JPH0332017A - Method and apparatus for electron beam lithography - Google Patents

Method and apparatus for electron beam lithography

Info

Publication number
JPH0332017A
JPH0332017A JP16519289A JP16519289A JPH0332017A JP H0332017 A JPH0332017 A JP H0332017A JP 16519289 A JP16519289 A JP 16519289A JP 16519289 A JP16519289 A JP 16519289A JP H0332017 A JPH0332017 A JP H0332017A
Authority
JP
Japan
Prior art keywords
electron beam
cross
sectional shape
area
error component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16519289A
Other languages
Japanese (ja)
Other versions
JP2732500B2 (en
Inventor
Katsuhiro Kawasaki
河崎 勝浩
Hirozumi Ando
宏純 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1165192A priority Critical patent/JP2732500B2/en
Publication of JPH0332017A publication Critical patent/JPH0332017A/en
Application granted granted Critical
Publication of JP2732500B2 publication Critical patent/JP2732500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To improve accuracy in lithography by computing the error component of the area of a cross section which is proportional to the area of the cross section of an electron beam, and correcting the cross sectional shape of the electron beam by the error component. CONSTITUTION:An electron beam 61 from an electron beam source 6 is made to sweep, and a pattern is drawn on a wafer 7. The parts corresponding to the two sides of the quadrangle of the beam are cut out with a shaping aperture 82. Then, the parts corresponding to the other two sides of the quadrangle are cut out with a shaping aperture 82. Thus, the beam is shaped into the quadrangle. Therefore, when the two sides of the beam 61 are shaped with the aperture 81 and thereafter the beam is deflected to the side of the aperture 82, the size of the square shape can be changed. The deflection is performed by applying deflecting signals on deflecting plates 33, 34 and 35 through a data control device 11 and a deflection control device 13 based on the signals from an operating device 10. The accuracy in lithography can be improved by correcting the error in a cross sectional area which is proportional to the area of the cross section of the electron beam.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体集積回路用のマスク等を製造する電子線
描画方法とその装置に係わり、とくにその描画精度を向
上せしめる方法および装置に関わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electron beam lithography method and apparatus for manufacturing masks and the like for semiconductor integrated circuits, and particularly to a method and apparatus for improving the lithography accuracy.

[従来の技術] 従来の半導体集積回路のマスク製作に用いる電子線描画
装置は特開昭62−44850号公報に記載のように、
例えば描くべき図形の面積に比例して電子ビームの面積
を変化させ、例えば面積が大きい図形は早く塗り潰せる
ようにしていた。また、上記電子ビームの断面形状が円
形であると4角形状の図形の場合に角がだれるのでこれ
を4角形とし、描くべき図形の面積、形状等に応じて上
記電子ビーム断面形状である4角形の大きさを変えるよ
うにしていた。
[Prior Art] A conventional electron beam lithography system used for manufacturing masks for semiconductor integrated circuits is as described in Japanese Patent Application Laid-Open No. 62-44850.
For example, the area of the electron beam was changed in proportion to the area of the figure to be drawn, so that a figure with a large area could be filled in quickly. In addition, if the cross-sectional shape of the electron beam is circular, the corners of a square figure will be sagging, so this is made into a square, and the cross-sectional shape of the electron beam is determined according to the area, shape, etc. of the figure to be drawn. I was trying to change the size of the rectangle.

実際には、上記4角形の電子ビームの断面形状には誤差
が伴うので予め誤差を測定して補正するようにしていた
。この補正の方法は第5図に示すように、2辺の長さが
xo、yoに指定された電子ビームの断面形状1をX方
向に一定の速度で掃引し、遮蔽板2に遮られていない部
分の面積の変化を電子ビーム量の変化としてその長さを
検出し、同様にして遮蔽板2を90度回転して電子ビー
ムをy軸方向に掃引してその長さを求めるようにしてい
た。
In reality, since there is an error in the cross-sectional shape of the rectangular electron beam, the error is measured in advance and corrected. As shown in Fig. 5, this correction method is to sweep the cross-sectional shape 1 of the electron beam whose two side lengths are specified as xo and yo at a constant speed in the The length of the electron beam is detected by detecting the change in the area of the area where the electron beam does not exist, and the length is similarly determined by rotating the shielding plate 2 by 90 degrees and sweeping the electron beam in the y-axis direction. Ta.

