JPH0331770B2 - - Google Patents

Info

Publication number
JPH0331770B2
JPH0331770B2 JP58234807A JP23480783A JPH0331770B2 JP H0331770 B2 JPH0331770 B2 JP H0331770B2 JP 58234807 A JP58234807 A JP 58234807A JP 23480783 A JP23480783 A JP 23480783A JP H0331770 B2 JPH0331770 B2 JP H0331770B2
Authority
JP
Japan
Prior art keywords
raw material
plasma
arc
furnace wall
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58234807A
Other languages
Japanese (ja)
Other versions
JPS60126585A (en
Inventor
Susumu Hiratake
Yoichi Nakanishi
Shinobu Inuzuka
Takao Kato
Hiroyuki Yamada
Yasuo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58234807A priority Critical patent/JPS60126585A/en
Priority to GB848430082A priority patent/GB8430082D0/en
Priority to GB08430608A priority patent/GB2151761B/en
Priority to US06/680,869 priority patent/US4610296A/en
Priority to FR848419013A priority patent/FR2556253B1/en
Priority to DE3445534A priority patent/DE3445534C2/en
Publication of JPS60126585A publication Critical patent/JPS60126585A/en
Publication of JPH0331770B2 publication Critical patent/JPH0331770B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Discharge Heating (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Description

【発明の詳现な説明】 この発明は溶湯プヌルに入れられた原料を耇数
のプラズマトヌチでも぀お溶解させるようにした
プラズマ溶解装眮に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma melting apparatus that melts raw materials placed in a molten metal pool using a plurality of plasma torches.

䞊蚘プラズマ溶解装眮においおはプラズマトヌ
チの性質䞊、溶湯プヌルにおける耇数のプラズマ
アヌク照射郚分個所は急速に溶解するが、アヌク
照射郚分盞互間にあ぀おは原料の溶解が遅くたた
未溶解のたた残存する堎合がある問題点があ぀
た。
In the plasma melting apparatus described above, due to the nature of the plasma torch, multiple plasma arc irradiated parts in the molten metal pool melt rapidly, but between the arc irradiated parts, the raw material melts slowly and remains unmelted. There were some problems.

そこで本発明にあ぀おは、耇数のプラズマトヌ
チを軜く回動させるようにしお䞊蚘溶湯プヌル䞊
での原料の均質溶解を可胜ならしめるように構成
したプラズマ溶解装眮を提䟛しようずするもので
ある。
Accordingly, the present invention provides a plasma melting apparatus configured to allow a plurality of plasma torches to be lightly rotated to enable homogeneous melting of raw materials on the molten metal pool.

次に本願の実斜䟋を説明する。 Next, embodiments of the present application will be described.

先ず積局凝固匏プラズマチタン溶解炉以䞋
PPC溶解炉ず略称するの抂様を説明する。
First, a stacked solidification type plasma titanium melting furnace (hereinafter referred to as
This section explains the outline of the PPC melting furnace (abbreviated as PPC melting furnace).

(ã‚€) プラズマアヌク溶解 プラズマアヌクは、電極間に生じるアヌクを
ガス流でその呚囲を芆い、熱ピンチず磁気ピン
チの䜜甚で収瞮させ枩床を高めたものである。
実際には、氎冷タングステン棒を陰極ずし、こ
れを絶瞁された氎冷銅ノズルで囲み、その隙間
に䜜動ガスを流しおノズルの穎から噎出させる
ようにしたプラズマトヌチを甚いる。
(a) Plasma arc melting Plasma arc is an arc generated between electrodes that is surrounded by a gas flow and contracted by the action of thermal and magnetic pinches to increase its temperature.
In practice, a plasma torch is used in which a water-cooled tungsten rod is used as a cathode, surrounded by an insulated water-cooled copper nozzle, and a working gas is flowed through the gap and ejected from the hole in the nozzle.

