JPH0331817A - Driving method for liquid crystal device - Google Patents
Driving method for liquid crystal deviceInfo
- Publication number
- JPH0331817A JPH0331817A JP16738289A JP16738289A JPH0331817A JP H0331817 A JPH0331817 A JP H0331817A JP 16738289 A JP16738289 A JP 16738289A JP 16738289 A JP16738289 A JP 16738289A JP H0331817 A JPH0331817 A JP H0331817A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- signal
- gradation
- scanning
- voltage value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 19
- 238000000034 method Methods 0.000 title claims description 10
- 239000000758 substrate Substances 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 101150065817 ROM2 gene Proteins 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分!F] 本発明は液晶装置の駆動方法に関する。[Detailed description of the invention] [Industrial use! F] The present invention relates to a method for driving a liquid crystal device.
[従来の技術]
従来の液晶装置の駆動方法を?J5図(L′L)〜(h
)に示す。第5図(A)中X1 、X2.X5゜x4は
それぞれ信号電極、Yl、Y2.Y5はそれぞれ信号電
極、走査?1i極と信号電極の交点にある円は表示画素
で、円の中の数字は防−・−のレベルを示し、数字が大
きいほど表示画素に印加される電圧波形の実効値が高い
ことを示し4階調表示を行っている。第5図(d)〜(
!1)のVXl、VX2.VX5.VX4はそれぞれ信
号電極に印加される電圧波形、第5図(a)〜(c)の
vyt、VY2.VY5はそれぞれ走査電極に印加され
る電圧波形で、VOは基準電圧を示している。[Conventional technology] How to drive a conventional liquid crystal device? Figure J5 (L'L) ~ (h
). X1, X2 in FIG. 5(A). X5°x4 are signal electrodes, Yl, Y2. Is Y5 a signal electrode and a scanning electrode respectively? The circle at the intersection of the 1i pole and the signal electrode is a display pixel, and the number inside the circle indicates the level of protection, and the larger the number, the higher the effective value of the voltage waveform applied to the display pixel. A 4-gradation display is performed. Figure 5(d)-(
! 1) VXl, VX2. VX5. VX4 is the voltage waveform applied to the signal electrode, vyt, VY2 . VY5 is a voltage waveform applied to each scanning electrode, and VO indicates a reference voltage.
走査′、ll極Y1が選択されるときは、走査電極Y1
には走査電圧vO+vYが印加され、Y2.Y3はvO
のままである。走査電極Y1上の画素のうち信号電極X
1との交点にある画素は階調レベルが1であり、信号電
極にはvo+vxが印加される。信号電極x2との交点
にある画素は階調レベルが2であり、2tの期間ではv
o+vxが、その後、tの期間はvo−vxが印加され
る。信号電極X3との交点にある画素は階調レベルが3
であり、tの期間ではvo−1−vxが、その後、2t
の期間はvo−vxが印加される。信号電極X4との交
点にある画素は階調レベルが4であり、信号電極にはv
o−vxが印加される。各画素には走査電極の電圧と信
号電極の電圧との差が印加されるので、XlとYlの交
点にはVY−VXがx2とYlの交点には2tの期間で
はvy−vXが、その後、tの期間はvy+vxが、x
3とYlの交点にはtの期間ではvy−vxが、その後
、2tの期間はVY+VXが、X4とYl(7)交点に
はvy+vxが印加される。また、このときY2 、Y
3の電圧はvOであるので、Y2 、 Y5上の画素に
はVXもしくは−VXが印加される。When scan', ll pole Y1 is selected, scan electrode Y1
A scanning voltage vO+vY is applied to Y2. Y3 is vO
It remains as it is. Of the pixels on the scanning electrode Y1, the signal electrode
The pixel at the intersection with 1 has a gradation level of 1, and vo+vx is applied to the signal electrode. The pixel at the intersection with the signal electrode x2 has a gradation level of 2, and in a period of 2t, v
o+vx is applied, and then vo-vx is applied for a period of t. The pixel at the intersection with the signal electrode X3 has a gradation level of 3.