上記各辺の長さに含まれる誤差成分、即ち上記4角形の
各辺の長さを指定する入力値XOとYOと上記測定値と
の差分ΔXおよびΔYは一次近似で式(1)のように表
される。
The error component included in the length of each side above, that is, the difference ΔX and ΔY between the input values XO and YO specifying the length of each side of the quadrilateral and the measured value above, is a linear approximation as shown in equation (1). is expressed in

Δ X=a  1+b  1  ・ XO+c  1 
 ・ YOΔY=a 2+b 2’・XO+c 2 ・
YO(1)ΔXの3ケの係数al、bl、clは、第5
図に示した測定をxo、yo等の値を変えて3回繰り返
して得られる3組の式の連立方程式より求めることがで
きる。a2.b2、c2も同様にて求めることができる
。また、上記測定の回数をさらに増やし、最小自乗法に
より上記各係数を算出すれば、各係数の正確度を向上さ
せることができる。
ΔX=a 1+b 1 ・XO+c 1
・YOΔY=a 2+b 2'・XO+c 2 ・
The three coefficients al, bl, and cl of YO(1)ΔX are the fifth
It can be determined from three sets of simultaneous equations obtained by repeating the measurements shown in the figure three times by changing the values of xo, yo, etc. a2. b2 and c2 can also be found in the same manner. Furthermore, by further increasing the number of measurements described above and calculating each of the coefficients using the least squares method, the accuracy of each coefficient can be improved.

第6図は上記6ケの係数を用いて補正を行なう従来の補
正装置の一例を示すブロック図である。
FIG. 6 is a block diagram showing an example of a conventional correction device that performs correction using the six coefficients described above.

実際に偏向板31や32等に印加する信号は入力信号x
OとYOにそれぞれ上記のΔXとΔYを加えたものであ
る。したがってメモリ装置4には(XO+AX)と(Y
O+ΔY)を構成する各成分がXOとYOの値に対応し
てテーブルの形で記憶されている。xOとYOが入力さ
れるとこれらをアドレス信号として、例えばX軸出力と
して。
The signal actually applied to the deflection plates 31, 32, etc. is the input signal x
It is obtained by adding the above ΔX and ΔY to O and YO, respectively. Therefore, the memory device 4 has (XO+AX) and (Y
Each component constituting ΔY) is stored in the form of a table in correspondence with the values of XO and YO. When xO and YO are input, these are used as address signals, for example, as the X-axis output.

[aL+ (b1+1)XO]やcl−Yo等が読みだ
され、加算I!51にて加算され、レジスタ52に一時
記憶された後、DAコンバータ(デジタル・アナログ変
換器)53と偏向用増幅器S4を介して偏向板31に印
加される。Y軸信号についても同様である。
[aL+ (b1+1)XO], cl-Yo, etc. are read out, and addition I! 51 and temporarily stored in a register 52, the signals are applied to the deflection plate 31 via a DA converter (digital/analog converter) 53 and a deflection amplifier S4. The same applies to the Y-axis signal.

[発明が解決しようとする課題] 上記従来の補正法では、上記のようにして求めた6ケの
係数a1〜c2を用いて種々のX01YOに対応する補
正量ΔX、ΔY等を求めていたが、ビームスポットの大
きさがビーム電流値によって変化する点、即ちクーロン
効果の影響について配慮されておらず、電子線描画の精
度をさらに向上させることが困難であった。
[Problems to be Solved by the Invention] In the conventional correction method described above, the correction amounts ΔX, ΔY, etc. corresponding to various X01YO are obtained using the six coefficients a1 to c2 obtained as described above. However, no consideration was given to the fact that the size of the beam spot changes depending on the beam current value, that is, the influence of the Coulomb effect, and it was difficult to further improve the precision of electron beam lithography.

上記クーロン効果はとくに電子ビームの電流密度が高い
場合に顕著になるので、高い電流密度で行なう高速描画
における精度を劣化させていた。
The Coulomb effect becomes particularly noticeable when the current density of the electron beam is high, and thus degrades the accuracy in high-speed writing performed at high current density.

なお、クーロン効果とは電子ビームを構成する電子相互
間に作用する反発力によって電子ビームが広がろうとす
る作用のことである。
Note that the Coulomb effect is an effect in which an electron beam tends to spread due to a repulsive force acting between electrons constituting the electron beam.

