JPH033205B2 - - Google Patents
Info
- Publication number
- JPH033205B2 JPH033205B2 JP60113907A JP11390785A JPH033205B2 JP H033205 B2 JPH033205 B2 JP H033205B2 JP 60113907 A JP60113907 A JP 60113907A JP 11390785 A JP11390785 A JP 11390785A JP H033205 B2 JPH033205 B2 JP H033205B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- lens
- focal length
- wide
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 38
- 210000001747 pupil Anatomy 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 6
- 230000004075 alteration Effects 0.000 description 48
- 238000010586 diagram Methods 0.000 description 28
- 230000014509 gene expression Effects 0.000 description 11
- 201000009310 astigmatism Diseases 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 206010010071 Coma Diseases 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
Landscapes
- Lenses (AREA)
Description
本発明は負の焦点距離を持つ第1群と該第1群
の像界側に配された正の焦点距離を持つ第2群に
よつて構成され、ズーミングの際に前記第1群と
第2群との空気間隔が変化する変倍光学系に関す
るものである。
第1図は本発明の属する変倍光学系の基本的な
構成図を示す図で、
負の第1群と正の第2群2とから成るいわゆる
逆望遠タイプとなつており、第1群と第2群の空
気間隔lを変えると同時に、像面3と第2群との
間の空気間隔を変える事により変倍に対し像面3
を一定に保つ所謂機械的補正を行つている。
この負の第1群と正の第2群とから成る変倍光
学系は逆望遠タイプをしている為に、バツクフオ
ーカスを長く取つたり、広角化に対して有利で、
スチルカメラ用として又映画用、テレビ用の超広
角変倍光学系として適するものである。
上記変倍光学系に於いては近距離物体に対する
合焦作用即ちフオーカシングを行う方法として、
第2群を固定し第1群全体を単に繰り出してフオ
ーカシングを行う前玉繰り出しと呼ばれる方法が
ある。この方法は或る物体距離に焦点を合わせて
ズーミングした場合、第1群がフオーカス部とズ
ーム部兼用している為にズーミングに際して多少
のピントの変化が起こる。この変化量は小さく通
常の場合は焦点深度内に入る為にそのまま使用さ
れるが、この方法は収差補正上不利なこて多い。
即ち一般に負の第1群と正の第2群とから成る広
角レンズに於いては、両群の空気間隔を拡げると
非点収差が増大し、像面が著しくオーバーとな
る。従つて上述した変倍光学系に於ける如く、近
距離の物体に対してフオーカシングの為の第1群
を繰り出す方式に於いては、両群間の距離が拡大
する方向にあるので非点収差の変動は大きい。加
うるに一般に広角レンズに於いては物体距離が接
近した場合、全レンズ系を繰り出しフオーカシン
グを行つても非点収差が増大し、像面がオーバー
になる傾向がある。これを3次の収差係数を用い
て説明すれば
;球面収差係数
;コマ収差係数
非点収差係数
;球欠像面彎曲収差係数
;歪曲収差係数S
,S;瞳収差係数
とするとき、近距離に於ける収差係数′,′は
′=−δ(V+S)+δ2 S
′=−δ(V+S)+δ2 S
となる。ここでδは物体距離に関する量でで近距
離になる程大きくなる。この式から近距離収差変
動除去の条件は
V+S=0,S=0
であることがわかる。一般の逆望遠型レンズに於
いては多くの場合Sはほぼ零に近く、Vは一般
に正、Sは一般に負であるがSの絶対値がVに
比して大であるため、δが大即ち近距離になるに
従いこの項の影響が大きくなる。そしてその付号
はδ<0であるため′<,′<となり像面
はオーバーとなる。v+S=0とする条件はV
=0,S=0が理想的であるが、S=0の条件
は瞳近軸光線の入射角を、その出射角を′とす
るとき=′とならねばならない。このことは瞳
面と主平面とが一致することを意味している。し
かし逆望遠型レンズでは主平面は瞳面に比して後
方にあり>′であるのでS=0とすることは
できない。
以上の理由により、普通の逆望遠型レンズに於
いて近距離性能の劣化することはレンズの構成上
避けられないものであり、且つバツクフオーカス
を長くする程この欠点は著しくなるものである。
なおこの場合非点収差、像面彎曲以外の諸収差も
影響を受けるがその量は比較的少ないものであ
る。
以上の理由から負の第1群と正の第2群とから
成り、両群の間隔を変えてズーミングする変倍光
学系に於いて第1群でフオーカシングを行う事は
近距離での収差の劣化が激しく又第1群の繰り出
しに伴い軸外光線にケラレが生ずる等の事より至
近距離を短く取る事は困難であつた。