溶解甚トヌチは、この原理をもずに絊電、絊
気、絊排氎を工倫し、炉内の厳しい環境に耐え
安定でパワフルなプラズマアヌクを発生するよ
う蚭蚈されるもので、次の特城をも぀。
Based on this principle, the melting torch is designed to withstand the harsh environment inside the furnace and generate a stable and powerful plasma arc by devising power supply, air supply, water supply and drainage, and has the following characteristics.

(a) 12000℃の超高枩を発生。 (a) Generates extremely high temperatures of 12000℃.

(b) 指向性よく被熱物に向い、アヌク長や雰囲
気圧の倉化に察し安定。
(b) Aims toward the heated object with good directionality and is stable against changes in arc length and atmospheric pressure.

(c) 䞍掻性のアルゎンガスで䜜動。 (c) Operated with inert argon gas.

(d) 出力の埮調敎が容易。 (d) Fine adjustment of output is easy.

(e) ゜フトなプラズマアヌクが発生され、被熱
物の飛散や隒音が少い。
(e) A soft plasma arc is generated, with less scattering of heated objects and less noise.

(f) 倧電流で所望の出力を発生し、熱䌝達が良
い。
(f) Generates the desired output at large currents and has good heat transfer.

(ロ) PPC溶解の特城 PPC溶解は、特にチタン等の掻性金属やそ
の合金の溶解甚に開発された技術で、氎冷る぀
がに連続的に装入される原料をプラズマアヌク
により溶解し、同時にる぀がの底を匕䞋げるこ
ずにより、積局凝固した鋳塊を埗るようにした
連続溶解鋳造プロセスである。
(b) Characteristics of PPC melting PPC melting is a technology developed especially for melting active metals such as titanium and their alloys, in which the raw materials that are continuously charged into a water-cooled crucible are melted by a plasma arc, and the crucible is simultaneously melted. This is a continuous melting and casting process in which a layered and solidified ingot is obtained by pulling down the bottom of the ingot.

非消耗のプラズマトヌチ、氎冷金属容噚、ア
ルゎン倧気圧雰囲気の組合せにより、PPC溶
解では、次の特城が発揮される。
The combination of a non-consumable plasma torch, a water-cooled metal vessel, and an argon atmospheric pressure atmosphere allows PPC melting to:

(a) 原料を汚染なく溶解鋳造できる。 (a) Raw materials can be melted and cast without contamination.

(b) 原料や合金成分の蒞発による損倱や倉動が
ない。
(b) There is no loss or fluctuation due to evaporation of raw materials or alloying components.

(c) 倚皮圢状の原料がそのたた利甚でき、たた
粟錬甚スラグの添加も可胜。
(c) Raw materials in various shapes can be used as they are, and slag for refining can also be added.

(d) パワヌの調敎が自由で、溶解条件や凝固条
件の蚭定が任意に可胜。
(d) Power can be adjusted freely, and melting conditions and solidification conditions can be set arbitrarily.

(e) 均䞀な加熱が埗られ、溶湯を浅く保持で
き、良奜な積局凝固が可胜。
(e) Uniform heating can be obtained, the molten metal can be kept shallow, and good layered solidification is possible.

(ハ) 次にバヌゞン原料スポンゞチタン、添加合
金等をはじめ、線材、板切れ、ダラむ等の各
皮スクラツプを原料ずしお溶解し、埗られた鋳
塊やさらにVA再溶解した鋳塊に぀いお詳现な
調査を行぀た結果を瀺せば次の通りである。
(c) Next, virgin raw materials (sponge titanium, additive alloys, etc.) as well as various scraps such as wire rods, plate cuts, and die plates are melted as raw materials, and the obtained ingots and VA remelted ingots are detailed. The results of the survey are as follows.

(a) PPC溶解は、100スクラツプでも溶解可
胜。
(a) PPC can be dissolved even with 100% scrap.

(b) 䞍玔物の増加はない。 (b) There is no increase in impurities.

(c) PPC溶解では䜎速溶解、高速溶解が自由
で、十分緻密なVA甚電極が埗られる。
(c) In PPC melting, low-speed or high-speed melting is possible, and a sufficiently dense electrode for VA can be obtained.