本発明の目的は、上記した従来の補正法に上記クーロン
効果に対する補正を加えて電子ビーム寸法を補正した電
子線描画方法とその装置を提供することにある。
An object of the present invention is to provide an electron beam lithography method and an apparatus thereof, in which electron beam dimensions are corrected by adding correction for the Coulomb effect to the above-described conventional correction method.

[課題を解決するための手段] 本発明は上記の目的を達成するために、式(1)に上記
ビームスポットの面積(xo−yo)に比例する補正項
を新たに追加するようにする。これは上記電子ビームの
断面積に比例してビーム電流値が増加し、クーロン効果
による誤差が増大するからである。したがって、補正量
の算出式として式(2)を用いるようにする。
[Means for Solving the Problems] In order to achieve the above object, the present invention adds a new correction term proportional to the area (xo-yo) of the beam spot to equation (1). This is because the beam current value increases in proportion to the cross-sectional area of the electron beam, and errors due to the Coulomb effect increase. Therefore, formula (2) is used as the formula for calculating the correction amount.

ΔX=al+bl−XO+C1・YO+dl・XO−Y
OA X=C2+b2・XO+C2・YO+d240・
YO(2)式(2)では係数の数が従来の6ケから8ケ
に増加している。このため、第5図に示した測定をxo
、yo等の値を変えて4回繰り返して得られる4組の式
を連立方程式として81〜dlを求め、同様にして遮蔽
板2を90度回転してa1〜d2を求めるようにする・ 本発明では、上記係数dlとdlを用いて上記電子ビー
ムの断面の面積に比例する上記補正項dl・xO・YO
とdl・xO・YO等を算出し、上記電子ビームの断面
の形状をさらに補正して高精度に描画するようにする。
ΔX=al+bl-XO+C1・YO+dl・XO-Y
OA X=C2+b2・XO+C2・YO+d240・
YO(2) In equation (2), the number of coefficients has increased from 6 to 8. For this reason, the measurements shown in FIG.
, yo, etc. and repeating the four sets of equations four times as simultaneous equations to find 81 to dl, and similarly rotate the shielding plate 2 by 90 degrees to find a1 to d2. In the invention, the correction term dl・xO・YO proportional to the cross-sectional area of the electron beam is calculated using the coefficients dl and dl
and dl, xO, YO, etc., and further correct the cross-sectional shape of the electron beam to achieve highly accurate drawing.

[作用コ 以上のように構成した本発明の電子線描画方法とその装
置は、電子ビーム断面の面積に比例する上記断面積の誤
差を補正するので、クーロン効果による上記電子ビーム
の拡がり誤差を除去する作用が得られる。
[Operations] The electron beam lithography method and apparatus of the present invention configured as described above corrects the error in the cross-sectional area that is proportional to the area of the cross-section of the electron beam, thereby eliminating the error in the spread of the electron beam due to the Coulomb effect. This effect can be obtained.

[実施例] 以下、本発明の一実施例を図面を用いて説明する。第1
図は上記の式(2)に示した本発明の補正を行う補正装
置のブロック図である。実際に偏向板31と32等に印
加される信号は入力信号XOとYOに式(2)に示した
ΔXとΔYを加えたものである。したがってメモリ装置
41には(XO+ΔX)と(YO十ΔY)を構成する各
成分がXOとYOの値に対応してテーブルの形で記憶さ
れている。XoとYOが入力されるとこれらをアドレス
信号として、例えばX軸出力として、[al+(bl+
1)XOl、 CI−YOおよび、 di−XO・’1
0等が読みだされ、加算器51と61により加算され、
レジスタ52に一時記憶された後、DAコンタバータ(
デジタル・アナログ変換器)53と偏向用増幅器54を
介して偏向板31に印加される。上記dl・Xo−YO
が本発明により新たに生成された項であり、これを加算
するため加算器61が新たに追加された。
[Example] Hereinafter, an example of the present invention will be described using the drawings. 1st
The figure is a block diagram of a correction device that performs the correction according to the present invention shown in equation (2) above. The signals actually applied to the deflection plates 31, 32, etc. are the input signals XO and YO plus ΔX and ΔY shown in equation (2). Therefore, each component constituting (XO+ΔX) and (YO+ΔY) is stored in the memory device 41 in the form of a table corresponding to the values of XO and YO. When Xo and YO are input, they are used as address signals, for example, as the X-axis output, [al+(bl+
1) XOl, CI-YO and di-XO・'1
0 etc. are read out and added by adders 51 and 61,
After being temporarily stored in the register 52, the DA converter (
The signal is applied to the deflection plate 31 via a digital/analog converter (digital/analog converter) 53 and a deflection amplifier 54. The above dl・Xo-YO
is a newly generated term according to the present invention, and an adder 61 is newly added to add this term.