本発明は負の第1群と正の第2群より成る変倍
光学系に於いて、フオーカシングに際しての上述
した欠点を改良した変倍光学系を提供することを
目的とするものである。
本発明はかかる欠点を解決する為に、第1群の
繰り出しに伴つて、第1群内の或る空気間隔を第
1群の繰り出し量とほぼ線型の関係を有した状態
で変化させるものである。第1群の繰り出し量に
比例して、第1群内の或る空気間隔を減少させる
事により、近距離物体に対する結像性能の劣化、
特に非点収差の劣化を防ぐと同時に、第1群の合
成厚を小さくする事により繰り出しによる前玉径
の増大を防ぎ且つ近距離に於ける周辺光量の低下
を防いでいる。
以下本発明を詳述する。
負の第1群と正の第2群より成る上記変倍光学
では、近距離撮影に於いても周辺まで良好な画質
を保持するには、球面収差、コマ収差、歪曲収差
等に悪影響を及ぼすことなく像面をアンダーに戻
す補正が必要である。この補正はレンズ系内の空
気間隔を変えれば可能となり、従来多数のシング
ルカメラに適用されている手法である。しかし本
発明は変倍光学系であり、係る近距離での性能劣
化の主たる要因である像面彎曲は広角側になれば
なる程大きくなる。従つて本発明に於いては、像
面彎曲に対して広角側で大きく補正効果があり、
望遠側に行くに従つて徐々に補正効果の減少する
様な補正のできるレンズ間隔を設ける必要があ
る。この様な効果を有するレンズ間隔は、瞳近軸
光線のその間隔に於ける高さの絶対値が広角側
で大きく望遠側で小さい方がよい。しかしの値
は、変倍光学系が広角側から望遠側へ変倍する時
に焦点距離の変化に比例してほぼ線型的に変化す
ることが各焦点距離に対する補正として望ましい
ものである。
更に軸上物点から入射する光束がレンズの光軸
と平行に近い様なレンズ間隔が有利である。これ
はこの様なレンズ間隔を変化させると軸上収差即
ち球面収差に影響を与えない、変倍作用により広
角側の画角の大きな光束の収差に主に影響を与え
像面彎曲及び非点収差の補正に有利なこと、及び
フオーカシングに対して焦点距離が変化しない等
の利点がある。
これ以外の間隔即ち光束が収斂又は発散する様
な間隔を変化させると、像面彎曲の補正は可能で
あるが、この間隔直後のレンズへの入射高が変つ
て球面収差の変動を招き、画面中心部の画質を低
下させることになるし、又変倍作用により収差の
変動が激しい。
本発明は上述した様なレンズ間隔(以下空気間
隔と呼ぶ)を負レンズである第1群中に設け、該
空気間隔で第1群を少なくとも1枚以上の負レン
ズと1枚以上の正レンズとから成る前群と負の屈
折力を有する後群に分け、フオーカシングの為に
第1群を繰に出す時に前記前群と後群の移動量を
違えておくことにより、前記空気間隔を第1群の
繰り出し量に比例させて減少させるものである。
その際変倍光学系は以下の条件(1)〜(5)を満たす。
(1) −3.0<f1/fW<−1.17
(2) 0.54<lW/fW<1.5
(3) 0.04fW<d<0.3fW
(4) |f1F|>fW
(5) が|W|>T|で、焦点距離の増大に対
して単調減少する事
但しf1;第1群の焦点距離
fW;広角端に於ける全系の焦点距離
lW;広角端に於ける第1群と第2群の間隔
f1F;第1群内の前群の焦点距離
d;物体無限に於ける前群と後群の間の空気間隔
;瞳近軸光線が第1群内の前群及び後群の間の
空気間隔に於ける値で、係る空気間隔前後の面
におけるの平均値W
;上記の広角端に於ける値T
:上記の望遠端に於ける値
条件式(1)と(2)はレンズ系のパワー配置に関する
ものである。条件(1)の上限値を越えると歪曲収差
をはじめとする諸収差の補正が困難となる。又下
限以下であると収差補正上は有利となるがレンズ
系全体が大型化するので小型の変倍光学系を得る
ことはできない。
条件(2)の上限値もレンズ系全体を小型化するた
めのもので、一方下限値は変倍用の移動量が小さ
くなり過ぎて変倍比が小さくなる欠点を防ぐため
に決定したものである。
条件式(3)は物体が無限に在る場合の収差を良好
に補正するためのものである。第1群は負の発散
系であるため正の球面収差、負の歪曲収差、正の
非点収差が発生しやすい。これらの諸収差を補正
するにはこの負の発散系内部で正の収斂系の作用
を強く出し、互いに相殺し合う様にすれば良い。
即ちdが条件式(3)の下限値以下であると、この間
隔dより物体側に設けた正レンズの収斂作用を充
分に得ることができない。故に第1群内での収差
発生量が大きくなり全系での収差補正が充分にな
されない。一方上限値以上になると正レンズによ
る収差の補正作用が強すぎ補正過剰となり、非点
収差、コマ収差、球面収差の悪化をもたらす。即
ちdは条件式(3)の範囲内で物体が無限での諸収差
を良好に保つことができる。
条件(4),(5)は物体が近距離に於ける収差変動を
少なくする為のものである。
条件式(4)は第1群が負で第2群が正から成る変
倍光学系の第1群内の空気間隔の内、軸上物点か
ら入射して来る光束がレンズ光軸と大体平行にな
る空気間隔を可変とし、第1群を繰出して近距離
物体に焦点を合わせる時その繰り出し量にほぼ比
例してその空気間隔を短縮させ、近距離撮影にお
ける像の劣化を防ぐようにしたものである。即ち
条件式(4)の範囲を満たす時は、像面彎曲の補正の
みが可能となり、上述した如く収差補正に有利と
なる。
条件式(5)は変倍光学系に於いて条件式(1),(2)の
パワー配置の下で各焦点距離に於ける収差補正が
完全に行われる様にしたものである。即ち瞳近軸
光線の可変間隔に於ける高さ(実際はこの間隔の
前後の面に於ける高さの平均値)の絶対値が広
角側で大きく望遠側で小さくし、且つ焦点距離の