, and in period t vo-1-vx, then 2t
vo-vx is applied during the period. The pixel at the intersection with the signal electrode X4 has a gradation level of 4, and the signal electrode has a v
o-vx is applied. Since the difference between the voltage of the scanning electrode and the voltage of the signal electrode is applied to each pixel, VY-VX is applied to the intersection of Xl and Yl, vy-vX is applied to the intersection of x2 and Yl for a period of 2t, and thereafter , t, vy+vx is x
vy-vx is applied to the intersection of X4 and Yl(7) for a period of t, VY+VX is applied for a period of 2t, and vy+vx is applied to the intersection of X4 and Yl(7). Also, at this time, Y2, Y
3 is vO, so VX or -VX is applied to the pixels on Y2 and Y5.
次の選択期間では、Y2が選択され上記の操作をY2に
ついて行い、以下、各走査1if極について同様な操作
を順次行う。In the next selection period, Y2 is selected and the above operation is performed for Y2, and thereafter, the same operation is sequentially performed for each scan 1if pole.
すなわち、選択期間では諧調レベル1の画素にはVY−
VXが、M調しヘ7+1/ 2 (Q画素に4’!、2
tの期間ではVY−VXが、その後、tの期間はVY+
vxが、階調レベル5の画素にはtの期間ではVY−’
VXが、その後、2tの期間はVY+VXが、階調レベ
ル4の画素には・VY+VXが印加され、非選択期間で
は−vxもしくはVXが印加されるため、階調レベルに
よって画素に印加される電圧波形の実効値に差が現れて
階調表示が行われる。In other words, during the selection period, the pixel of gradation level 1 has VY-
VX to M tone 7+1/2 (4' to Q pixel!, 2
VY-VX for period t, then VY+ for period t
vx is VY-' for the pixel at gradation level 5 during period t.
After that, VY+VX is applied during the 2t period, VY+VX is applied to the pixel at gradation level 4, and -vx or VX is applied during the non-selection period, so the voltage applied to the pixel depends on the gradation level. Differences appear in the effective values of the waveforms, and gradation is displayed.
この様に、階調レベルと選択期間における信号電極に選
択電圧が印加されている時間の関係は階調レベル1では
0、階調レベル2ではt、[4レベル5では2t、5’
J調レベル4では3tというように隣合う階調レベル間
での信号電極に選択電圧が印加されている時間(以If
f調パルス幅という)の差は等間隔であるのが一般的で
あるが、階調表示を見易くするために階調の刻みを等間
隔ではなくし、階調レベルと選択期間における信号電極
に選択電圧が印加されている時間の関係を例えば階調レ
ベル1ではO1階階調レベル間は1.2t。In this way, the relationship between the gradation level and the time during which the selection voltage is applied to the signal electrode in the selection period is 0 at gradation level 1, t at gradation level 2, 2t at gradation level 5, 5'
At J tone level 4, the time during which the selection voltage is applied to the signal electrode between adjacent tone levels, such as 3t (hereinafter referred to as If
Generally, the differences in the f-level pulse width (referred to as f-level pulse width) are at equal intervals, but in order to make the gradation display easier to see, the gradation increments are not at equal intervals, and the difference between the signal electrodes at the gradation level and selection period is changed. For example, at gradation level 1, the time period during which the voltage is applied is 1.2t between O1 gradation levels.
階調レベル5ではt、at、階調レベル4では5tとす
るような方法も提案されている。A method has also been proposed in which t and at are used for gradation level 5 and 5t is used for gradation level 4.
[発明が解決しようとする護国]
しかし、前述の従来技術では、階調表示を見易くするた
めに階調パルス幅の差を等間f9Jではなくしても、例
えば、温度の変化や液晶装置の透過率の調節のため走査
電圧値もしくは選択電圧値及び非選択電圧値を変化させ
た場合、階調表示が見に((なってしまうという問題点
を有する。[Kokukoku to be solved by the invention] However, in the above-mentioned conventional technology, even if the difference in gradation pulse width is not equal to f9J in order to make the gradation display easier to see, for example, changes in temperature or transmission of the liquid crystal device When the scanning voltage value or the selection voltage value and the non-selection voltage value are changed to adjust the ratio, there is a problem that the gradation display becomes distorted ((().
そこで本発明はこの様な問題点を解決するもので、その
目的とするところは、上記の理由による階調表示の見栄
えの低下を防止し、常に見易い階調表示を提供するとこ
ろにある。The present invention is intended to solve these problems, and its purpose is to prevent the appearance of gradation display from deteriorating due to the above-mentioned reasons, and to provide gradation display that is always easy to see.