Y軸信号についても同様である。The same applies to the Y-axis signal.

第2図は本発明を実行する電子線描画装置の概要を説明
する図である。電子線源6より放射された電子ビーム6
1を掃引してウェハー(基板)7上に描画する。電子線
源6より放射された電子ビーム61は第3図に示すよう
に、成形アパーチャ81により4角形の2辺に相当する
部分を削り落とされ1次いで第4図に示すように成形ア
パーチャ82により4角形の他の2辺に相当する部分を
削り落とされて4角形に整形される。
FIG. 2 is a diagram illustrating the outline of an electron beam lithography apparatus that implements the present invention. Electron beam 6 emitted from electron beam source 6
1 is swept and drawn on the wafer (substrate) 7. As shown in FIG. 3, the electron beam 61 emitted from the electron beam source 6 is shaved off by a shaping aperture 81 at a portion corresponding to two sides of a quadrilateral, and then by a shaping aperture 82 as shown in FIG. The other two sides of the quadrilateral are shaved off to form a quadrilateral.

したがって、底形アパーチャ81により電子ビーム61
の2辺を整形して後、電子ビーム61を成形アパーチャ
82側に偏向させれば上記4角形の大きさを変えること
ができる。この偏向は演算袋[10からの信号によりデ
ータ制御装置11および偏向制御装置113を介して偏
向板33.34゜35等に偏向信号を印加して行う、デ
ータ制御装置11内には第1図に示したメモリ装置41
.加算器51.55.61.62およびレジスタ52゜
56等が含まれ、偏向制御装置13にはDAコンバータ
53.57および偏向用増幅器54.58等が含まれる
Therefore, the bottom-shaped aperture 81 allows the electron beam 61 to
After shaping the two sides of the quadrangle, the size of the quadrangle can be changed by deflecting the electron beam 61 toward the shaping aperture 82. This deflection is performed by applying a deflection signal to the deflection plates 33, 34, 35, etc. via the data controller 11 and the deflection controller 113 in response to a signal from the calculation bag [10]. Memory device 41 shown in
.. Adders 51, 55, 61, 62, registers 52, 56, etc. are included, and the deflection control device 13 includes DA converters 53, 57, deflection amplifiers 54, 58, etc.

演算装置10は上記した偏向制御の他に、第3図にて説
明した4角形の電子ビーム板の各辺長の測定を行い、得
られたデータと式(2)を用いて8ケの補正係数を算出
し、これより第1図のメモリ装[41に所要のデータを
書き込む制御動作も行う。
In addition to the deflection control described above, the calculation device 10 measures the length of each side of the rectangular electron beam plate explained in FIG. 3, and uses the obtained data and equation (2) to perform eight corrections. A control operation is also performed in which the coefficients are calculated and required data is written into the memory device [41 of FIG. 1] based on the coefficients.

9は電子ビーム収束用の成形レンズであり、演算装置工
0によりレンズ制御装置12を介して制御されるのであ
るが、本発明とは直接的な関係がないので詳しい動作の
説明は省略する。
Reference numeral 9 denotes a shaping lens for electron beam convergence, which is controlled by the arithmetic unit 0 via the lens control device 12, but since it has no direct relation to the present invention, a detailed explanation of its operation will be omitted.

なお、第1図に示した本発明の実施例ではメモリ装W1
41内に、式(2)右辺の各項をXOとYOの値に対応
して予め計算して記憶するようにしていたが、誤差測定
により求めた定数ai、C2や各項の比例係数bl、c
l、dl、b2、C2、dl等を記憶し、上記xo、y
o等が入力される毎に乗算器によりこれらと上記比例係
数とを乗じて各誤差成分を算出して補正するようにする
こともできる。
Note that in the embodiment of the present invention shown in FIG.
41, each term on the right side of equation (2) was calculated and stored in advance in correspondence with the values of ,c
l, dl, b2, C2, dl, etc., and store the above xo, y
It is also possible to calculate and correct each error component by multiplying them by the proportional coefficient using a multiplier every time o, etc. are input.