増大に対しhは単調に減少する様な構成にする。
斯様な構成により近距離物体に対して係る空気間
隔を減少させ第1群でフオーカスする事により、
収差を良好に保ち且つ変倍に対しても収差の劣化
が起らない。この様に前記空気間隔を第1レンズ
群の繰り出し量に大体比例して減少させるのは、
近距離収差変動が繰り出し量に大体比例してほぼ
直線的に変化するからである。この為、第1レン
ズ群を繰り出す機構と空気間隔を変化させる機構
とを容易に連動させることができる。
以上述べた条件式の意味からも明らかな様に、
本発明に係る変倍光学系に於いて条件式(3),(4)を
満足すれば収差補正を良好に行なうことが出来
る。更に条件式(1),(2),(5)を満たせば、変倍光学
系を小型化させることが可能である事が分る。
第2図は、第1群の繰り出しによる有効径が増
大するのを負の第1群内の空気間隔を減少即ち実
質的には第1群の合成厚dを減少させることによ
り、第1群の有効径の増大を防止する状態を示し
た図である。第2図Aは物体が無限にある時、軸
上光束L1と軸外光束L2が負の第1群1と正の第
2群2によつてフイルム面3上に結像される様子
を示している。物体が近距離になるに従い、第1
群を単に繰り出すだけでフオーカシングを行う方
法は第2図Bに示す如く、軸外光束、特に最大画
角の光束
L4が第1群の有効径によりけられ、周辺光量
は極めて少なくなる。この状態で周辺光量を増加
させるには第1群の有効径を大きくしなければな
らずコンパクト性が失なわれる。この影響は超広
角になればなる程顕著なものとなり、光学系の大
きさの上では重要なものとなり、操作性にまで影
響を与える。
第2図Cは上述した本発明に係る空気間隔を減
少させることにより周辺光束のケラレを防止する
状態を示した図である。物体が近距離にある場
合、第1群が繰り出されると同時に第1群の合成
厚dがd′に減少する。この為の最大画角の光束L6
の第1群の有効径に於けるケラレは著しく緩和さ
れ、ほぼ物体無限の状態に於ける場合と同等の光
量が保持される。この事によりシネカメラやTV
カメラ等の様に連続的に撮影する場合、周辺のか
げりを防ぐ事ができる。
以下本発明の実施例を示す。第3図A,B,C
は本発明の第1実施例に於ける物体無限での光路
図を示すもので、Aは広角端、Bは中間状態、C
は望遠端を示す。第4図A,B,Cは第3図A,
B,Cに対応する収差図である。第5図Aは第1
実施例の広角端での倍率が−0.0777に於ける光路
図でB,Cは物体と像点との距離を変えずに変倍
した時の中間状態及び望遠端での光路図を示して
いる。第5図A,B,Cは物体無限の場合を示し
た第3図A,B,C,に比較し空気間隔d4が減少
している。第6図A,B,Cは第5図A,B,C
に対応する収差図である。第7図A,B,Cは倍
率−0.0777に於いて、第3図に示した第1実施例
の変倍光学系を空気間隔d4を可変とせずただ単に
第1群を繰り出した場合を示している。第7図A
から明らかな様に、この場合広角端に於いては周
辺光量が著しく減少することが分る。第8図A,
B,Cは第7図A,B,Cに対応する収差図であ
る。
次に第1実施例の諸元値を示す。
第1実施例
The present invention is composed of a first group having a negative focal length and a second group having a positive focal length disposed on the image field side of the first group. This relates to a variable magnification optical system in which the air distance between the second group and the second group changes. FIG. 1 is a diagram showing the basic configuration of a variable magnification optical system to which the present invention pertains. It is a so-called reverse telephoto type consisting of a negative first group and a positive second group 2, and the first group By changing the air distance l between the image plane 3 and the second group, and at the same time changing the air distance between the image plane 3 and the second group, the image plane 3 is
A so-called mechanical correction is performed to keep the value constant. This variable magnification optical system consisting of a negative first group and a positive second group is an inverted telephoto type, so it is advantageous for long backfocus and widening the angle of view.
