JPH033215B2 - - Google Patents

Info

Publication number
JPH033215B2
JPH033215B2 JP7896881A JP7896881A JPH033215B2 JP H033215 B2 JPH033215 B2 JP H033215B2 JP 7896881 A JP7896881 A JP 7896881A JP 7896881 A JP7896881 A JP 7896881A JP H033215 B2 JPH033215 B2 JP H033215B2
Authority
JP
Japan
Prior art keywords
resist
vinylnaphthalene
materials
molecular weight
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7896881A
Other languages
Japanese (ja)
Other versions
JPS57192948A (en
Inventor
Yoshitake Oonishi
Takeshi Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7896881A priority Critical patent/JPS57192948A/en
Priority to DE8181109526T priority patent/DE3174780D1/en
Priority to EP81109526A priority patent/EP0051320B1/en
Publication of JPS57192948A publication Critical patent/JPS57192948A/en
Priority to US06/787,695 priority patent/US4592993A/en
Publication of JPH033215B2 publication Critical patent/JPH033215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は感放射線・粒子線材料、詳しくは電子
線、x線、r線、波長3000Å以下の深紫外線、も
しくは紫外線などの放射線又はイオンビームもし
くは中性子線などの粒子線に感応する高分子材料
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to radiation-sensitive/particle beam materials, specifically, radiation-sensitive materials such as electron beams, Concerning polymeric materials that are sensitive to

従来、集積回路、バブルメモリ素子などの微細
な加工を必要とする素子の製造には光を照射して
レジストパタンを形成するフオトリソグラフイの
技術が用いられているが、加工精度に光の波長オ
ーダーの限界があるため、深紫外線、x線、電子
線などの照射により更に微細なパタン形成を行う
技術が開発されすでに実用化されつつあることは
よく知られている。
Conventionally, photolithography technology, which forms a resist pattern by irradiating light, has been used to manufacture devices that require minute processing, such as integrated circuits and bubble memory devices, but the wavelength of the light depends on the processing accuracy. It is well known that due to the order limit, techniques for forming even finer patterns by irradiation with deep ultraviolet rays, x-rays, electron beams, etc. have been developed and are already being put into practical use.

電子線、x線または深紫外線などを照射してパ
タン形成を行うさいに用いられるレジストは、研
究の初期の段階ではフオトレジストが流用された
こともあつたが、近年は電子線、x線または深紫
外線の照射に適した材料の研究開発が内外で行わ
れており、すでに多くの文献があり、いくつかの
材料は製品として市販されている。
In the early stages of research, photoresists were sometimes used as resists for forming patterns by irradiating electron beams, x-rays, or deep ultraviolet rays, but in recent years, photoresists have been used to Research and development of materials suitable for deep ultraviolet irradiation is being carried out at home and abroad, and there are already many publications, and some materials are commercially available as products.

よく知られているように、レジストには、ポジ
型とネガ型とがあり、ポジ型は照射により溶剤に
易溶となり、現像処理によつて溶解除去され、未
照射部分のみが残存するパタンがえられるもので
ある。ネガ型は被照射部のレジストが不溶ないし
難溶となり、現像処理によつて被照射部が残存す
るパタンがえられる。すなわち、同一の図型を照
射した場合、レジストがネガ型かポジ型かによつ
て、照射パタンの像か、それの反転像がえられる
ので、目的によつて両型のレジストを使いわける
ことが有利である。
As is well known, there are two types of resist: positive type and negative type. Positive type resists become easily soluble in solvents when irradiated, and are dissolved and removed during development, resulting in a pattern in which only the unirradiated areas remain. It is something that can be obtained. In the negative type, the resist in the irradiated area becomes insoluble or hardly soluble, and a pattern in which the irradiated area remains is obtained by development. In other words, when the same pattern is irradiated, an image of the irradiation pattern or its inverse image can be obtained depending on whether the resist is negative or positive, so both types of resist can be used depending on the purpose. is advantageous.

