JPH0331978B2 - - Google Patents

Info

Publication number
JPH0331978B2
JPH0331978B2 JP57129039A JP12903982A JPH0331978B2 JP H0331978 B2 JPH0331978 B2 JP H0331978B2 JP 57129039 A JP57129039 A JP 57129039A JP 12903982 A JP12903982 A JP 12903982A JP H0331978 B2 JPH0331978 B2 JP H0331978B2
Authority
JP
Japan
Prior art keywords
magnetic
heat
regenerator
solid
cold storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57129039A
Other languages
Japanese (ja)
Other versions
JPS5921958A (en
Inventor
Takakuni Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Original Assignee
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN filed Critical SHINGIJUTSU JIGYODAN
Priority to JP12903982A priority Critical patent/JPS5921958A/en
Publication of JPS5921958A publication Critical patent/JPS5921958A/en
Publication of JPH0331978B2 publication Critical patent/JPH0331978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet

Description

【発明の詳細な説明】 本発明は磁気冷凍装置における冷却効率の改良
のため、蓄熱媒質として固体を用いた装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus using a solid as a heat storage medium to improve cooling efficiency in a magnetic refrigeration apparatus.

磁気冷凍は、従来の気体冷凍装置に比して (i) 作業媒質のモル容積が小さいので本質的に装
置の小型軽量化が可能なこと (ii) 作業媒質のコンプレツサが不要なため低雑
音、低振動のものが製作可能であること (iii) 殆んどの操作は電磁操作となるのでコンピユ
ータ制御等が容易となり、高信頼性の冷凍装置
を得ることが出来る。
Compared to conventional gas refrigeration equipment, magnetic refrigeration (i) has a smaller molar volume of the working medium, which essentially makes the equipment smaller and lighter; (ii) it does not require a compressor for the working medium, resulting in lower noise; (iii) Since most of the operations are electromagnetic, computer control is easy, and a highly reliable refrigeration system can be obtained.

等、多くの特徴があり、冷凍工業に新展開をもた
らすものと期待されている。
It has many features such as, and is expected to bring new developments to the refrigeration industry.

この磁気冷凍は、数十度k以下程度の低温領域
での利用が試みられ始めているが、近年、超電導
磁石の開発により強磁場が得やすくなつたこと等
により、より高温の領域への応用の可能性が開け
てきている。
Attempts have begun to use magnetic refrigeration in low-temperature regions of several tens of degrees K or less, but in recent years, the development of superconducting magnets has made it easier to obtain strong magnetic fields, making it difficult to apply it to higher-temperature regions. Possibilities are opening up.

しかし、磁気作業物質の格子比熱が大きな熱負
荷として作用する温度領域では、気体冷凍におけ
る逆スターリングあるいは逆エリクソンサイクル
に相当する等磁化あるいは等磁場過程を含むサイ
クルを用いねばならないが、このサイクルを構成
するには適当な再生蓄冷装置を用いる必要があ
る。
However, in the temperature range where the lattice specific heat of the magnetic working material acts as a large heat load, it is necessary to use a cycle that includes a homomagnetization or isomagnetic field process, which corresponds to the reverse Starling or reverse Ericsson cycle in gas refrigeration. To do so, it is necessary to use an appropriate regenerative cold storage device.