It is suitable as an ultra-wide-angle variable magnification optical system for still cameras, movies, and televisions. In the variable magnification optical system described above, a method for performing focusing on a close-range object is as follows:
There is a method called front lens extension in which focusing is performed by fixing the second group and simply extending the entire first group. In this method, when zooming is performed while focusing on a certain object distance, a slight change in focus occurs during zooming because the first group serves both as a focus section and a zoom section. This amount of change is small and is normally used as is because it falls within the depth of focus, but this method is often disadvantageous in terms of aberration correction.
That is, in a wide-angle lens that generally consists of a negative first group and a positive second group, increasing the air gap between the two groups increases astigmatism and causes the image plane to become significantly oversized. Therefore, in the above-mentioned variable magnification optical system, in which the first group is extended for focusing on a close object, astigmatism occurs because the distance between both groups increases. There are large fluctuations. In addition, in general, in a wide-angle lens, when the object distance becomes close, astigmatism increases and the image plane tends to overshoot even if the entire lens system is extended and focusing is performed. To explain this using third-order aberration coefficients: spherical aberration coefficient; comatic aberration coefficient; astigmatism coefficient; spherical aberration coefficient; distortion aberration coefficients S , S ; The aberration coefficients ′, ′ at ′ are ′=−δ(V+ S )+δ 2 S ′=−δ(V+ S )+δ 2 S ′. Here, δ is a quantity related to the object distance, and becomes larger as the distance becomes closer. From this equation, it can be seen that the conditions for removing short-range aberration fluctuations are V+ S =0, S =0. In general reverse telephoto lenses, S is almost zero in most cases, V is generally positive, and S is generally negative, but since the absolute value of S is larger than V, δ is large. In other words, the closer the distance is, the greater the influence of this term becomes. Since δ<0, the numbers are '<,'<, and the image plane is over. The condition for v+ S = 0 is V
=0, S =0 is ideal, but the condition for S =0 is that when the incident angle of the pupil paraxial ray is the exit angle, =' must be satisfied. This means that the pupil plane and the principal plane coincide. However, in an inverted telephoto lens, the principal plane is behind the pupil plane and >', so S = 0 cannot be set. For the reasons mentioned above, deterioration of the short-distance performance of ordinary reverse telephoto lenses is unavoidable due to the construction of the lens, and this drawback becomes more significant as the back focus becomes longer.
In this case, various aberrations other than astigmatism and curvature of field are also affected, but their amounts are relatively small. For the above reasons, in a variable magnification optical system that consists of a negative first group and a positive second group and performs zooming by changing the distance between the two groups, focusing with the first group is important in reducing aberrations at short distances. It was difficult to shorten the close range because of severe deterioration and vignetting of off-axis rays as the first group moved out. SUMMARY OF THE INVENTION An object of the present invention is to provide a variable power optical system comprising a negative first group and a positive second group, which improves the above-mentioned drawbacks in focusing. In order to solve this problem, the present invention changes a certain air interval within the first group as the first group is extended in a state that has a substantially linear relationship with the amount of extension of the first group. be. By reducing a certain air gap within the first group in proportion to the amount of extension of the first group, deterioration of imaging performance for close-range objects,
In particular, while preventing deterioration of astigmatism, reducing the combined thickness of the first group prevents an increase in the diameter of the front lens due to extension, and also prevents a decrease in the amount of peripheral light at short distances. The present invention will be explained in detail below. In the above-mentioned variable magnification optical system consisting of a negative first group and a positive second group, in order to maintain good image quality up to the periphery even in close-range shooting, spherical aberration, coma aberration, distortion, etc. have to be adversely affected. It is necessary to make a correction to return the image plane to an under level without causing any damage. This correction can be made by changing the air spacing within the lens system, and is a method that has been applied to many single cameras in the past. However, the present invention is a variable magnification optical system, and field curvature, which is the main cause of performance deterioration at short distances, increases as the angle of view increases. Therefore, in the present invention, there is a large correction effect on the field curvature on the wide-angle side,
It is necessary to provide a lens interval that allows correction such that the correction effect gradually decreases as you move toward the telephoto side. It is preferable for the lens interval to have such an effect that the absolute value of the height of the pupil paraxial ray at the interval is large on the wide-angle side and small on the telephoto side. However, as a correction for each focal length, it is desirable for the value of to change approximately linearly in proportion to the change in focal length when the variable power optical system changes magnification from the wide-angle side to the telephoto side. Furthermore, it is advantageous to have a lens spacing such that the light beam incident from the on-axis object point is nearly parallel to the optical axis of the lens. This is because changing the lens spacing like this does not affect axial aberrations, that is, spherical aberrations, but mainly affects aberrations of light beams with a large angle of view on the wide-angle side due to the variable magnification effect, and reduces field curvature and astigmatism. This method has advantages such as being advantageous for correction of , and that the focal length does not change with respect to focusing. It is possible to correct field curvature by changing an interval other than this, that is, an interval at which the light beam converges or diverges, but the height of incidence on the lens immediately after this interval changes, causing fluctuations in spherical aberration, and the screen This will reduce the image quality at the center, and the aberrations will fluctuate sharply due to the variable magnification effect. The present invention provides the above-mentioned lens spacing (hereinafter referred to as air spacing) in the first lens group, which is a negative lens, and the air spacing makes the first group consist of at least one negative lens and one or more positive lenses. A front group consisting of The amount is decreased in proportion to the amount of movement of one group.