電子ビームレジストのポジ型のものとしては、
ポリメチルメタクリレート、ポリブデソ−1−ス
ルフオン、ポリメチルイソプロペニルケトンなど
をはじめとして数多くの材料が提案されており、
ネガ型のものとしてはポリグリシジルメタクリレ
ート、グリシジルメタクリレートを含む共重合
物、エポキシ化ポリブタジエン、ポリジアリルオ
ルソフタレートなどをはじめとし、これも数多く
の材料が提供されている。
As a positive type of electron beam resist,
Many materials have been proposed, including polymethyl methacrylate, polybudeso-1-sulfone, and polymethyl isopropenyl ketone.
Many negative-type materials have been provided, including polyglycidyl methacrylate, copolymers containing glycidyl methacrylate, epoxidized polybutadiene, and polydiallyl orthophthalate.

上に挙げた材料のうちいくつかのものはすでに
実用化されており、電子線描画によりクロムマス
クを製造することがすでに行われている。しか
し、近年、エツチング工程での精度の向上を求め
て、ドライプロセス、すなわちイオンミリング、
スパツタエツチング、プラズマエツチングなどの
技術を用いて基板を蝕刻せんとすることが行われ
るようになり、レジスト材料も、これらの蝕刻法
に対し高い耐性を有すること、すなわち耐ドライ
エツチング性が求められるようになつて来た。従
来、マスク製造を主目的としたレジストは、感
度、解像性とウエツトエツチング耐性、たとえば
クロムマスク製造についてはクロムのエツチング
液である硝酸第2セリウムアンモニウム水溶液に
対する耐性が求められており、ドライプロセスで
の耐性は考慮されていなかつた。
Some of the materials listed above have already been put into practical use, and chrome masks have already been manufactured by electron beam lithography. However, in recent years, in order to improve the accuracy of the etching process, dry processes, i.e. ion milling,
As techniques such as sputter etching and plasma etching are used to etch substrates, resist materials are required to have high resistance to these etching methods, that is, dry etching resistance. It has become like this. Conventionally, resists used primarily for mask manufacturing have been required to have sensitivity, resolution, and wet etching resistance; for example, for chrome mask manufacturing, resistance to ceric ammonium nitrate aqueous solution, which is an etching solution for chromium, has been required, and dry etching has been required. Resistance in the process was not considered.

レジスト材料のドライエツチング耐性に関する
研究の結果、分子中にフエニル基などの共役環を
含むと、著しく耐性が向上することが分つた。フ
オトレジストであるAZレジスト(米国シツプレ
イ社商品名)はドライエツチング耐性が良いが、
これも多くのフエニル基を含んでいる。しかし、
多くのフエニル基を含む高分子物の最たるものは
ポリスチレンであつて、事実、ポリスチレンのド
ライエツチング耐性は、最も良いとされて来た。
As a result of research on the dry etching resistance of resist materials, it has been found that the resistance is significantly improved when a conjugated ring such as a phenyl group is included in the molecule. The photoresist AZ resist (trade name of Shippray, Inc., USA) has good dry etching resistance, but
It also contains many phenyl groups. but,
Polystyrene is the most important polymer containing many phenyl groups, and in fact, polystyrene has been considered to have the best dry etching resistance.

本発明者らは、すでに、よりドライエツチング
耐性の良好な素材を探究した結果、側鎖にナフタ
レン基を有する高分子物、例えばポリビニルナフ
タレンは、側鎖にフエニル基を有するポリスチレ
ンよりはるかにドライエツチング耐性が良くなる
ことを見出し、これをネガ型レジスト材料として
用いることを提案した。
The present inventors have already searched for materials with better dry etching resistance. As a result, polymer materials with naphthalene groups in their side chains, such as polyvinylnaphthalene, are much more resistant to dry etching than polystyrene, which has phenyl groups in their side chains. They found that the resistance was improved and proposed using it as a negative resist material.

本発明者らは更に研究を進め、ビニルナフタレ
ンを成分として含む高分子材料のうち、ビニルナ
フタレンとクロルスチレンとの共重合物が安定性
が良く、合成が容易であることを見出して本発明
をなすに至つた。
The present inventors conducted further research and discovered that among polymer materials containing vinylnaphthalene as a component, a copolymer of vinylnaphthalene and chlorostyrene has good stability and is easy to synthesize. I arrived at the eggplant.