このような磁気冷凍装置の1例を第1図に示
す。1は適当なキユーリー点を持つ磁気作業物
質、2は蓄冷液、3はその断熱容器、4は電磁石
であり、断熱容器3は上下動可能となつている。
同図aのように作業物質1が蓄冷液の上部にある
状態で電磁石4で強磁場H1をかける。この過程
は第2図に示す逆エリクソンサイル中のAからB
への準等温磁化過程に相当し、作業物質1を構成
する原子の磁気モーメントの整列によるエントロ
ピーSの低下に伴う発熱が生ずるが、蓄冷液2と
の熱交換によつて放熱される。次いで第1図bの
ように断熱容器3は作業物質1がその底部に達す
るまで上昇する。(B→Cの等磁場過程)ここで
電磁石4の通電を止め消磁すると、磁気モーメン
トの配列の乱れに伴うエントロピーの増加による
吸熱が生じ、周囲の蓄冷液2の温度が低下する。
(C→Dの準等温過程)最後に容器3はゆつくり
下ろされ最初の状態に戻る。(D→Eの等磁場過
程)このサイクルにより蓄冷液2の上下方向には
温度勾配が生じ、第1図aの状態に戻つた作業物
質1の温度はE迄上昇し、以後サイクルはE→F
→G→H→I→J→Kと進行し、蓄冷液2の下部
は冷却される。
An example of such a magnetic refrigeration device is shown in FIG. 1 is a magnetic working substance having a suitable Curie point, 2 is a cold storage liquid, 3 is a heat insulating container thereof, and 4 is an electromagnet, and the heat insulating container 3 is movable up and down.
A strong magnetic field H1 is applied by the electromagnet 4 while the work material 1 is above the cool storage liquid as shown in FIG. This process is shown in Figure 2, from A to B in the reverse Ericsson cycle.
This corresponds to a quasi-isothermal magnetization process, and heat generation occurs as the entropy S decreases due to the alignment of the magnetic moments of the atoms constituting the working material 1, but the heat is radiated by heat exchange with the cold storage liquid 2. The insulating container 3 then rises, as shown in FIG. 1b, until the working material 1 reaches its bottom. (Equimagnetic field process from B to C) When the electromagnet 4 is deenergized by stopping the energization, heat absorption occurs due to an increase in entropy due to disturbance in the arrangement of magnetic moments, and the temperature of the surrounding cool storage liquid 2 decreases.
(Quasi-isothermal process from C to D) Finally, the container 3 is slowly lowered and returns to its initial state. (Equimagnetic field process from D to E) This cycle creates a temperature gradient in the vertical direction of the cold storage liquid 2, and the temperature of the working material 1, which has returned to the state shown in Figure 1 a, rises to E, and the cycle continues from E to E. F
→ G → H → I → J → K, and the lower part of the cold storage liquid 2 is cooled.

上記のような従来装置においては、蓄冷器とし
て液体、気体等の流体が用いられてきた。しか
し、第1図に示すように、蓄冷器中の作業物質の
移動に伴い、蓄冷流体が共に移動してしまう「蓄
冷流体の混合」あるいは「磁性体による蓄冷流体
のかかえこみ」と呼ばれる効果によつて、蓄冷効
果は悪化し、さらに温度域によつては適当な蓄冷
流体のない場合も生ずる。
In conventional devices such as those described above, fluids such as liquids and gases have been used as regenerators. However, as shown in Figure 1, as the working material in the regenerator moves, the regenerator fluid also moves together, resulting in an effect called "mixing of regenerator fluids" or "crowding of regenerator fluids by magnetic materials." Therefore, the cold storage effect deteriorates, and depending on the temperature range, there may be cases where there is no suitable cold storage fluid.

本発明は、蓄冷媒質として固体を用いることに
より、上記の欠点を除いた蓄冷器を得ようとする
ものである。
The present invention aims to provide a regenerator that eliminates the above-mentioned drawbacks by using a solid as a regenerator medium.

さらに、固体蓄冷媒質を一定間隔に並べたブロ
ツクとすることにより、各ブロツク間の熱伝導を
断つと共に、各ブロツクにその温度域で最も熱容
量の大きい材料を選択使用することを可能にす
る。
Furthermore, by arranging the solid refrigerant medium into blocks arranged at regular intervals, it is possible to cut off heat conduction between each block and to select and use a material with the largest heat capacity in the temperature range for each block.

第3図は、本発明の磁気冷凍装置の1実施例を
示し、蓄冷器5は適当数の固体ブロツク51,5
2,53,54…によつて構成され、熱交換のた
めのガスが充填される。6はテフロン製のガイド
棒であり、磁気作業物質1の上下動のガイドとな
る。7は上部放熱用熱交換室であり、入口71か
ら出口72へ還流するガスによつて排熱される。
8は下部熱交換室であり、入口81から出口82
へ還流するガスは被冷却物体へと導かれる。
FIG. 3 shows an embodiment of the magnetic refrigeration system of the present invention, in which the regenerator 5 is composed of an appropriate number of solid blocks 51, 5.
2, 53, 54, etc., and is filled with gas for heat exchange. Reference numeral 6 denotes a guide rod made of Teflon, which serves as a guide for the vertical movement of the magnetic working substance 1. Reference numeral 7 denotes an upper heat exchange chamber for heat dissipation, in which heat is exhausted by gas flowing back from an inlet 71 to an outlet 72.
8 is a lower heat exchange chamber, from an inlet 81 to an outlet 82.
The gas refluxing to is guided to the object to be cooled.