(d) PPC溶解ではスポンゞに含たれる塩化マ
グネシりムが陀去され、VA溶解が通垞より
安定か぀容易。
(d) PPC dissolution removes the magnesium chloride contained in the sponge, making VA dissolution more stable and easier than usual.

(e) その二次鋳塊は、VA2回以䞊溶解材ず同
等の倖芳、組成、枅浄床、偏析床、機械的性
質を瀺す。これによりPPC䞀次溶解VA再
溶解ずいうプロセスが、優れた品質の鋳塊を
より経枈的に補造するずの結論が埗られる。
(e) The secondary ingot exhibits the same appearance, composition, cleanliness, degree of segregation, and mechanical properties as the material melted by VA or more. This leads to the conclusion that the process of PPC primary melting + VA remelting produces superior quality ingots more economically.

(ニ) 次にPPC溶解炉の蚭蚈䞊の留意点に぀いお
説明する。
(d) Next, we will explain the points to keep in mind when designing a PPC melting furnace.

蚭蚈にあた぀おは、前述のPPC溶解の特城
が最倧限に生かされるこずはもちろん、生産
性、安党性、操䜜性、保守性の面でも十分泚意
し次の特城をもたせる。
When designing, we not only maximized the features of PPC melting mentioned above, but also paid careful attention to productivity, safety, operability, and maintainability, and provided the following features.

(a) 原料添加、溶解、鋳造はいずれも真空容噚
ず同じ気密構造の䞭で行われる。
(a) Addition of raw materials, melting, and casting are all carried out in the same airtight structure as the vacuum vessel.

(b) 真空排気により雰囲気を完党にアルゎンガ
スに眮換できる。
(b) The atmosphere can be completely replaced with argon gas by evacuation.

(c) 台のフむヌダにより倖郚からバヌゞン材
やスクラツプを連続的に円滑に䟛絊できる。
(c) Virgin materials and scrap can be continuously and smoothly supplied from the outside using two feeders.

(d) 原料通路は広く、しかも原料をる぀が䞭心
に゜フトに添加できる。
(d) The raw material passage is wide, and raw materials can be added softly centered around the crucible.

(e) プラズマアヌクはる぀が䞊のたわりを自動
旋回し、撹拌コむルの効果も加わり䞀局広範
囲に加熱する。
(e) The plasma arc automatically rotates around the crucible, and the effect of the stirring coil is added to heat a wider area.

(f) アヌクの発生停止にトヌチ昇降操䜜は䞍
芁。
(f) There is no need to lift or lower the torch to stop arc generation.

(g) る぀がは亀換匏で、鋳塊サむズの倉曎が可
胜。
(g) The crucible is replaceable and the ingot size can be changed.

(h) 倚段シリンダ匏鋳塊匕䞋げで鋳塊宀が小さ
い。
(h) The ingot chamber is small due to the multi-stage cylinder type ingot lowering.

(i) 炉内の異垞昇圧に察し、レリヌフ匁、砎壊
口、る぀が自動分離、防爆壁の重の安党策
をも぀。
(i) It has four safety measures against abnormal pressure increase inside the reactor: a relief valve, a rupture port, automatic crucible separation, and an explosion-proof wall.

(j) 運転操䜜や炉内状況の監芖は、党お遠隔方
匏がずられ、操䜜単䜍ごずに自動化されおい
る。
(j) All operational operations and monitoring of conditions inside the reactor are conducted remotely, and each operation is automated.

次に実斜䟋の構成、䜜甚、および仕様の䞀䟋を
説明する。
Next, an example of the configuration, operation, and specifications of the embodiment will be explained.