[発明の効果] 以上詳述したように本発明によれば、クーロン効果によ
る電子ビームの広がり誤差を補正できるので、電子線描
画装置の描画精度の向上することができる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to correct the spread error of the electron beam due to the Coulomb effect, so that the drawing accuracy of the electron beam drawing apparatus can be improved.

とくに、従来、電子ビームの電流密度を高めて描画速度
を早める場合に顕在化していた上記クーロン効果による
誤差を迅速、正確に補正できるので、描画速度を著しく
早める効果を得ることができる。
In particular, errors due to the Coulomb effect, which have conventionally become apparent when increasing the current density of the electron beam to speed up the writing speed, can be quickly and accurately corrected, so it is possible to achieve the effect of significantly increasing the writing speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の動作原理を説明するブロック図、第2
図は本発明の方法を実施する電子線描画装置の構成図、
第3図と第4図は電子ビームの断面形状を4角形に整形
する成形アパーチャの作用を説明する図、第5図は4角
形の電子ビーム断面の各辺長の測定法を説明する図、第
6図は従来装置の動作原理を説明するブロック図である
。 1・・・電子ビーム断面、2・・・遮蔽板、31〜35
・偏向板、4と41・・・メモリ装置、51・・・加算
器、52・・・レジスタ、S3・・・デジタル・アナロ
グ変換器、54・・・偏向用増幅器、6・・・電子線源
、7・・・基板、81・・・成形アパーチャ、9・・・
成形レンズ、1O・・・演算装置、11・・・データ制
御装置、12・・・レンズ制御装置、13・・・偏向制
御装置。
Fig. 1 is a block diagram explaining the operating principle of the present invention;
The figure is a configuration diagram of an electron beam lithography apparatus that implements the method of the present invention.
3 and 4 are diagrams explaining the action of the shaping aperture that shapes the cross-sectional shape of the electron beam into a square, and Figure 5 is a diagram explaining the method of measuring the length of each side of the square electron beam cross-section. FIG. 6 is a block diagram illustrating the operating principle of the conventional device. 1... Electron beam cross section, 2... Shielding plate, 31 to 35
- Deflection plate, 4 and 41... Memory device, 51... Adder, 52... Register, S3... Digital-to-analog converter, 54... Deflection amplifier, 6... Electron beam Source, 7... Substrate, 81... Molding aperture, 9...
Molded lens, 1O... Arithmetic device, 11... Data control device, 12... Lens control device, 13... Deflection control device.

Claims (1)