この装置の作動原理は第1図の装置のものと同
じであるが、断熱容器3に封入されたガスは蓄冷
媒質である固体ブロツク51,52,…に比して
熱容量は極端に小さく、固体ブロツクと磁気作業
物質1との熱交換媒体としてのみ作用し、多少の
上下の混合によつても冷却効果を低下させる程に
は致らない。また、固体ブロツク51,52,5
3,…は一定間隔を置いて配置されているので、
隣り合うブロツクに温度差があつても、相互間の
熱伝導は遮断されており、これによる蓄冷効果の
低下を防ぐことが出来る。
The operating principle of this device is the same as that of the device shown in FIG. It acts only as a heat exchange medium between the block and the magnetic working material 1, and even some mixing from above and below does not reduce the cooling effect. In addition, solid blocks 51, 52, 5
3,... are placed at regular intervals, so
Even if there is a temperature difference between adjacent blocks, heat conduction between them is blocked, and this can prevent the cold storage effect from deteriorating.

また、一般に、固体比熱は低温で急激に低下
し、固体ブロツクの蓄冷効果を低下させる。しか
し、強磁性体はキユーリー点附近で異常比熱を有
することが知られており、各ブロツク51,5
2,53,…はそれぞれ、その作動温度附近にキ
ユーリー点を有する物質を用いることにより、そ
の熱容量を高め、装置を小型化することが出来
る。
Furthermore, in general, solid specific heat rapidly decreases at low temperatures, reducing the cold storage effect of solid blocks. However, it is known that ferromagnetic materials have an abnormal specific heat near the Curie point, and each block 51, 5
By using a material having a Curie point near the operating temperature of each of No. 2, 53, ..., the heat capacity can be increased and the device can be made smaller.

1例として利用しうる物質とそのキユーリー点
Tcを示せば次の通りである。
Substances that can be used as an example and their Curie points
If T c is shown, it is as follows.

化合物 Tc(〓) Gd3Al2 282 Tb3Al2 180 Dy3Al2 74 Ho3Al2 33 ErAl2 25 EuS 16 280〓〜180〓の間は(GdxTb1-x3Al2のXを変
えることにより、180〓〜74〓の間は(Tbx
Dy1-x3Al2のXを変えることにより、また、74〓
〜33〓の間は(DyxH01-x3Al2のXを変えること
により任意のTcを有する固溶体を得ることが出
来る。
Compound T c (〓) Gd 3 Al 2 282 Tb 3 Al 2 180 Dy 3 Al 2 74 Ho 3 Al 2 33 E r Al 2 25 E u S 16 Between 280〓 and 180〓, (G dx T b1-x ) 3 By changing X of Al 2 , between 180〓 and 74〓 becomes (T bx
D y1-x ) 3 By changing X of Al 2 , 74〓
~33〓, (D yx H 01-x ) 3 A solid solution having any T c can be obtained by changing X of Al 2 .