本炉は、炉本䜓原料貯留槜、溶解宀、る぀
が、鋳塊宀、原料䟛絊蚭備秀量機、ベルトお
よびバケツトコンベダ、移動ホツパ、ドラムフむ
ヌダ、シ゚ヌト、真空排気蚭備油回転ポンプ、
メカニカルブヌスタポンプ、絊油装眮、絊気蚭
備アルゎンおよび空気、絊排氎蚭備および電
気蚭備プラズマ甚盎流電源装眮、動力盀、リレ
ヌ盀、プラズマ制埡盀、炉䜓操䜜盀で構成され
る。たた、本炉の基本的仕様は次の通りである。
This furnace consists of the main body (raw material storage tank, melting chamber, crucible, ingot chamber), raw material supply equipment (weighing machine, belt and bucket conveyor, moving hopper, drum feeder, seat), vacuum exhaust equipment (oil rotary pump,
It consists of a mechanical booster pump), oil supply equipment, air supply equipment (argon and air), water supply and drainage equipment, and electrical equipment (plasma DC power supply, power panel, relay panel, plasma control panel, furnace body operation panel). The basic specifications of this furnace are as follows.

(a) 甹途 消耗電極甚チタン鋳塊の補造 (b) 型匏 PPC−2000T (c) 溶解原料 スポンゞチタン、母合金、チタン
たたは合金屑最倧80mm角 (d) 鋳塊寞法 盎埄355mmおよび435mm最倧長さ
3000mm円柱状 (e) 鋳塊重量 最倧2000Kg (f) プラズマ出力 540kW (g) 溶解雰囲気 アルゎンガス倧気圧 (h) 原料フむヌダ 回転ドラム260Kg台×
台、切出速床〜Kgmin (i) 到達真空床 1.3Pa (j) ナヌテむリテむヌズ 䞻電源䞉盞、60Hz、3300V、1220kVA 冷华氎1.2m3min 圧瞮空気m3 Nチダヌゞ最倧1.5m3 N
min アルゎンガス溶解䞭0.3〜0.7m3 Nminガス眮
換時最倧m3 Nmin×8min 次に䞊蚘炉の各郚に぀き順を远぀お説明する。
(a) Application Production of titanium ingots for consumable electrodes (b) Model PPC-2000T (c) Melting raw materials Titanium sponge, master alloy, titanium or alloy scraps (up to 80 mm square) (d) Ingot dimensions Diameter 355 mm and 435 mm maximum length
3000mm (cylindrical) (e) Ingot weight Maximum 2000Kg (f) Plasma output 540kW (g) Melting atmosphere Argon gas (atmospheric pressure) (h) Raw material feeder Rotating drum (260Kg/unit x 2)
(i) Ultimate vacuum level 1.3Pa (j) Main power supply for utilities: 3-phase, 60Hz, 3300V, 1220kVA Cooling water: 1.2m 3 /min Compressed air: 5m 3 N /Charge (maximum 1.5m 3 N /
min) Argon gas: 0.3 to 0.7 m 3 N /min during melting, maximum 1 m 3 N /min x 8 min during gas replacement Next, each part of the above furnace will be explained in order.