[課題を解決するための手段]
本発明の液晶装置の駆動方法は、走査電極を有する基板
と信号電極を有する基板間に液晶1Δを挾持し、かつ、
走査電極と信号電極の重なる部分に表示画素を形成する
液晶装置の階調表示を行5 Lz’に、走査電極には順
次走査電圧を印加し、また信号電極と走査電極の交点に
存在する表示画素で信号電極に印加される信号電圧波形
と走査電柱に印加される走査電圧波形の合成波形の実効
電圧が表示画素の階調レベルに応じた実効電圧となるよ
うに信号電極に中力Uされる信号電圧波形の電位を走査
電圧が印加されている間に選択電圧と非選択電圧間で変
化させる液晶装置の駆動方法において、各階調レベルで
の信号電極に選択電圧が印加される時間と非選択電圧が
印加される時間の比を走査電圧値と選択′1ル圧値およ
び非選択電圧値の変化に伴って変えることを特徴とする
特
[作用]
一般に階調表示が最も見易い条件は、n階調表示の場合
、階調レベルnでの液晶装置の透過率をT(n)とする
とT (n ) −T (n−1)=T (n−1)
−T (n−2)= ・・=T (2)−T(1〕とな
るときである。従って、温度の変化やC夜具装置の透過
率の調節のため走査電圧値もしくは選択電圧値及び非選
択電圧値を変化させてもそれに伴って階調のパルス幅の
差が変化するような駆動方法を用いれば常に見易い階調
表示が得られる。[Means for Solving the Problems] A method for driving a liquid crystal device of the present invention includes sandwiching a liquid crystal 1Δ between a substrate having a scanning electrode and a substrate having a signal electrode, and
The gradation display of the liquid crystal device in which display pixels are formed in the overlapped part of the scanning electrode and the signal electrode is performed in row 5 Lz', and the scanning voltage is sequentially applied to the scanning electrode, and the display existing at the intersection of the signal electrode and the scanning electrode is A neutral voltage is applied to the signal electrode so that the effective voltage of the composite waveform of the signal voltage waveform applied to the signal electrode in the pixel and the scanning voltage waveform applied to the scanning utility pole becomes an effective voltage corresponding to the gradation level of the display pixel. In a liquid crystal device driving method in which the potential of a signal voltage waveform is changed between a selection voltage and a non-selection voltage while a scanning voltage is applied, the time during which the selection voltage is applied to the signal electrode at each gray level and the non-selection voltage are A special feature characterized in that the ratio of the time during which the selection voltage is applied is changed in accordance with changes in the scanning voltage value, the selection voltage value and the non-selection voltage value. In the case of n-gradation display, if the transmittance of the liquid crystal device at gradation level n is T(n), then T (n) - T (n-1) = T (n-1)
-T (n-2) = ... = T (2) - T (1). Therefore, in order to adjust the temperature change and the transmittance of the C night device, the scanning voltage value or selection voltage value and If a driving method is used in which the difference in the pulse width of the gradation changes accordingly even when the non-selection voltage value is changed, a gradation display that is always easy to see can be obtained.
[実施例] 以下本発明の実施例を図と共に説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
(実施例1)
第1図は本実施例で用いた液晶装置の印加電圧の実効値
と透過率の関係を示す図である。(Example 1) FIG. 1 is a diagram showing the relationship between the effective value of the applied voltage and the transmittance of the liquid crystal device used in this example.
この液晶装置をバイアス比1 s 、 1/ 200
auty、1選択期間70μ式で駆動したところ、20
℃でコントラスト比が最大となる実効電圧はVon=2
.200V、Voff=2.0’52Vであった。また
、このとき階−1表示が最も見易い条件を)14たす各
階調レベルでの実効11圧値は8 ULI 1.i!表
示の場合、
V(8)=2.200v(=Von)
V(i2)=2189V
V(6)=2.178v
■(5)=2,167v
V(4)=2.155V
V(5)”2.157v
V(2)=2.114V
V(1)”ZO52V(=VOff)
であった。This liquid crystal device has a bias ratio of 1 s, 1/200
auty, when driven with 70μ formula for one selection period, 20
The effective voltage at which the contrast ratio is maximum at °C is Von=2
.. 200V, Voff=2.0'52V. Also, at this time, the effective 11 pressure value at each gradation level is 8 ULI 1. i! In case of display, V(8)=2.200v(=Von) V(i2)=2189V V(6)=2.178v ■(5)=2,167v V(4)=2.155V V(5) "2.157v V(2)=2.114V V(1)"ZO52V(=Voff).