すなわち、本発明レジスト材料は、ビニルナフ
タレンとクロルスチレンのランダム共重合により
成る高分子物である。ドライエツチング耐性はビ
ニルナフタレンの比率が多い程高く、従つて共重
合比は、モノマユニツト数でクロルスチレンが50
%以下望ましくは5〜30%でないと、本発明の意
義が減殺される。感度はクロルスチレンの比率が
多いほど高くなるが、また分子量の増大と共に増
大する。但し、平均分子量100万を越えると、均
一な塗布の困難さ、現像時の膨潤による解像度の
低下の憂いがあり、平均分子量1万以下である
と、感度が不足するおそれがある。
That is, the resist material of the present invention is a polymer made of random copolymerization of vinylnaphthalene and chlorostyrene. The dry etching resistance increases as the proportion of vinylnaphthalene increases; therefore, the copolymerization ratio is 50% of chlorostyrene in terms of the number of monomer units.
% or less, preferably 5 to 30%, the significance of the present invention will be diminished. The sensitivity increases as the proportion of chlorstyrene increases, but it also increases with increasing molecular weight. However, if the average molecular weight exceeds 1,000,000, it may be difficult to apply uniformly and the resolution may decrease due to swelling during development, and if the average molecular weight is less than 10,000, the sensitivity may be insufficient.

解像性に関しては、分子量の多分散度(Mw/
Mn;Mwは重量平均分子量、Mnは数平均分子
量)が小であるほど良いことが知られており、可
能な限り単分散(Mw/Mn=7)に近いことが
望ましい。また、レジスト自体の解像性が現像の
さいに損われることもあり、特に高分子量の材料
は、成可くレジスト材料を膨潤させることはな
く、照射をうけなかつた部分を溶解除去する溶媒
を使用することが望ましい。
Regarding resolution, molecular weight polydispersity (Mw/
It is known that the smaller the Mn (Mw is the weight average molecular weight, Mn is the number average molecular weight), the better, and it is desirable that it be as close to monodisperse (Mw/Mn=7) as possible. In addition, the resolution of the resist itself may be impaired during development, especially when using high molecular weight materials, which do not swell the resist material and require a solvent to dissolve and remove the portions that were not exposed to irradiation. It is desirable to use it.

したがつて、分子量、共重合比は、要求される
感度とプロセス性に応じて選択することができ
る。
Therefore, the molecular weight and copolymerization ratio can be selected depending on the required sensitivity and processability.

本発明によれば、半導体、集積回路などの製造
工程においてドライエツチング加工を行うにあた
つて、これ迄に知られているレジスト材料よりも
エツチング耐性の良い材料を用いるので、エツチ
ング工程は安全、確実なものになる。
According to the present invention, when dry etching is performed in the manufacturing process of semiconductors, integrated circuits, etc., a material with better etching resistance than previously known resist materials is used, so the etching process is safe. It becomes certain.

さらに、ドライエツチング耐性の向上は、実質
的な解像度の向上にも寄与する。すなわち、エツ
チング耐性を向上せしめた本発明レジストでは、
レジストの塗布膜厚を薄くすることができる。周
知のように、例えば電子ビーム露光法では、レジ
スト材料に打込まれた電子がレジスト中で散乱す
るため、膜厚を厚くすると解像性は低下するので
ある。
Furthermore, improved dry etching resistance also contributes to a substantial improvement in resolution. That is, in the resist of the present invention with improved etching resistance,
The thickness of the resist coating can be reduced. As is well known, in electron beam exposure, for example, electrons implanted into a resist material are scattered within the resist, so that as the film thickness increases, resolution decreases.