(A) 原料䟛絊 原料は、たず粟床±0.05の自動秀量機に入
れられる。秀量機はチタンおよび皮類の合金
母材を、それぞれの貯蔵ホツパより電磁フむヌ
ダで切出し、ロヌドセルにお所定の配合率にな
るよう回20Kg単䜍で秀量する。秀量を終぀た
原料は、銘柄が混合しおベルトコンベダ䞊に
切出され、フロア面を搬送されおバケツトコン
ベダに導かれる。このコンベダは、炉䜓䞊方に
蚭けたドラムフむヌダぞ原料を運ぶもので、13
個のバケツトからなり、それぞれに20Kgず぀原
料を受けずる。ここたでの操䜜をバケツト装入
ず称し、自動的に行われる。これが終るずドラ
ムフむヌダの装入偎扉が開き、移動ホツパがそ
の開口郚ぞ移動しお、バケツト内の原料をドラ
ムフむヌダ内に送り蟌む。ドラムフむヌダは、
内埄1100mm、長さ3800mmの円筒気密容噚に、ほ
が内接する倧きさの回転ドラムを入れたもので
ある。回転ドラムの内面には螺旋の仕切りがあ
る。その仕切りはドラムの党長の範囲においお
13のピツチを有する。ドラム装入の操䜜により
ピツチ毎に20Kgず぀原料が自動装入される。
埓぀おドラム党長では合蚈13箇所に装入され
る。ドラム装入が終るずホツパが退避し、装入
偎扉が閉じお内郚が6.5Paに真空排気され、そ
の埌アルゎンが倧気圧たで導入される。溶解が
始たり原料䟛絊時期になるずドラムフむヌダの
切出偎シヌル匁が開き、ドラムの回転により仕
切り内の原料が混合されながら出口に移動しお
切出しが開始する。切出された原料はシナヌト
を通り溶解宀内の原料貯留槜ぞ向う。原料はこ
こで制動を受けお速床をゆるめ、そのたたる぀
がの䞭倮に萜䞋する。回転ドラムは〜
0.4rpmの範囲を埮现に速床調敎でき、る぀が
ぞ至る原料通路も140mm以䞊が確保されおいる
ので、倚皮圢状の原料が定量か぀円滑に䟛絊で
きる。ドラムフむヌダは台あり、䞀方が切出
し䞭に他方に原料が装入され、260Kg切出しご
ずに切り替えられる。この繰返しの操䜜は、原
料䟛絊ず称し、ガス眮換を含めお自動化されお
いる。たた各バケツトやドラム内での原料の装
入状態は、操䜜宀にグラフむツクで衚瀺され、
䞀目で残量が確認できる。
(A) Raw material supply Raw materials are first put into an automatic weighing machine with an accuracy of ±0.05%. The weighing machine cuts out titanium and two types of alloy base materials from their respective storage hoppers using an electromagnetic feeder, and weighs them in 20 kg units at a time using a load cell to achieve a predetermined blending ratio. After weighing, the three brands of raw materials are mixed and cut onto a belt conveyor, conveyed on the floor, and led to a bucket conveyor. This conveyor transports raw materials to the drum feeder installed above the furnace body.
It consists of several buckets, each of which receives 20 kg of raw materials. The operation up to this point is called bucket charging and is performed automatically. When this is completed, the charging side door of the drum feeder opens, the movable hopper moves to the opening, and the raw material in the bucket is fed into the drum feeder. The drum feeder is
It is a cylindrical airtight container with an inner diameter of 1100 mm and a length of 3800 mm, with a rotating drum that is almost inscribed inside it. The inner surface of the rotating drum has a spiral partition. The partition is within the entire length of the drum.
It has 13 pitches. The drum charging operation automatically charges 20 kg of raw material into each pitch.
Therefore, the drum is charged at a total of 13 locations along the entire length of the drum. When drum charging is complete, the hopper is evacuated, the charging side door is closed, and the interior is evacuated to 6.5 Pa, after which argon is introduced to atmospheric pressure. When melting begins and it is time to supply raw materials, the seal valve on the cut-out side of the drum feeder opens, and the raw materials in the partition are mixed by the rotation of the drum and moved to the outlet, where cut-out begins. The cut raw material passes through the chute and heads to the raw material storage tank inside the melting chamber. The raw material is braked here, slowing down, and falling directly into the center of the crucible. The rotating drum is 0~
The speed can be finely adjusted within a range of 0.4 rpm, and the raw material path leading to the crucible is over 140 mm, so raw materials of various shapes can be supplied quantitatively and smoothly. There are two drum feeders, and while one is cutting, material is charged to the other, and the feeder is switched every 260 kg. This repeated operation is called raw material supply and is automated, including gas replacement. In addition, the charging status of raw materials in each bucket or drum is displayed graphically in the control room.
You can check the remaining amount at a glance.