In this case, the variable magnification optical system satisfies the following conditions (1) to (5). (1) −3.0<f 1 /f W <−1.17 (2) 0.54<l W /f W <1.5 (3) 0.04f W <d<0.3f W (4) |f 1F |>f W (5 ) is | W | > T |, which monotonically decreases as the focal length increases . Distance f 1F between the first group and the second group in the first group; focal length d of the front group in the first group; air distance between the front group and the rear group when the object is at infinity; the pupil paraxial ray is in the first group The value at the air gap between the front and rear groups in the above, and the average value W in the plane before and after the air gap; Value at the above wide-angle end T : Value at the above telephoto end Conditional expression (1) and (2) are related to the power arrangement of the lens system. If the upper limit of condition (1) is exceeded, it becomes difficult to correct various aberrations including distortion. If it is below the lower limit, it is advantageous in terms of aberration correction, but the entire lens system becomes large, making it impossible to obtain a compact variable magnification optical system. The upper limit value of condition (2) was also determined to make the entire lens system smaller, while the lower limit value was determined to prevent the drawback that the amount of movement for zooming becomes too small and the zoom ratio becomes small. . Conditional expression (3) is intended to satisfactorily correct aberrations when there are an infinite number of objects. Since the first group is a negative divergence system, positive spherical aberration, negative distortion, and positive astigmatism are likely to occur. In order to correct these various aberrations, the effect of the positive converging system should be strongly exerted within this negative diverging system so that they cancel each other out.
That is, if d is less than the lower limit of conditional expression (3), the convergence effect of the positive lens provided closer to the object than the distance d cannot be sufficiently obtained. Therefore, the amount of aberrations generated within the first group increases, and aberrations cannot be sufficiently corrected in the entire system. On the other hand, when the value exceeds the upper limit, the aberration correction effect of the positive lens is too strong and becomes excessively corrected, resulting in deterioration of astigmatism, coma aberration, and spherical aberration. That is, when d is within the range of conditional expression (3), various aberrations can be maintained well when the object is infinite. Conditions (4) and (5) are intended to reduce aberration fluctuations when the object is close. Conditional expression (4) states that within the air gap in the first group of a variable magnification optical system consisting of a negative first group and a positive second group, the light flux incident from the on-axis object point is approximately aligned with the lens optical axis. The parallel air gap is variable, and when the first group is extended to focus on a close-range object, the air gap is shortened approximately in proportion to the amount of extension, thereby preventing image deterioration during close-range shooting. It is something. That is, when the range of conditional expression (4) is satisfied, only the curvature of field can be corrected, which is advantageous for aberration correction as described above. Conditional expression (5) ensures that aberrations are completely corrected at each focal length under the power arrangement of conditional expressions (1) and (2) in the variable magnification optical system. In other words, the absolute value of the height at the variable interval of the pupil paraxial rays (actually the average value of the heights on the planes before and after this interval) is greater at the wide-angle end and smaller at the telephoto end, and when the focal length is increased, On the other hand, the configuration is such that h monotonically decreases.
With such a configuration, by reducing the air gap for close objects and focusing with the first group,
Aberrations are kept good and no deterioration of aberrations occurs even when changing magnification. In this way, the air gap is reduced roughly in proportion to the amount of extension of the first lens group.