また、Von=2.180vのときの階調表示が最も見
易い各階シ14レベルの実効電圧値は、V (8) ”
Z 180 V (= V o n )V(7)=2
.172v
V (6) = 2.1 t53y
V(5)”2.153v
V(4)=2.14i v
V(5)”2.126v
V(2)=2.103v
V(1)=:2.033v(=Voff)また、V o
n、 = 2.220 Vのときの階調表示が最も見
易い各階調レベルの実効電圧値は、V(8)=2.22
0v(Von)
V (7)= 2.206 V
V(6)=2.194v
V (5)= 2.182 V
V(4):=2.169 v
V(5)=2゜156v
V(2):2.151V
V(1)=2.070v(=voff)また、Von=
2゜240vのときの階調表示が最も見易い各階調レベ
ルの実効電圧値は、V(8)=2.240v(=Von
)
V(7)=2.250v
■(6)=2.216v
V(5)=2.204v
V(4)=2−192v
V(5)=、2.1 64v
V(2)=2.141 v
V(1)=2.039v(=Voff)ここで、ΔV(
n、)=(V(n) V(1))/(V(8)−V(
1))とすると、各温度でのΔV(7)からΔV(1)
の+A係は、Von=2゜180vのときは、
ΔV(7)=94.7S%
ΔV(6)=8E12%
ΔV(5)=8+、3%
ΔV (4) = 73.5%
ΔV (a ) = 63.0%
ΔV (2) = 47.6%
V o n = 2.200 vのときは、ΔV(7)
=92.6%
ΔV (6) = 85. i%
ΔV (5) = 77.7%
ΔV(4)=6a2%
Δ’li’ (3) = 57.4%
ΔV(2)=41.9%
VOn=2゜220vのときは、
ΔV(7)=9 (17%
Δv (6)=82.7 %
ΔV(5)=74.6 %
ΔV(4)=6 6.0 %
ΔV(3)=55..3 %
Δv (2)=4 [lL7 %
Von=2.240vのときは、
ΔV(7)=93.4 %
ΔV (6) = 8 4.1 %
ΔV(5)=76.2 %
ΔV(4)=6a2 %
ΔV (3) = 4 9. 7 %ΔV (2
) = 3 4.4 %
この値をもとに、Wonをα1v刻みとじ1選択期間を
64分割して階調パルス幅を決定した、各階調レベルで
の階調パルス幅(階調レベルnでの階調パルス幅をt(
n)と書く)は1選択期間を64tとしたとき、Won
(2,185vでは、t(7)=61t
t(6)=56t
t (5)=5 2 t
t(4)=47t
t (5)=4 0 t
t (2)=5 0 t
2.185v≦Won(2,195vではt (7>
=6 0 t
t(6)=55t
t(5)=51t
t(4)=45t
t(3)=38t
t(2)=27t
L195v≦Van(2,205vではt(7)=59
t
t(6)=54t
t (5)=5 0 t
t (a )a44 t
t(5)=37t
t(2)=27t
2.205v≦Van(2,215vではt(7)=5
9t
t(6)=54t
t(5)=、a 9 t
t (4)=4 5t
t(3)=36t
t (2)=2 6 t
2−215v≦Won(2,225vではt(7)=5
8t
t(6)=53t
t(5)=48t
t (4)=42 t
t (3)”5 5 t
t(2):26t
2.225 v≦Won(2,255vではt(7)=
59t
t(6)=5 4 t
t(5)=48t
t(4)”43t
t(3)=54t
t(2)=24t
2−235v≦Vonでは
t(7)=−5Ot
t(d)=54t
t(5)=49t
t(4)=44t
t (3)=5 2 t
t (2)=2 2 t
とした。Also, when Von=2.180v, the effective voltage value of each floor and 14 levels where the gradation display is most visible is V (8) ”
Z 180 V (=V on )V(7)=2
.. 172v V(6) = 2.1 t53y V(5)"2.153v V(4)=2.14i v V(5)"2.126v V(2)=2.103v V(1)=:2 .033v (=Voff) Also, V o
When n, = 2.220 V, the effective voltage value of each gradation level where the gradation display is most visible is V(8) = 2.22
0v (Von) V (7) = 2.206 V V (6) = 2.194v V (5) = 2.182 V V (4): = 2.169 v V (5) = 2゜156v V ( 2):2.151V V(1)=2.070v(=voff) Also, Von=
The effective voltage value of each gradation level where the gradation display is most legible at 2°240v is V(8)=2.240v(=Von
) V(7)=2.250v ■(6)=2.216v V(5)=2.204v V(4)=2-192v V(5)=, 2.1 64v V(2)=2. 141 v V(1)=2.039v(=Voff)Here, ΔV(
n, )=(V(n) V(1))/(V(8)-V(
1)), ΔV(7) to ΔV(1) at each temperature