(B) 溶解鋳造 溶解宀の炉殻は内埄1700mm、高さ1200mm、内
面がステンレス、倖面が軟鋌の氎冷ゞダケツト
構造で、䞊䞋に分割されおいる。䞊郚の䞭倮開
口郚に原料貯留槜が挿入され、その回りには
本のプラズマトヌチがる぀が内郚に向けお察称
に取付けられおいる。䞋郚には、プラズマアヌ
クを発生させるための点匧棒が、トヌチ盎䞋た
で出し入れ可胜に取付けおある。䞋郚はフロア
に固定されお溶解宀党䜓を支え、䞊郚はロヌラ
で支えられ原料貯留槜のたわりに回転できるよ
うにな぀おおり、本のトヌチを最倧±60床、
最高1rpmの速床で旋回できる。この旋回には
油圧シリンダが甚いられ、旋回が円滑で気密が
確保されるよう接続郚は特別に工倫されおい
る。
(B) Melting and casting The furnace shell of the melting chamber has an inner diameter of 1700 mm, a height of 1200 mm, a water-cooled jacket structure with an inner surface made of stainless steel and an outer surface made of mild steel, and is divided into upper and lower parts. A raw material storage tank is inserted into the central opening at the top, and 6
A book plasma torch is installed symmetrically towards the inside of the crucible. At the bottom, an ignition rod for generating a plasma arc is attached so that it can be moved in and out just below the torch. The lower part is fixed to the floor and supports the entire melting chamber, and the upper part is supported by rollers and can rotate around the raw material storage tank, allowing the six torches to be rotated up to ±60 degrees.
It can turn at speeds up to 1 rpm. A hydraulic cylinder is used for this turning, and the connections are specially designed to ensure smooth turning and airtightness.

぀るがは、内面が銅、倖面がステンレスのゞ
ダケツト匏氎冷構造である。内郚には、゜レノ
むドコむルをもち、盎流および䜎呚波の亀流磁
界を発生する。
The crucible has a jacket-type water-cooled structure with copper on the inside and stainless steel on the outside. It has a solenoid coil inside that generates direct current and low frequency alternating current magnetic fields.

鋳塊宀は、内埄900mm、内高5500mmで、内郚
に鋳塊匕䞋げ装眮をもち、本の油圧ゞダツキ
により台車に支持されおいる。鋳塊宀の䞊には
る぀がが茉り、油圧ゞダツキの䞊昇ずそれに続
くバネの力でる぀がが溶解宀に連結される。鋳
塊匕䞋げ装眮は、倚段匏油圧シリンダずその䞊
に取付けたスタブクランプよりなる。溶解に先
立ち、VA溶解で残されるスタブをクランプ
し、倚段シリンダを䌞ばしおる぀がの内郚に眮
く。
The ingot chamber has an inner diameter of 900 mm and an inner height of 5500 mm, has an ingot lowering device inside, and is supported on a truck by four hydraulic jacks. A crucible is placed on top of the ingot chamber, and the crucible is connected to the melting chamber by the upward movement of a hydraulic jack and the subsequent force of a spring. The ingot lowering device consists of a multi-stage hydraulic cylinder and a stub clamp attached above it. Prior to melting, the stub left by VA melting is clamped and the multistage cylinder is placed inside the stretching crucible.

溶解を始めるには、炉内をたず真空に排気す
る。7500minの油回転ポンプず1500m3
のメカニカルブヌスタポンプが甚いられ、13分
で6.5Paに排気する。その埌アルゎンを導入し
倧気圧に保持する。これらの操䜜は、炉䜓アル
ゎン眮換の操䜜で自動的に行われる。
To begin melting, first evacuate the furnace. 7500/min oil rotary pump and 1500m 3 /h
A mechanical booster pump was used to pump the air to 6.5Pa in 13 minutes. Afterwards, argon is introduced and maintained at atmospheric pressure. These operations are automatically performed when the furnace body is replaced with argon.