This is because the near-field aberration variation changes approximately linearly in proportion to the amount of extension. Therefore, the mechanism for extending the first lens group and the mechanism for changing the air gap can be easily linked. As is clear from the meaning of the conditional expressions mentioned above,
In the variable magnification optical system according to the present invention, if conditional expressions (3) and (4) are satisfied, aberration correction can be performed satisfactorily. Furthermore, it can be seen that if conditional expressions (1), (2), and (5) are satisfied, it is possible to downsize the variable power optical system. FIG. 2 shows that the increase in the effective diameter due to the feeding of the first group is suppressed by decreasing the air gap within the negative first group, that is, by substantially decreasing the composite thickness d of the first group. FIG. 3 is a diagram showing a state in which an increase in the effective diameter of the cylinder is prevented. Figure 2A shows how the axial light beam L1 and the off-axis light beam L2 are imaged on the film surface 3 by the negative first group 1 and the positive second group 2 when the object is infinite. It shows. As the object becomes closer, the first
As shown in FIG. 2B, in the method of performing focusing by simply advancing the group, the off-axis light beam, especially the light beam L4 at the maximum angle of view, is eclipsed by the effective diameter of the first group, and the amount of peripheral light becomes extremely small. In this state, in order to increase the amount of peripheral light, the effective diameter of the first group must be increased, resulting in a loss of compactness. This effect becomes more pronounced as the angle becomes ultra-wide, becomes important in terms of the size of the optical system, and even affects operability. FIG. 2C is a diagram showing a state in which vignetting of the peripheral luminous flux is prevented by reducing the air gap according to the present invention described above. When the object is at a short distance, the combined thickness d of the first group decreases to d' at the same time as the first group is extended. For this purpose, the luminous flux at the maximum angle of view L 6
The vignetting in the effective diameter of the first group is significantly reduced, and the amount of light is maintained almost the same as in the case where the object is infinite. Due to this, cine cameras and TV
When continuously photographing with a camera, etc., it is possible to prevent peripheral shadows. Examples of the present invention will be shown below. Figure 3 A, B, C
shows an optical path diagram when the object is infinite in the first embodiment of the present invention, where A is at the wide-angle end, B is in the intermediate state, and C is in the intermediate state.
indicates the telephoto end. Figure 4 A, B, and C are Figure 3 A,
It is an aberration diagram corresponding to B and C. Figure 5 A is the first
In the optical path diagram when the magnification is -0.0777 at the wide-angle end of the example, B and C show the optical path diagram in an intermediate state and at the telephoto end when the magnification is changed without changing the distance between the object and the image point. . The air distance d 4 in FIGS. 5A, B, and C is reduced compared to FIGS. 3A, B, and C, which show the case where the object is infinite. Figure 6 A, B, C is Figure 5 A, B, C
It is an aberration diagram corresponding to . Figures 7A, B, and C show the case where the variable magnification optical system of the first embodiment shown in Figure 3 is simply extended with the first group without varying the air distance d4 at a magnification of -0.0777. It shows. Figure 7A
As is clear from the figure, in this case, at the wide-angle end, the amount of peripheral light is significantly reduced. Figure 8A,
B and C are aberration diagrams corresponding to FIG. 7A, B, and C. Next, the specification values of the first embodiment will be shown. First example
【表】【table】
【表】
第1実施例に於いては光学系を更にコンパクト
化する為にR1面,R20面に非球面を使用しててい
る。非球面の方程式を
とすると、
R1面r=3.2115
A=0
B=8.3×10-3
C=4.8×10-4
D=0
E=0
R20面r=−0.9233
A=0
B=6×10-2
C=2.0×10-2
D=0
E=0
次に第2実施例を示す。第9図A,B,Cは本
発明の第2実施例に於ける物体無限での光路図を
示すもので、Aは広角端、Bは中間状態、Cは望
遠端を示している。第10図はA,B,Cは第9
図A,B,Cに対応する収差図。第11図Aは第
2実施例の広角端での倍率−0.0750に於ける光路
図で、B及びCは物体と像点との距離を変えずに
変倍した時の中間状態及び望遠端での光路図を示
している。第11図A,B,Cは物体無限の場合
を示した第9図A,B,Cに比較して空気間隔d4
が減少している。第12図A,B,Cは第11図
A,B,Cに対応する収差図である。第13図
A,B,Cは倍率−0.0750に於いて、第9図に示
した第2実施例の変倍光学系を空気間隔d4を可変
とせず、ただ単に第1群を繰り出した場合を示し
ている。第13図Aから明らかな様にこの場合広
角端に於いては周辺光量が著しく減少することが
分る。第14図A,B,Cは第13図A,B,C
に対応する収差図である。
以下第2実施例の緒元値を示す。