When Von=2°180v, the +A coefficient is as follows: ΔV (7) = 94.7S% ΔV (6) = 8E12% ΔV (5) = 8+, 3% ΔV (4) = 73.5% ΔV ( a) = 63.0% ΔV (2) = 47.6% When V on = 2.200 v, ΔV (7)
=92.6% ΔV (6) = 85. i% ΔV (5) = 77.7% ΔV(4) = 6a2% Δ'li' (3) = 57.4% ΔV(2) = 41.9% When VOn=2°220v, ΔV( 7)=9 (17% Δv (6)=82.7% ΔV(5)=74.6% ΔV(4)=6 6.0% ΔV(3)=55..3% Δv(2)= 4 [lL7% When Von=2.240v, ΔV(7)=93.4% ΔV (6) = 8 4.1% ΔV(5)=76.2% ΔV(4)=6a2% ΔV ( 3) = 4 9.7%ΔV (2
) = 3 4.4% Based on this value, the gradation pulse width was determined by dividing Won in steps of α1v and dividing one selection period into 64. The gradation pulse width at each gradation level (at gradation level n) The gradation pulse width of t(
n)) is Won when one selection period is 64t.
(At 2,185v, t(7) = 61t t(6) = 56t t (5) = 5 2 t t(4) = 47t t (5) = 4 0 t t (2) = 5 0 t 2. 185v≦Won (at 2,195v, t (7>
=6 0 t t(6)=55t t(5)=51t t(4)=45t t(3)=38t t(2)=27t L195v≦Van (at 2,205v, t(7)=59
t t (6) = 54t t (5) = 5 0 t t (a ) a44 t t (5) = 37t t (2) = 27t 2.205v≦Van (at 2,215v, t(7) = 5
9t t(6) = 54t t(5) =, a 9 t t (4) = 4 5t t(3) = 36t t (2) = 2 6 t 2-215v≦Won (t(7 at 2,225v) )=5
8t t(6)=53t t(5)=48t t(4)=42 t t(3)”5 5 t t(2):26t 2.225 v≦Won (at 2,255v, t(7)=
59t t(6)=5 4 t t(5)=48t t(4)"43t t(3)=54t t(2)=24t 2-235v≦Von, t(7)=-5Ot t(d) =54t t(5)=49t t(4)=44t t(3)=5 2 t t(2)=2 2 t .
ここで、各条件ともt(8)=64t、t(1)=Ot
である。Here, for each condition, t(8)=64t, t(1)=Ot
It is.
第2図は本実施例を実現するための・回路の略図、第3
図<a>〜()゛)はクロック信号と階調パルス幅を決
定する波形及び信号電圧波形を示す図である。Figure 2 is a schematic diagram of the circuit for realizing this embodiment;
Figures <a> to ()) are diagrams showing clock signals, waveforms that determine the gradation pulse width, and signal voltage waveforms.
第2図中、1は電圧計でありこの出力はROM2に入力
される。i方、クロック信号は第2図中のカウンター4
に入力され1選択期間を64分割した波形(第3図(α
))に変換されROMK送られる。ROMではカウンタ
ーから送られてきた信号とA / D変換器から送られ
てきた信号より階調パルス幅を決定する信号波形(第6
図(b))を作る。この波形は選択期間の始めと各階調
L/ベベルの信号波形が選択電圧から非選択電圧に変わ
るときに立ち上がりを持つパルス波形である。Ro 1
Aより出力された波形はフリソゾフロツプ回路5を経て
階調用ドライバーエCに送られる。階調用ドライバーI
Oでは画素の階調レベルに応じ信号電極に印加される電
圧波形を出力する。第3図<C>は階調レベル1.第6
図(d)は階調レベル2.第6図(g)は諧調レベル5
.第6図(f)は階調レベル4.第3図(y)は階調レ
ベル5.2g3図(A)は階調レベル6、第6図(i)
は階調レベル7、第6図())は階調レベル8のときの
信号電極に印加される電圧波形を示す。階調レベル2か
ら7において信号電極に印加される電圧波形が選択′1
ル圧から非選択電圧に変わるタイミングは、階調パルス
幅を決定する信号波形(簿3図(b))のパルスの立ち
上がりと同時である。In FIG. 2, 1 is a voltmeter, and its output is input to ROM2. On the other hand, the clock signal is sent to counter 4 in Figure 2.