この磁気冷凍装置は、第1図に示す冷凍装置と
同様に作動する。すなわち、第3図のように磁気
作業物質1が上部にある状態で電磁石4で強磁場
H1をかけると、磁気モーメントの整列に伴う発
熱が生じる。この熱は装置内に充填されたガスに
よつて固体蓄冷ブロツクに伝達されるが、気体を
介した熱伝導は、伝熱面間隔が小さくなると急激
に大きくなるので、事実上、磁気作業物質1と隣
あうブロツク51にだけ熱が伝達される。次い
で、断熱容器3が上昇するかあるいは磁気作業物
質と電磁石4が下降するかして、磁気作業物質1
が順次ブロツク52,53等と熱交換しながら断
熱容器3の底部に達する。ここで電磁石4を消磁
すると、磁気モーメントの配列乱れに伴う吸熱に
よる温度の低下が生じ、ブロツク54の温度を低
下させる。最後にゆつくりと第3図の状態に戻る
が、この間、ブロツク53,52と順次熱交換を
行なう。このようにして、ブロツク51の温度上
昇とブロツク54の温度低下を生じる。この間、
熱交換は上記のように磁気作業物質1とこれと隣
あうブロツクの間でだけ生じ、ブロツク相互間は
その間隔が大きいため熱伝導は遮断されている。
このブロツク51からの排熱は上部放熱用熱交換
室7、冷熱は下部熱交換室8のガスの還流によつ
て行なわれる。これらの熱交換室は断熱容器3内
とは遮断されているので、このガスの還流によつ
て容器内のガス流を生じるものではない。
This magnetic refrigeration system operates similarly to the refrigeration system shown in FIG. That is, as shown in FIG.
Multiplying H 1 generates heat as the magnetic moments align. This heat is transferred to the solid cold storage block by the gas filled in the device, but since the heat transfer through the gas increases rapidly as the heat transfer surface spacing becomes smaller, in effect, the magnetic working material 1 Heat is transferred only to the adjacent block 51. Next, either the heat insulating container 3 is raised or the magnetic working material and the electromagnet 4 are lowered, so that the magnetic working material 1
reaches the bottom of the heat insulating container 3 while sequentially exchanging heat with the blocks 52, 53, etc. When the electromagnet 4 is demagnetized here, the temperature decreases due to heat absorption due to the disordered arrangement of the magnetic moments, and the temperature of the block 54 decreases. Finally, it slowly returns to the state shown in FIG. 3, but during this time heat exchange is performed with blocks 53 and 52 in sequence. In this way, the temperature of block 51 increases and the temperature of block 54 decreases. During this time,
As mentioned above, heat exchange occurs only between the magnetic working material 1 and the blocks adjacent thereto, and heat conduction is blocked between the blocks because of the large distance between them.
Exhaust heat from the block 51 is carried out by gas recirculation in the upper heat exchange chamber 7 for heat dissipation, and cooling heat is carried out by gas reflux in the lower heat exchange chamber 8. Since these heat exchange chambers are isolated from the inside of the heat insulating container 3, the reflux of this gas does not create a gas flow inside the container.

第4図に示すのは別の実施例で、固体蓄冷器9
上には蓄冷ブロツク91,92,93,…は円盤
状に配置される。固体ブロツク91が磁気作業物
質1位置で磁場がかけられ、ブロツク91は加熱
される。次いで蓄冷器9は半回転し、ブロツク9
4が作業物質1位置に来たとき、電磁石4は消磁
され、ブロツク94は冷却される。更に蓄冷器9
の半回転で元に復し1サイクルを終る。蓄冷器9
は一方向回転でも往復逆回転でもよい。
Another embodiment is shown in FIG.
On the top, cold storage blocks 91, 92, 93, . . . are arranged in a disk shape. A magnetic field is applied to the solid block 91 at the location of the magnetic working substance 1, and the block 91 is heated. Next, the regenerator 9 rotates half a turn, and the block 9
When the electromagnet 4 is in the position of the work material 1, the electromagnet 4 is demagnetized and the block 94 is cooled. Furthermore, cold storage 9
It returns to its original state after half a rotation and completes one cycle. Cool storage device 9
may be unidirectional rotation or reciprocating and reverse rotation.

また、磁気作業物質1を円盤状に配置して回転
するようにしてもよい。この場合は一定磁場への
進入、退出によつて作業物質の磁化・消磁が行な
われるので、電磁石の通電、遮断を行う必要がな
く、超電導磁石等の利用には有利である。
Alternatively, the magnetic working substance 1 may be arranged in a disk shape and rotated. In this case, the working material is magnetized and demagnetized by entering and exiting a constant magnetic field, so there is no need to turn on and off the electromagnet, which is advantageous for use with superconducting magnets, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気冷凍装置の動作説明図、第
2図は冷凍サイクルのエントロピー温度線図、第
3図は本発明の冷凍装置の1実施例の構成図、第
4図は同じく他の実施例の構成図。 1:磁気作業物質、2:蓄冷液、3:断熱容
器、4:電磁石、5:固体蓄冷器、7,8:熱交
換室、9:円盤状固体蓄冷器。
Figure 1 is an explanatory diagram of the operation of a conventional magnetic refrigeration system, Figure 2 is an entropy temperature diagram of a refrigeration cycle, Figure 3 is a configuration diagram of one embodiment of the refrigeration system of the present invention, and Figure 4 is a diagram of another A configuration diagram of an example. 1: Magnetic working substance, 2: Cold storage liquid, 3: Heat insulating container, 4: Electromagnet, 5: Solid regenerator, 7, 8: Heat exchange chamber, 9: Disc-shaped solid regenerator.