第2実施例[Table] In the first embodiment, aspheric surfaces are used for the R1 and R20 surfaces in order to further compact the optical system. Equation of aspherical surface Then, R 1 side r = 3.2115 A = 0 B = 8.3 x 10 -3 C = 4.8 x 10 -4 D = 0 E = 0 R 20 side r = -0.9233 A = 0 B = 6 x 10 -2 C =2.0×10 -2 D=0 E=0 Next, a second example will be shown. 9A, B, and C show optical path diagrams when the object is infinite in the second embodiment of the present invention, where A shows the wide-angle end, B shows the intermediate state, and C shows the telephoto end. Figure 10 is A, B, C is 9th
Aberration diagrams corresponding to figures A, B, and C. Figure 11A is an optical path diagram at a magnification of -0.0750 at the wide-angle end of the second embodiment, and B and C are an intermediate state and a telephoto end when changing the magnification without changing the distance between the object and the image point. shows an optical path diagram. Figure 11 A, B, and C are compared to Figure 9 A, B, and C, which show the case where the object is infinite, with air spacing d 4
is decreasing. FIGS. 12A, B, and C are aberration diagrams corresponding to FIGS. 11A, B, and C. 13A, B, and C show the case where the variable magnification optical system of the second embodiment shown in FIG. 9 is simply extended with the first group without changing the air distance d 4 at a magnification of -0.0750. It shows. As is clear from FIG. 13A, in this case, at the wide-angle end, the amount of peripheral light is significantly reduced. Figure 14 A, B, C is Figure 13 A, B, C
It is an aberration diagram corresponding to . The specification values of the second embodiment are shown below. Second example
【表】
第2実施例に於いては光学系を更にコンパクト
化する為にR1面に非球面を使用している。その
時の非球面係数は、
R1面非球面r=3.2470
A=0
B=3.2×10-2
C=1.83×10-3
D=4.10×10-3
E=0
である[Table] In the second embodiment, an aspherical surface is used for the R1 surface in order to further compact the optical system. The aspherical coefficients at that time are: R 1 -plane aspherical surface r = 3.2470 A = 0 B = 3.2 × 10 -2 C = 1.83 × 10 -3 D = 4.10 × 10 -3 E = 0
第1図は本発明の変倍光学系の基本形態を示す
図、第2図Aはフオーカシングの様子を示す図
で、Bは本発明により光学系がコンパクト化され
ることを示す図、第3図A,B,Cは第1実施例
に於ける物体無限の場合を示す図で、Aは広角
端、Bは中間状態、Cは望遠端である。第4図
A,B,Cは第3図A,B,Cに対応する収差
図、第5図A,B,Cは第1実施例の広角端での
倍率が−0.0777に於ける場合の各変倍領域に於け
る光路図、第6図A,B,Cは第5図A,B,C
に対応する収差図、第7図A,B,Cは第3図示
変倍光学系で倍率−0.0777に於いて、従来のフオ
ーカシング方式による各変倍領域に於ける光路
図、第8図A,B,Cは第7図A,B,Cに対応
する収差図、第9図A,B,Cは第2実施例に於
ける物体無限の場合の光路図を示すもので、Aは
広角端、Bは中間領域、Cは望遠端を示す。第1
0図A,B,Cは第9図A,B,Cに対応する収
差図、第11図A,B,Cは第2実施例の広角端
での倍率が−0.0750に於ける場合の各変倍領域に
於ける光路図、第12図A,B,Cは第11図
A,B,Cに対応する収差図、第13図A,B,
Cは第9図示変倍光学系で倍率−0.0750に於い
て、従来のフオーカシング方式による各変倍領域
に於ける光路図、第14図A,B,Cは第13図
A,B,Cに対応する収差図。
1……第1レンズ群、2……第2レンズ群、3
……フイルム面、d……第1レンズ群の厚み、
L1〜L6……光束、S……絞り、R……レンズ面
の曲率半径、D……レンズ厚もしくはレンズ間
隔。
FIG. 1 is a diagram showing the basic form of the variable magnification optical system of the present invention, FIG. Figures A, B, and C are diagrams showing the case where the object is infinite in the first embodiment, where A is the wide-angle end, B is the intermediate state, and C is the telephoto end. Figures 4A, B, and C are aberration diagrams corresponding to Figures 3A, B, and C, and Figures 5A, B, and C are graphs of the first embodiment when the magnification at the wide-angle end is -0.0777. Optical path diagrams in each variable magnification area, Figure 6 A, B, C are Figure 5 A, B, C
7A, B, and C are aberration diagrams corresponding to the conventional focusing method at a magnification of -0.0777 using the variable magnification optical system shown in FIG. 8, and FIG. B and C show aberration diagrams corresponding to Fig. 7 A, B, and C. Fig. 9 A, B, and C show optical path diagrams when the object is infinite in the second embodiment, and A is at the wide-angle end. , B indicates the intermediate region, and C indicates the telephoto end. 1st
Figures 0A, B, and C are aberration diagrams corresponding to Figures 9A, B, and C, and Figures 11A, B, and C are the aberration diagrams when the magnification at the wide-angle end of the second embodiment is -0.0750. Optical path diagrams in the variable magnification region; Figures 12A, B, and C are aberration diagrams corresponding to Figures 11A, B, and C; Figures 13A, B,
C is the optical path diagram of the variable magnification optical system shown in FIG. 9 at a magnification of -0.0750 in each variable magnification area using the conventional focusing method. Corresponding aberration diagram. 1...First lens group, 2...Second lens group, 3
...Film surface, d...Thickness of the first lens group,
L 1 to L 6 ... Luminous flux, S ... Aperture, R ... Radius of curvature of lens surface, D ... Lens thickness or lens spacing.
Claims (1)
界側に配され正の焦点距離を持つ第2群を有し、
ズーミンング時に前記第1群と第2群との間隔が
変化し、前記第1群は少なくとも一枚の負レンズ
と1枚の正レンズとを有する前群と該前群の像界
側に配され負の屈折力を有する後群とから成り、
無限から至近に至るフオーカシングの為前記第1
群を移動する際、前記後群の繰り出し速度は前群
の繰り出し速度に比して大きく、且つ 0.04fw<d<0.3fw |f1F|>fw が|W|>|T|で、焦点距離の増大に対
して単調減少する事 但し f1F;前群の焦点距離 fW;広角端における全系の焦点距離 d;物体無限における前群と後群の間の空気間隔 ;瞳近軸光線が第1群内の前群と後群の間の空
間における値で、係る空気間隔前後の面におけ
るの平均値W ;上記の広角端における値T ;上記の望遠端における値 なる条件を満足する事を特徴とする変倍光学系。[Claims] 1. A first group having a negative focal length, and a second group disposed on the image field side of the first group and having a positive focal length,
The distance between the first group and the second group changes during zooming, and the first group includes a front group having at least one negative lens and one positive lens, and is arranged on the image field side of the front group. It consists of a rear group having negative refractive power,
For focusing from infinity to the nearest
When moving the group, the moving speed of the rear group is larger than that of the front group, and 0.04fw<d<0.3fw | f 1F | > f w is | W | > | T | Monotonically decreases as the distance increases. However, f 1F ; Focal length of the front group f W ; Focal length d of the entire system at the wide-angle end; Air distance between the front and rear groups when the object is at infinity; Pupil paraxial ray is the value in the space between the front group and the rear group in the first group, and satisfies the following conditions: the average value W in the plane before and after the air gap; the value T at the wide-angle end; the value at the telephoto end above. A variable magnification optical system featuring
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60113907A JPS61116315A (en) | 1985-05-27 | 1985-05-27 | Optical system for variable power |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60113907A JPS61116315A (en) | 1985-05-27 | 1985-05-27 | Optical system for variable power |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50108635A Division JPS5232342A (en) | 1975-09-08 | 1975-09-08 | Variable magnification optical unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61116315A JPS61116315A (en) | 1986-06-03 |
JPH033205B2 true JPH033205B2 (en) | 1991-01-18 |
Family
ID=14624162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60113907A Granted JPS61116315A (en) | 1985-05-27 | 1985-05-27 | Optical system for variable power |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61116315A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010128318A (en) * | 2008-11-28 | 2010-06-10 | Samsung Electronics Co Ltd | Projection optical system and image projection device |
WO2013031179A1 (en) * | 2011-08-29 | 2013-03-07 | 富士フイルム株式会社 | Zoom lens and imaging device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS492548A (en) * | 1972-04-18 | 1974-01-10 | ||
JPS5232342A (en) * | 1975-09-08 | 1977-03-11 | Canon Inc | Variable magnification optical unit |
-
1985
- 1985-05-27 JP JP60113907A patent/JPS61116315A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS492548A (en) * | 1972-04-18 | 1974-01-10 | ||
JPS5232342A (en) * | 1975-09-08 | 1977-03-11 | Canon Inc | Variable magnification optical unit |
Also Published As
Publication number | Publication date |
---|---|
JPS61116315A (en) | 1986-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3541983B2 (en) | Wide-angle lens | |
JP4924003B2 (en) | Wide-angle lens, imaging device, and wide-angle lens focusing method | |
JP5455572B2 (en) | Zoom lens and imaging apparatus having the same | |
JPH09325274A (en) | Zoom lens | |
JP5460255B2 (en) | Optical system and optical instrument using the same | |
JP2558138B2 (en) | Zoom lens | |
US11435566B2 (en) | Zoom lens and image pickup apparatus | |
US11131829B2 (en) | Zoom lens and image pickup apparatus | |
JP3074026B2 (en) | Super wide-angle zoom lens | |
JPH06201988A (en) | Large aperture ratio internal focusing telephoto lens | |
US20170351113A1 (en) | Optical system and image pickup apparatus including the same | |
JP3811311B2 (en) | Camera with zoom lens system | |
JPH11183796A (en) | Image pickup optical system | |
JP3373913B2 (en) | Zoom lens | |
JPH05224119A (en) | Large-diameter intermediate telephoto lens | |
CN111751965B (en) | Zoom lens and imaging apparatus having the same | |
US11307394B2 (en) | Optical system and image pickup apparatus | |
JP3003226B2 (en) | Zoom lens | |
JP2712370B2 (en) | Telephoto lens for short-distance shooting | |
JP3540349B2 (en) | Wide angle lens with long back focus | |
JPH05273466A (en) | Zoom lens of rear focusing system | |
JP2019090952A (en) | Zoom lens and image capturing device having the same | |
US4426137A (en) | Gauss type photographic lens | |
JPS58200208A (en) | Small-sized wide-angle zoom lens | |
JPH0688940A (en) | Compact zoom lens |