(Figure 3
)) and sent as ROMK. In the ROM, a signal waveform (sixth
Figure (b)) is created. This waveform is a pulse waveform that rises at the beginning of the selection period and when the signal waveform of each gray level L/bevel changes from the selection voltage to the non-selection voltage. Ro 1
The waveform output from A is sent to a gradation driver C via a friso-soflop circuit 5. Gradation driver I
At O, a voltage waveform applied to the signal electrode is output in accordance with the gradation level of the pixel. FIG. 3 <C> shows gradation level 1. 6th
Figure (d) shows gradation level 2. Figure 6 (g) is tone level 5
.. FIG. 6(f) shows gradation level 4. Figure 3 (y) is at gradation level 5.2g Figure 3 (A) is at gradation level 6, Figure 6 (i)
shows the voltage waveform applied to the signal electrode at gradation level 7, and FIG. 6() shows the voltage waveform applied to the signal electrode at gradation level 8. The voltage waveform applied to the signal electrode at gradation levels 2 to 7 is selected'1
The timing at which the voltage changes from the voltage to the non-selection voltage is at the same time as the rise of the pulse of the signal waveform (FIG. 3 (b)) that determines the gradation pulse width.
従来の階調方法では、Von=2.220vで階調表示
が最も見易くなるように階調のパルス幅を決定してもV
Onの値が変化すると第1図に示されるように実効電圧
と透過率の関係が変化するため、例えハV o n =
2.240 vのときはM FJ4レベル6以上が見
分けにくくなり、またV o n = 2.180vの
ときは階調レベル6以下が見分けにくかった。しかし、
本実施例では、TonO値に応じて階調のパルス幅を設
定することにより、vOnの値が変化しても常に見易い
階調表示が得られた(実施例2)
上記実施例1ではVanO値に着目して階調のパルス幅
を設定したが、VOnと同時に温度にも着目してYon
と温度の関係により階調のパルス幅を設定するようにす
るとより効果的である。In the conventional gradation method, even if the gradation pulse width is determined so that the gradation display is most easily seen at Von = 2.220V, the V
When the value of On changes, the relationship between effective voltage and transmittance changes as shown in Figure 1, so even if V o n =
When V on = 2.240 V, it was difficult to distinguish between MFJ4 levels 6 and above, and when V on = 2.180 V, it was difficult to distinguish between gradation levels 6 and below. but,
In this example, by setting the gradation pulse width according to the TonO value, a gradation display that was always easy to see even when the vOn value changed (Example 2) In the above Example 1, the VanO value We set the gradation pulse width by focusing on VOn, but we also focused on temperature as well as VOn.
It is more effective to set the pulse width of the gradation depending on the relationship between the temperature and the temperature.
また、第4図は本実施例を実現するための回路の略図で
ある。Further, FIG. 4 is a schematic diagram of a circuit for realizing this embodiment.
同図中、電圧計1の出力はROM2に入力されると同時
に温度センサー5の出力もA/ D *F)456を経
てROMに入力される。一方、実施例1同様クロック信
号は第4図中のカウンター4に入力され1選択期間を6
4分割した波形に変換されROMに送られる。ROMで
はカウンターから送られてきた信号と電圧計から送られ
てきた信号及びA / D変換器から送られてきた信号
より階調パルス幅を決定する信号波形を作る。ROMよ
り出力された波形はフリクプフロップ回路6を経てB8
L’4用ドライパーエCに送られる6階調用ドライバ
ーICでは画素の階調レベルに応じ信号電極に印加され
る電圧波形を出力する。In the figure, the output of the voltmeter 1 is input to the ROM 2, and at the same time, the output of the temperature sensor 5 is also input to the ROM via the A/D*F) 456. On the other hand, as in the first embodiment, the clock signal is input to the counter 4 in FIG.
The waveform is converted into four divided waveforms and sent to the ROM. The ROM creates a signal waveform that determines the gradation pulse width from the signal sent from the counter, the signal sent from the voltmeter, and the signal sent from the A/D converter. The waveform output from the ROM passes through the flip-flop circuit 6 and is sent to B8.
The 6-gradation driver IC sent to the L'4 driver C outputs a voltage waveform to be applied to the signal electrode according to the gradation level of the pixel.
この様な駆動方法を用いると、温度及びVOnの値に関
係な(常に見易い階調表示が得られるという利点がある
。When such a driving method is used, there is an advantage that a gradation display that is always easy to see regardless of the temperature and the value of VOn can be obtained.
(実施例3)
上記実施例1では、8階調表示を行っていたが本発明の
効果は3〜64階調の場合も同機の効果を有することが
認められている。また、階調レベルが64を越えるとき
も同様の効果を有することは言うまでもな(明らかであ
る。(Example 3) In the above-mentioned Example 1, 8-gradation display was performed, but it has been recognized that the effects of the present invention can be obtained even in the case of 3 to 64 gradations. It goes without saying that the same effect is obtained when the gradation level exceeds 64 (obviously).
Yonの刻みも、上記実施例1では[LOlvとしてい
るがこれは使用する液晶の特性を考慮し、例えば、急峻
度の大きな液晶を用いる場合は刻みを小さくし、急峻度
の小さな液晶を用いた場合は大きくすることも可能であ
る。The increments of Yon are also set to [LOlv in Example 1 above, but this takes into account the characteristics of the liquid crystal used. For example, when using a liquid crystal with a large steepness, the increments are made small; It is also possible to make it larger.
[発明の効果コ
以上述べたように本発明は、各階調レベルでの信号電極
に選択“電圧が印加される時間と非選択電工が印加され
る時間の比を走査電圧値と3択電圧値および非選択電圧
値の差の変化に伴って変えることにより、温度によらず
常に見易い階調表示が得られるという効果を有する。[Effects of the Invention] As described above, the present invention is capable of determining the ratio of the time when a selected voltage is applied to the signal electrode at each gray scale level and the time during which a non-selected voltage is applied to the scanning voltage value and the three selection voltage values. By changing it in accordance with the change in the difference between the voltage values and the non-selection voltage values, it is possible to obtain an easy-to-read gradation display regardless of the temperature.
第1図は本発明の実施例1で用いた液晶装置の印加電圧
の実効値と透過率の関係を示す図。
第2図は本発明の実施例1を実現するための回路の略図
。
第5図(α)〜())はクロック信号と階調パルス幅を
決定する波形及び信号電極に印加される電圧波形を示す
図である。
第4図は実施例2を実現するための回路の略図第5図(
α)〜<h>は従来の液晶装置の駆動方法を示す図。
1・・・・・・・・・電圧計
2 ・・・・・・・・・ ROM
3・・・・・・・・・7リツプ70ツブ4・・・・・・
・・・カウンター
5・・・・・・・・・温度センサーFIG. 1 is a diagram showing the relationship between the effective value of the applied voltage and the transmittance of the liquid crystal device used in Example 1 of the present invention. FIG. 2 is a schematic diagram of a circuit for realizing Embodiment 1 of the present invention. FIGS. 5(α) to 5()) are diagrams showing the clock signal, the waveforms that determine the gradation pulse width, and the voltage waveforms applied to the signal electrodes. FIG. 4 is a schematic diagram of a circuit for realizing the second embodiment.
α) to <h> are diagrams showing a conventional method of driving a liquid crystal device. 1... Voltmeter 2 ROM 3...7 lip 70 knob 4...