【特許請求の範囲】 1、電子線源が放射する電子ビームの断面形状を所定の
形に整形して基板上に照射する電子線描画方法において
、少なくとも上記断面形状の面積に比例する上記電子ビ
ームの断面形状の誤差成分を算出し、この誤差成分によ
り上記電子ビームの断面形状を補正するようにしたこと
を特徴とする電子線描画方法。 2、電子線源が放射する電子ビームの断面形状を4角形
に整形し、上記4角形の各辺の長さを計測してそれらの
誤差成分を算出し、上記誤差成分により上記電子ビーム
の断面形状を補正して基板上に照射する電子線描画方法
において、上記4角形の電子ビーム断面の面積に比例す
る誤差成分を算出し、これにより上記電子ビームの断面
形状をさらに補正するようにしたことを特徴とする電子
線描画方法。 3、請求項2において、上記4角形の各辺の長さを少な
くとも8回以上計測するようにしたことを特徴とする電
子線描画方法。 4、電子線源が放射する電子ビームの断面形状を所定の
形に整形して基板上に照射する電子線描画装置において
、少なくとも上記断面形状の面積に比例する上記電子ビ
ームの断面形状の誤差成分を記憶する記憶装置と、上記
誤差成分を他の誤差成分に加算する加算装置とを備えた
ことを特徴とする電子線描画装置。 5、電子線源が放射する電子ビームの断面形状を所定の
形に整形して基板上に照射する電子線描画装置において
、少なくとも上記断面形状の面積に比例する上記電子ビ
ームの断面形状の誤差成分の比例係数を記憶する記憶装
置と、上記比例係数と上記断面形状の面積とを乗算する
乗算装置とを備えたことを特徴とする電子線描画装置。
[Scope of Claims] 1. In an electron beam drawing method in which the cross-sectional shape of an electron beam emitted by an electron beam source is shaped into a predetermined shape and irradiated onto a substrate, the electron beam is at least proportional to the area of the cross-sectional shape. An electron beam lithography method characterized in that an error component of the cross-sectional shape of the electron beam is calculated, and the cross-sectional shape of the electron beam is corrected using the error component. 2. Shape the cross-sectional shape of the electron beam emitted by the electron beam source into a quadrilateral, measure the length of each side of the quadrilateral, calculate their error components, and calculate the cross-section of the electron beam using the error components. In an electron beam drawing method that corrects the shape and irradiates the substrate, an error component proportional to the area of the quadrangular electron beam cross section is calculated, and the cross-sectional shape of the electron beam is further corrected based on this. An electron beam drawing method characterized by: 3. The electron beam lithography method according to claim 2, wherein the length of each side of the quadrangle is measured at least eight times. 4. In an electron beam drawing apparatus in which the cross-sectional shape of an electron beam emitted by an electron beam source is shaped into a predetermined shape and irradiated onto a substrate, an error component in the cross-sectional shape of the electron beam is at least proportional to the area of the cross-sectional shape. What is claimed is: 1. An electron beam lithography apparatus comprising: a storage device for storing the error component; and an addition device for adding the error component to other error components. 5. In an electron beam drawing apparatus in which the cross-sectional shape of an electron beam emitted by an electron beam source is shaped into a predetermined shape and irradiated onto a substrate, an error component in the cross-sectional shape of the electron beam is at least proportional to the area of the cross-sectional shape. 1. An electron beam lithography apparatus comprising: a storage device that stores a proportionality coefficient; and a multiplier that multiplies the proportionality coefficient by the area of the cross-sectional shape.
JP1165192A 1989-06-29 1989-06-29 Electron beam drawing equipment Expired - Fee Related JP2732500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1165192A JP2732500B2 (en) 1989-06-29 1989-06-29 Electron beam drawing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1165192A JP2732500B2 (en) 1989-06-29 1989-06-29 Electron beam drawing equipment

Publications (2)

Publication Number Publication Date
JPH0332017A true JPH0332017A (en) 1991-02-12
JP2732500B2 JP2732500B2 (en) 1998-03-30

Family

ID=15807587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1165192A Expired - Fee Related JP2732500B2 (en) 1989-06-29 1989-06-29 Electron beam drawing equipment

Country Status (1)

Country Link
JP (1) JP2732500B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868928A (en) * 1981-10-19 1983-04-25 Jeol Ltd Electron beam exposure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868928A (en) * 1981-10-19 1983-04-25 Jeol Ltd Electron beam exposure

Also Published As

Publication number Publication date
JP2732500B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
JP4074240B2 (en) Deflection distortion correction system, deflection distortion correction method, deflection distortion correction program, and semiconductor device manufacturing method
JP6253924B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JP5686829B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
KR100806482B1 (en) Charged beam drawing apparatus and charged beam drawing method
KR100257640B1 (en) A method of and an apparatus for electron beam exposure
JPH0332017A (en) Method and apparatus for electron beam lithography
JPH0691005B2 (en) Charged beam drawing method
JP3260611B2 (en) Charge beam drawing controller
JPH03270215A (en) Charged particle beam exposure process and exposure device
JPS58121625A (en) Electron-beam exposure device
KR20000076974A (en) Charged particle beam exposure apparatus with shortened beam deflection setting time and exposure method
JP3321838B2 (en) Electron beam drawing equipment
JPS55102231A (en) Method for correcting distortion of electron beam exposure device and circuit thereof
JPS6341186B2 (en)
JPH03173119A (en) Electron beam drawing apparatus
JPS6273712A (en) Electron beam exposure apparatus
JP3394233B2 (en) Charged particle beam drawing method and apparatus
JPH07107893B2 (en) Charged beam drawing method
JP2786662B2 (en) Charged beam drawing method
JP2003077790A (en) Correction data check method and device in electron beam plotting device
JP2786661B2 (en) Charged beam drawing method
JP3245201B2 (en) Electron beam exposure system
JPH02102519A (en) Position correcting device of beam lithography device
JP6040046B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JPS6230689B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees