部を境として位相
や周波数が異なる振動が生じ、これらの振動の干渉によ
ってびびり振動の成長が阻止されるという優れた効果を
奏する。
[Effects of the Invention] As explained above, according to the present invention, since the cross-sectional area of the neck is set larger than the cross-sectional area of the shank, the rigidity of the shank side is lower than that of the neck, and the overall structure becomes a flexible structure. Moreover, since the mass per unit length of the neck is larger than that of the shank, the vibration becomes discontinuous across these joints. Therefore, vibrations generated at the cutting edge due to fluctuations in cutting resistance are not uniformly transmitted to the shank, and as a result, vibrations with different phases and frequencies occur at the joint between the neck and shank. This has the excellent effect of inhibiting the growth of chatter vibration due to the interference of the vibrations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の一実施例を示すもので、
第1図は平面図、第2図は第1図における■矢視図、第
3図は第1図における■矢視図、第4図ないし第7図は
上記実施例の第1変形例を示す図で、第4図はその平面
図、第5図はその側面図、第6図は第4図中III −
In線における断面図、第7図は第4図中IV−IV線
における断面図、第8図ないし第11図は上記実施例の
第2変形例を示す図で、第8図はその平面図、第9図は
その側面図、第1O図は第8図中1111における断面
図、第11図は第8図中1111−Vl線における断面
図、 第12図ないし第15図は上記実施例の第3変形例を示
す図で、第12図はその平面図、第13図はその側面図
、第14図は第12図中■−■線における断面図、第1
5図は第12図中■−■線における断面図、 第16図ないし第19図は上記第3変形例をさらに変形
した例示す図で、第16図はその平面図、第17図はそ
の側面図、第18図は第16図中IXIX線における断
面図、第19図は第16図中X−X線における断面図、 第20図は実験例における切削形態を示す図第21図な
いし第23図は従来例を示す図で、第21図(よその平
面図、第22図はその正面図、第23図はその側面図、 第24図ないし第26図は他の従来例を示す図で、第2
4図はその平面図、第25図はその正面図、第26図は
その側面図である。 10・・・・・・スローアウェイチップ、2・・・・刃
先部、12・・・・首部、13・・・・・・ンヤンク、
14切刃。
1 to 3 show an embodiment of the present invention,
1 is a plan view, FIG. 2 is a view in the direction of the ■ arrow in FIG. 1, FIG. 3 is a view in the direction of the ■ arrow in FIG. 4 is a plan view thereof, FIG. 5 is a side view thereof, and FIG. 6 is a section III-- in FIG.
7 is a sectional view taken along line IV-IV in FIG. 4, FIGS. 8 to 11 are views showing a second modification of the above embodiment, and FIG. 8 is a plan view thereof. , FIG. 9 is a side view thereof, FIG. 1O is a sectional view taken at 1111 in FIG. 8, FIG. 11 is a sectional view taken along line 1111-Vl in FIG. 12 is a plan view thereof, FIG. 13 is a side view thereof, FIG. 14 is a sectional view taken along line ■-■ in FIG. 12, and FIG.
5 is a sectional view taken along the line ■-■ in FIG. 12, FIGS. 16 to 19 are views showing further modifications of the third modification, FIG. 16 is a plan view thereof, and FIG. 17 is a diagram thereof. 18 is a sectional view taken along line IXIX in FIG. 16, FIG. 19 is a sectional view taken along line X-X in FIG. 16, and FIG. 20 is a diagram showing the cutting form in an experimental example. Figure 23 shows a conventional example; Figure 21 (an outside plan view; Figure 22 a front view thereof; Figure 23 a side view thereof; Figures 24 to 26 show other conventional examples). So, the second
4 is a plan view thereof, FIG. 25 is a front view thereof, and FIG. 26 is a side view thereof. 10...Throwaway tip, 2...Blade tip, 12...Neck, 13...Yank,
14 cutting blades.

Claims (3)

【特許請求の範囲】[Claims] (1)先端の一側部に切刃が設けられた刃先部の基端側
に首部が形成され、この首部の基端側に軸状をなすシャ
ンクが形成されてなる中ぐりバイトにおいて、 上記首部の上記シャンク軸線と直交する方向の断面視に
おける断面積を、上記シャンクの上記断面視における断
面積よりも大きくしたことを特徴とする中ぐりバイト。
(1) A boring bit in which a neck is formed on the proximal side of the cutting edge having a cutting edge on one side of the tip, and a shaft-shaped shank is formed on the proximal side of the neck, the above-mentioned A boring tool characterized in that a cross-sectional area of the neck in a cross-sectional view in a direction orthogonal to the shank axis is larger than a cross-sectional area of the shank in the cross-sectional view.
(2)上記首部の上記シャンク軸線と直交する方向にお
ける断面が円形に形成され、この首部断面の外周円弧の
直径が、上記刃先部の上記シャンク軸線方向の正面視に
おけるシャンク軸線から上記切刃先端までの距離Sに対
して1.6S〜1.9Sの範囲に定められていることを
特徴とする請求項1記載の中ぐりバイト。
(2) A cross section of the neck in a direction perpendicular to the shank axis is formed circularly, and the diameter of the outer circumferential arc of the neck cross section is from the shank axis in the front view of the cutting edge in the shank axis direction to the tip of the cutting blade. 2. The boring tool according to claim 1, wherein the distance S is set in a range of 1.6S to 1.9S.
(3)上記シャンク軸線方向における上記切刃の先端か
ら上記首部の基端までの距離lが、上記距離Sに対して
6S〜10Sの範囲に定められていることを特徴とする
請求項1又は請求項2記載の中ぐりバイト。
(3) A distance l from the tip of the cutting blade to the base end of the neck in the axial direction of the shank is set in a range of 6S to 10S with respect to the distance S. A boring tool according to claim 2.
JP1163301A 1989-06-26 1989-06-26 Boring tool Pending JPH0332504A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP1163301A JPH0332504A (en) 1989-06-26 1989-06-26 Boring tool
KR1019900006946A KR910000280A (en) 1989-06-26 1990-05-15 Boring bite
DE69028998T DE69028998T2 (en) 1989-06-26 1990-06-26 Boring bar tool
EP94104604A EP0609908B1 (en) 1989-06-26 1990-06-26 Boring bar tool
EP90112122A EP0405443B1 (en) 1989-06-26 1990-06-26 Boring bar tool
US07/544,176 US5156503A (en) 1989-06-26 1990-06-26 Boring bar tool
DE69013411T DE69013411T2 (en) 1989-06-26 1990-06-26 Rod for drilling.
US07/917,189 US5261767A (en) 1989-06-26 1992-07-22 Boring bar tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163301A JPH0332504A (en) 1989-06-26 1989-06-26 Boring tool

Publications (1)

Publication Number Publication Date
JPH0332504A true JPH0332504A (en) 1991-02-13

Family

ID=15771226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163301A Pending JPH0332504A (en) 1989-06-26 1989-06-26 Boring tool

Country Status (2)

Country Link
JP (1) JPH0332504A (en)
KR (1) KR910000280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185765A (en) * 2006-01-10 2007-07-26 Sandvik Intellectual Property Ab Boring bar for inner diameter turning
JP2009072885A (en) * 2007-09-21 2009-04-09 Honda Motor Co Ltd Boring tool, and boring machining method using the same
KR100971906B1 (en) * 2008-03-27 2010-07-22 임동수 Boring bar having eccentric cone shaped corner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621704A (en) * 1979-07-25 1981-02-28 Seiwa Seiki Kk Boring bar
JPS62208804A (en) * 1986-03-07 1987-09-14 Kobe Steel Ltd Boring tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621704A (en) * 1979-07-25 1981-02-28 Seiwa Seiki Kk Boring bar
JPS62208804A (en) * 1986-03-07 1987-09-14 Kobe Steel Ltd Boring tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185765A (en) * 2006-01-10 2007-07-26 Sandvik Intellectual Property Ab Boring bar for inner diameter turning
JP2009072885A (en) * 2007-09-21 2009-04-09 Honda Motor Co Ltd Boring tool, and boring machining method using the same
KR100971906B1 (en) * 2008-03-27 2010-07-22 임동수 Boring bar having eccentric cone shaped corner

Also Published As

Publication number Publication date
KR910000280A (en) 1991-01-29

Similar Documents

Publication Publication Date Title
US5779399A (en) Rotary cutting apparatus
KR102624246B1 (en) Turning inserts and methods
JP4540764B2 (en) Cutting tools
KR20210002497A (en) Turning insert
EP0405443B1 (en) Boring bar tool
JP4385519B2 (en) Cutting tools
JP2002066811A (en) Throwaway tip
EP3760350B1 (en) Metal cutting tool comprising a vibration damping member
JPH0332504A (en) Boring tool
WO1996003242A1 (en) Tool-bit holder
KR950013214B1 (en) Boring bar tool
JPS6393511A (en) Throwaway type rotary cutting tool
JP2002154003A (en) Cutting tool
JPH11226812A (en) Longitudinally feeding machining ta milling tool
KR950009951B1 (en) Borring bar tool
JPH0549408B2 (en)
JP3183716B2 (en) Indexable end mill
JPH068026A (en) Cutting by end mill
CN217595932U (en) Turning tool for processing inner hole deep groove
JP3188415B2 (en) Reamer and hole finishing method using the same
JP7496970B2 (en) Machining Tools
JP2001121307A (en) Cutting tool
JPH0332507A (en) Boring tool
JP4155364B2 (en) Throw-away milling tool for vertical feed
JPS61226202A (en) Throw way tip and holder thereof