本発明の共重合体は、通常のラジカル重合法に
より容易に得ることができる。一例を示せば、2
−ビニルナフタレン0.01モルとパラクロルスチレ
ン0.002モルに、反応開始剤としてAIBN(アゾビ
スブ40ニトリル)をモノマ濃度に対し1モル%加
えたものを精製ベンゼン20ミリリツトルに溶解
し、この溶液を重合管に入れ、凍結脱気後、封管
中で重合させた(70℃、24時間)。しかるのち、
この溶液をメタノール100ミリリツトル中に投入
してポリマを分離した。さらに得られたポリマを
塩化メチレンに溶解し、メタノールに投入して再
沈澱を行う精製を3回くり返したのち、ポリマを
減圧乾燥した。共重合比は、えられたポリマの元
素分析値(塩素の含有量)から求めた。
The copolymer of the present invention can be easily obtained by a conventional radical polymerization method. To give an example, 2
- 0.01 mol of vinylnaphthalene and 0.002 mol of parachlorostyrene, with 1 mol% of AIBN (azobisbu 40 nitrile) added as a reaction initiator based on the monomer concentration, are dissolved in 20 ml of purified benzene, and this solution is put into a polymerization tube. After freezing and degassing, polymerization was carried out in a sealed tube (70°C, 24 hours). Afterwards,
This solution was poured into 100 ml of methanol to separate the polymer. Further, the obtained polymer was dissolved in methylene chloride and purified by adding it to methanol for reprecipitation, which was repeated three times, and then the polymer was dried under reduced pressure. The copolymerization ratio was determined from the elemental analysis value (chlorine content) of the obtained polymer.

なお、この条件下では、ポリマはほゞ定量的に
得られ、ポリマの共重合比は、仕込の組成比と
ほゞ同じであつた。
Under these conditions, the polymer was obtained almost quantitatively, and the copolymerization ratio of the polymer was almost the same as the initial composition ratio.

分子量、多分散度はGPC(ゲルパーミエイシヨ
ン・クロマトグラフ)を用いて測定した。
Molecular weight and polydispersity were measured using GPC (gel permeation chromatography).

以下、例を用いて本発明を詳細に説明する。 The invention will be explained in detail below using examples.

実施例 1 2−ビニルナフタレン77.2%、P−クロルスチ
レン22.8%の共重合物(重量平均分子量2.2万、
多分散度1.8)をキシレンに10重量%溶解し、
0.2μmのフイルターで濾過したレジスト溶液を調
製した。基板上に2000回転/分でスピン塗布し、
100℃30分のやきしめを行つて膜厚約0.5μmの均
一な塗膜をえた。これに電子ビーム露光装置(日
本電子製JBX−5A)を用いて、加速電圧20KV
で、露光量を変えて種々のパタンを描画した。し
かるのち、装置から取りだして、ベンジルアセテ
ートに60秒浸漬して現像を行い、ひきつづきイソ
プロパノールに30秒浸漬してリンスを行つてレジ
ストパタンをえた。150℃30分のポストベーキン
グを行つたのち、触針法による膜厚測定(テイラ
ーホブソン社製タリサーフを用いた)を行い、異
る露光量による残存膜厚を測つて、図の曲線1に
示す感度曲線をえた。図の横軸は露光量、縦軸は
現像前の膜厚で規格化した現像後の膜厚を表して
いる。ネガレジストの実用的感度である。残存膜
厚が初期膜厚の1/2であるような露光量(D0.5g)
は、3.5×10-4クーロン/cm2で、同一分子量のポ
リ2−ビニルナフタレンと比べると、2倍に感度
が上昇していることが分つた。えられたレジスト
パタンは、1μm以下の微細パタンを十分解像して
いた。
Example 1 Copolymer of 77.2% 2-vinylnaphthalene and 22.8% P-chlorostyrene (weight average molecular weight 22,000,
Polydispersity 1.8) was dissolved in xylene at 10% by weight,
A resist solution was prepared by filtering it through a 0.2 μm filter. Spin coating onto the substrate at 2000 rpm,
A uniform coating film with a thickness of approximately 0.5 μm was obtained by baking at 100°C for 30 minutes. Using an electron beam exposure device (JBX-5A manufactured by JEOL Ltd.), the acceleration voltage was 20KV.
Then, various patterns were drawn by changing the exposure amount. Thereafter, it was taken out from the apparatus and developed by immersing it in benzyl acetate for 60 seconds, followed by rinsing by immersing it in isopropanol for 30 seconds to obtain a resist pattern. After post-baking at 150°C for 30 minutes, the film thickness was measured using a stylus method (using Talysurf manufactured by Taylor Hobson), and the remaining film thickness at different exposure doses was measured, as shown in curve 1 in the figure. A sensitivity curve was obtained. The horizontal axis of the figure represents the exposure amount, and the vertical axis represents the film thickness after development normalized by the film thickness before development. This is the practical sensitivity of negative resist. Exposure amount (D 0.5 g) so that the residual film thickness is 1/2 of the initial film thickness
It was found that the sensitivity was 3.5×10 −4 coulombs/cm 2 , which is twice as high as that of poly-2-vinylnaphthalene having the same molecular weight. The obtained resist pattern sufficiently resolved fine patterns of 1 μm or less.

つぎに、この共重合体のドライエツチ耐性をし
らべるため、さきにのべたと同様な方法で基板上
に塗膜を形成し、これ迄にドライエツチング耐性
の最も良いと云われて来たポリスチレン、および
AZレジストも同様に塗膜を形成したものを用意
し、Avのイオンミリングをヴイーコ社製の装置
を用いて、またccl4ガスのプラズマエツチングを
ETE社の装置を用いて、エツチングレートを測
定した。
Next, in order to examine the dry etching resistance of this copolymer, a coating film was formed on the substrate using the same method as described above.
AZ resist was prepared with a coating film formed in the same way, and Av ion milling was performed using equipment manufactured by Vico, and CCL 4 gas plasma etching was performed.
The etching rate was measured using a device manufactured by ETE.

その結果、この共重合体のエツチングレート
は、ポリスチレンまたはAZレジストの約70%で
あることが分つた。しかし、ポリ2−ビニルナフ
タレンのホモポリマと比較すると、約20%エツチ
速度が早くなり、耐性がやゝ損われている事が分
つた。このことから、ドライエツチング加工にお
いて、この共重合体は、ポリスチレンまたはAZ
レジストの70%の膜厚で足り、解像性の向上にも
寄与できることが分つた。
As a result, the etching rate of this copolymer was found to be approximately 70% that of polystyrene or AZ resist. However, it was found that the etch rate was about 20% faster and the resistance was slightly impaired when compared with poly-2-vinylnaphthalene homopolymer. Therefore, in the dry etching process, this copolymer can be used with polystyrene or AZ
It was found that a film thickness of 70% of that of the resist is sufficient and can also contribute to improved resolution.

実施例 2 共重合体(クロルスチレン25.8%、2−ビニル
ナフタレン74.2%、重量平均分子量22.2万、多分
散度2.1)をキシレンに8重量%溶解し、0.2μmの
フイルタで濾過してレジスト液とした。
Example 2 8% by weight of a copolymer (25.8% chlorstyrene, 74.2% 2-vinylnaphthalene, weight average molecular weight 222,000, polydispersity 2.1) was dissolved in xylene, filtered through a 0.2 μm filter, and mixed with a resist solution. did.

これを実施例1でのべたと同様の方法で評価し
たところ、図の曲線2に示す感度曲線をえた。た
だし現像はテトラヒドロフラン3容:エタノール
1容の混合溶媒に60秒浸漬して行い、ひきつづき
メチルエチルケトン1容:エタノール2容の混合
溶媒で30秒リンスを行つた。
When this was evaluated in the same manner as described in Example 1, a sensitivity curve shown as curve 2 in the figure was obtained. However, development was performed by immersing the film in a mixed solvent of 3 volumes of tetrahydrofuran and 1 volume of ethanol for 60 seconds, followed by rinsing for 30 seconds with a mixed solvent of 1 volume of methyl ethyl ketone and 2 volumes of ethanol.

ゲル化点の露光量Di gは2.3×10-5クーロン/cm2
D0.5gは3.6×10-5クーロン/cm2であつた。
The exposure amount D i g at the gel point is 2.3×10 -5 coulombs/cm 2 ,
D 0.5 g was 3.6×10 −5 coulombs/cm 2 .