Claims (1)

【特許請求の範囲】 1 磁気作業物質、該磁気作業物質に磁界を作用
させる磁気装置、該磁気作業物質と熱交換をする
蓄冷器からなり、該蓄冷器は気体等の熱交換媒質
中に配設された固体蓄冷媒質を有することを特徴
とする磁気冷凍装置。 2 固体蓄冷媒質が、蓄冷器の高温側から低温側
へかけて、一定間隔を置いた複数の固体ブロツク
から形成されることを特徴とする特許請求の範囲
第1項の磁気冷凍装置。 3 複数の固体ブロツクが、その作動温度に応じ
てそれぞれ異なつたキユーリー点を持つ物質で形
成されることを特徴とする特許請求の範囲第2項
の磁気冷凍装置。
[Claims] 1. Consisting of a magnetic working substance, a magnetic device that applies a magnetic field to the magnetic working substance, and a regenerator that exchanges heat with the magnetic working substance, the regenerator is disposed in a heat exchange medium such as gas. A magnetic refrigeration device characterized by having a solid cold storage medium provided therein. 2. The magnetic refrigeration system according to claim 1, wherein the solid regenerator medium is formed from a plurality of solid blocks spaced at regular intervals from the high temperature side to the low temperature side of the regenerator. 3. The magnetic refrigeration device according to claim 2, wherein the plurality of solid blocks are formed of materials having different Curie points depending on their operating temperatures.
JP12903982A 1982-07-26 1982-07-26 Magnetic refrigerator using solid cold accumulator Granted JPS5921958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12903982A JPS5921958A (en) 1982-07-26 1982-07-26 Magnetic refrigerator using solid cold accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12903982A JPS5921958A (en) 1982-07-26 1982-07-26 Magnetic refrigerator using solid cold accumulator

Publications (2)

Publication Number Publication Date
JPS5921958A JPS5921958A (en) 1984-02-04
JPH0331978B2 true JPH0331978B2 (en) 1991-05-09

Family

ID=14999586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12903982A Granted JPS5921958A (en) 1982-07-26 1982-07-26 Magnetic refrigerator using solid cold accumulator

Country Status (1)

Country Link
JP (1) JPS5921958A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169064A (en) * 1984-02-13 1985-09-02 株式会社東芝 Magnetic refrigerator
JPS60174466A (en) * 1984-02-21 1985-09-07 株式会社東芝 Magnetic refrigerator
JPS6144266A (en) * 1984-08-08 1986-03-03 科学技術庁長官官房会計課長 Magnetic refrigerator
JPS6144267A (en) * 1984-08-09 1986-03-03 科学技術庁長官官房会計課長 Magnetic refrigerator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841107A (en) * 1973-06-20 1974-10-15 Us Navy Magnetic refrigeration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3841107A (en) * 1973-06-20 1974-10-15 Us Navy Magnetic refrigeration

Also Published As

Publication number Publication date
JPS5921958A (en) 1984-02-04

Similar Documents

Publication Publication Date Title
US4642994A (en) Magnetic refrigeration apparatus with heat pipes
CN100507406C (en) Rotating magnet magnetic refrigerator
US4507927A (en) Low-temperature magnetic refrigerator
US3413814A (en) Method and apparatus for producing cold
US4459811A (en) Magnetic refrigeration apparatus and method
US4457135A (en) Magnetic refrigerating apparatus
US7076958B2 (en) Magnetic material
KR102149720B1 (en) Magnetic cooling apparatus
EP0153144B1 (en) Magnetic refrigerating apparatus
KR101116457B1 (en) Device for generating a thermal flux with a magneto-caloric material
US4464903A (en) Magnetic refrigerator
JPS58108370A (en) Method and device for operating cooling or heat pump
JPS60204852A (en) Magnetic material for magnetic refrigeration
EP1736719A1 (en) Continuously rotary magnetic refrigerator or heat pump
KR20010040540A (en) Reciprocating active magnetic regenerator refrigeration apparatus
JPS63148061A (en) Magnetic refrigerator and method thereof
US20200003461A1 (en) Magnetic Heat Pump Apparatus
Kirol et al. Rotary recuperative magnetic heat pump
Steyert Rotating Carnot‐cycle magnetic refrigerators for use near 2 K
GB2179729A (en) A method of magnetic refrigeration and a magnetic refrigerating apparatus
US4970866A (en) Magneto caloric system
JPH0331978B2 (en)
CN111238078B (en) Thermoacoustic driven magnetic refrigeration system
JPH0362983B2 (en)
JPS62268966A (en) Magnetic refrigerator