・・・Counter 5・・・・・・Temperature sensor
Claims (1)
層を挾持し、かつ、該走査電極と信号電極の重なる部分
に表示画素を形成する液晶装置の階調表示を行う際に、
該走査電極には順次走査電圧を印加し、また該信号電極
と前記走査電極の交点に存在する表示画素で該信号電極
に印加される信号電圧波形と該走査電極に印加される走
査電圧波形の合成波形の実効電圧が該表示画素の階調レ
ベルに応じた実効電圧となるように該信号電極に印加さ
れる信号電圧波形の電位を走査電圧が印加されている間
に選択電圧と非選択電圧間で変化させる液晶装置の駆動
方法において、各階調レベルでの信号電極に選択電圧が
印加される時間と非選択電圧が印加される時間の比を前
記走査電圧値と前記選択電圧値および前記非選択電圧値
の変化に伴って変えることを特徴とする液晶装置の駆動
方法。When performing gradation display of a liquid crystal device in which a liquid crystal layer is sandwiched between a substrate having a scanning electrode and a substrate having a signal electrode, and display pixels are formed in the overlapping portion of the scanning electrode and the signal electrode,
Scanning voltages are sequentially applied to the scanning electrodes, and the signal voltage waveform applied to the signal electrode and the scanning voltage waveform applied to the scanning electrode are changed at display pixels existing at the intersections of the signal electrode and the scanning electrode. The potential of the signal voltage waveform applied to the signal electrode is changed between the selection voltage and the non-selection voltage while the scanning voltage is applied so that the effective voltage of the composite waveform becomes an effective voltage corresponding to the gradation level of the display pixel. In the method for driving a liquid crystal device, the ratio of the time during which a selection voltage is applied to the signal electrode at each gray scale level and the time during which a non-selection voltage is applied is determined by varying the scanning voltage value, the selection voltage value and the non-selection voltage value. A method for driving a liquid crystal device characterized by changing the selected voltage value as the value changes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16738289A JPH0331817A (en) | 1989-06-29 | 1989-06-29 | Driving method for liquid crystal device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16738289A JPH0331817A (en) | 1989-06-29 | 1989-06-29 | Driving method for liquid crystal device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0331817A true JPH0331817A (en) | 1991-02-12 |
Family
ID=15848676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16738289A Pending JPH0331817A (en) | 1989-06-29 | 1989-06-29 | Driving method for liquid crystal device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0331817A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0464807A2 (en) * | 1990-07-06 | 1992-01-08 | SELECO S.p.A. | Circuit generating driving signals for display |
US7345668B2 (en) | 2003-07-31 | 2008-03-18 | Seiko Epson Corporation | Method of driving liquid crystal panel, liquid crystal device, and electronic apparatus |
-
1989
- 1989-06-29 JP JP16738289A patent/JPH0331817A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0464807A2 (en) * | 1990-07-06 | 1992-01-08 | SELECO S.p.A. | Circuit generating driving signals for display |
US7345668B2 (en) | 2003-07-31 | 2008-03-18 | Seiko Epson Corporation | Method of driving liquid crystal panel, liquid crystal device, and electronic apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0526095A2 (en) | Displaying information | |
WO2007052381A1 (en) | Color liquid crystal display and gamma correction method for the same | |
JPH0968689A (en) | Driving method of liquid crystal display device | |
WO2002007142A8 (en) | Ocb liquid crystal display with active matrix and supplemental capacitors and driving method for the same | |
JPS644197B2 (en) | ||
JPS623229A (en) | Liquid crystal driving system | |
JPH02914A (en) | Driving of display device | |
US5541619A (en) | Display apparatus and method of driving display panel | |
US5663744A (en) | Driving method for a liquid crystal display | |
EP0306822B1 (en) | Display system for ferroelectric liquid crystal | |
JPH0331817A (en) | Driving method for liquid crystal device | |
US5321418A (en) | Method for displaying images comprising Q levels of grey on a matrix screen | |
JPH0310217A (en) | Method for driving liquid crystal device | |
JPH032823A (en) | Liquid crystal device and driving method thereof | |
JPS6142691A (en) | Driving of liquid crystal display | |
JP2001209027A (en) | Liquid crystal display device and its driving method | |
JPH0772772B2 (en) | LCD drive controller | |
JP3328944B2 (en) | Driving method of liquid crystal display device | |
JPH0619428A (en) | Driving system of matrix display device | |
KR100343381B1 (en) | Liquid crystal display | |
JP3241256B2 (en) | Driving method of simple matrix liquid crystal display device | |
JPH04102892A (en) | Driving control system for liquid crystal display device | |
JPH0766255B2 (en) | Active matrix display device | |
KR100322447B1 (en) | A liquid crystal display using mixing grace scale | |
KR100864973B1 (en) | Apparatus and method of driving liquid crystal display device |