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明のレジスト材料の電子線照射に対す
る感度曲線を示す図である。 曲線1は、重量平均分子量2.2万の2−ビニル
ナフタレン(77.2%)とP−クロルスチレン
(22.8%)共重合体(実施例1)曲線2は重量平
均分子量22.2万、2−ビニルナフタレン(74.2
%)とクロルスチレン(25.8%)共重合体(実施
例2)である。
The figure is a diagram showing a sensitivity curve of the resist material of the present invention to electron beam irradiation. Curve 1 is a copolymer of 2-vinylnaphthalene (77.2%) and P-chlorostyrene (22.8%) with a weight average molecular weight of 22,000 (Example 1), and curve 2 is a copolymer of 2-vinylnaphthalene (74.2%) with a weight average molecular weight of 222,000.
%) and chlorstyrene (25.8%) copolymer (Example 2).

Claims (1)

【特許請求の範囲】 1 ビニルナフタレンとクロルスチレンの共重合
体を感放射線、粒子線材料となしたことを特徴と
するレジスト材料。 2 ビニルナフタレンとクロルスチレンの共重合
比は、モノマ比で、クロルスチレンが5〜50%で
ある、特許請求の範囲第1項のレジスト材料。
[Scope of Claims] 1. A resist material comprising a copolymer of vinylnaphthalene and chlorostyrene as a radiation-sensitive or particle beam material. 2. The resist material according to claim 1, wherein the copolymerization ratio of vinylnaphthalene and chlorostyrene is 5 to 50% of chlorstyrene in terms of monomer ratio.
JP7896881A 1980-11-05 1981-05-25 Resist material Granted JPS57192948A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7896881A JPS57192948A (en) 1981-05-25 1981-05-25 Resist material
DE8181109526T DE3174780D1 (en) 1980-11-05 1981-11-05 Radiation-sensitive negative resist
EP81109526A EP0051320B1 (en) 1980-11-05 1981-11-05 Radiation-sensitive negative resist
US06/787,695 US4592993A (en) 1980-11-05 1985-10-15 Pattern forming and etching process using radiation sensitive negative resist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7896881A JPS57192948A (en) 1981-05-25 1981-05-25 Resist material

Publications (2)

Publication Number Publication Date
JPS57192948A JPS57192948A (en) 1982-11-27
JPH033215B2 true JPH033215B2 (en) 1991-01-18

Family

ID=13676695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7896881A Granted JPS57192948A (en) 1980-11-05 1981-05-25 Resist material

Country Status (1)

Country Link
JP (1) JPS57192948A (en)

Also Published As

Publication number Publication date
JPS57192948A (en) 1982-11-27

Similar Documents

Publication Publication Date Title
JP3368888B2 (en) Organometallic polymers and uses thereof
JPS58187926A (en) Method for developing radiation sensitive negative type resist
JPS64689B2 (en)
JP2686030B2 (en) Device manufacturing method
US4592993A (en) Pattern forming and etching process using radiation sensitive negative resist
JPH033215B2 (en)
JPH033214B2 (en)
EP0064864B1 (en) Method of making sensitive positive electron beam resists
US4415653A (en) Method of making sensitive positive electron beam resists
JPS63216044A (en) Pattern forming material
JPS647375B2 (en)
JPS647651B2 (en)
JPS62240953A (en) Resist
JPS6314342B2 (en)
JPS63319A (en) Multicomponent copolymer comprising sulfur dioxide and vinyl compound
JPH0330852B2 (en)
EP0334906B1 (en) Silicon-containing negative resist material, and process for its use in patterning substrates
JP2871010B2 (en) Positive electron beam resist solution
JPH05331289A (en) Copolymer of sulfur dioxide and nuclear-substituted styrene deriv ative
JPH0160816B2 (en)
JPS6091350A (en) Ionizing radiation sensitive negative type resist
JPS5983159A (en) Formation of resist image
JPH022564A (en) Positive type electron beam resist
JPS6259950A (en) Ionizing radiation sensitive positive type resist
JPH0364536B2 (en)