次に絊氎、受電を行぀お溶解䜓制を敎え、プ
ラズマアヌク点匧に移る。トヌチ点匧の操䜜に
より、自動的に点匧棒挿入、パむロツトアヌク
点匧、メむンアヌク発生、点匧棒退避が行わ
れ、プラズマアヌクがる぀が内に向いスタブ端
面の溶解が始たる。溶解状況は、台のカラヌ
ITVにより操䜜宀で詳现に知るこずができる。
本のトヌチぞの絊電には、高圧受電盀、力率
改善コンデンサ盀、高圧倉圧噚が各台ず台
の点匧回路付サむリスタ盀からなる専甚盎流電
源が甚いられる。これは、定電流ず゜フトスタ
ヌトに優れ、単独回路ず䞊列回路のいずれ
も出力でき、耇数のトヌチの電流を䞀぀の蚭定
噚で広範囲に調敎できる。
Next, we will supply water and power, prepare the melting system, and move on to plasma arc ignition. By igniting the torch, the ignition rod is automatically inserted, the pilot arc is ignited, the main arc is generated, and the ignition rod is retracted, and the plasma arc is directed into the crucible and the stub end face begins to melt. The melting status is shown in two colors.
ITV provides detailed information in the control room.
To supply power to the six torches, a dedicated DC power supply consisting of a high-voltage power receiving board, a power factor correction capacitor board, one high-voltage transformer each, and six thyristor boards with ignition circuits is used. It has excellent constant current and soft start, can output either 6 individual circuits or 3 circuits in parallel, and can adjust the current of multiple torches over a wide range with a single setting device.

スタブ端面の溶解が進み溶湯が圢成される
ず、前述の原料䟛絊の操䜜で原料が溶湯䞭倮に
添加され、匕続いお鋳塊匕䞋げの操䜜により倚
段シリンダが䜎速䞋降を始める。その進行ず共
に溶湯䞋郚がる぀がで冷やされ、次第に成長し
た積局凝固塊が鋳塊内に匕出されおくる。この
間、プラズマアヌクは、磁界発生コむルによ぀
おアヌクの方向を制埡されながらトヌチの自動
旋回によ぀お旋回し、る぀が内党䜓を照射しお
添加される原料を急速に溶解する。たた溶湯も
磁界による撹拌力を受け、加熱が均䞀に行きわ
たる。
When the end face of the stub is melted and a molten metal is formed, the raw material is added to the center of the molten metal by the above-mentioned raw material supply operation, and then the multi-stage cylinder starts to descend at a low speed by the ingot lowering operation. As it progresses, the lower part of the molten metal is cooled in the crucible, and the laminated solidified ingot that has grown gradually is drawn out into the ingot. During this time, the plasma arc rotates by the automatic rotation of the torch while the direction of the arc is controlled by the magnetic field generating coil, and the entire inside of the crucible is irradiated to rapidly melt the added raw material. The molten metal is also subjected to the stirring force of the magnetic field, and is heated evenly.

鋳塊匕䞋げ量は、鋳塊宀に蚭けたストロヌク
蚈の信号を受信し、操䜜盀に図で衚瀺される。
溶解速床は、ドラムの回転速床の調敎で決た
り、これに合せお鋳塊匕䞋げ速床を蚭定する
が、運転者は床蚭定した埌はほずんど操䜜の
必芁がない。たたトヌチの操䜜に぀いおも、湯
枩のコントロヌルのための初期のパワヌ調敎の
倖は、ほずんど操䜜が䞍芁である。このため本
炉は䞀人の䜜業者で運転できる。
The ingot withdrawal amount is displayed graphically on the operation panel by receiving a signal from a stroke meter installed in the ingot chamber.
The melting speed is determined by adjusting the rotational speed of the drum, and the ingot drawing speed is set accordingly, but once the operator has set it, there is almost no need to perform any operations. There is also almost no need to operate the torch, other than the initial power adjustment to control the water temperature. Therefore, this furnace can be operated by one worker.

チタンの消耗電極甚鋳塊補造では、真比重の
90の比重の鋳塊を埗るような高速床でも原料
を䟛絊できる。そのため盎埄435mmの鋳塊補造
では300Kg以䞊の速床で溶解でき、電力原
単䜍も1800kWh以䞋が可胜である。
In the production of titanium ingots for consumable electrodes, the true specific gravity is
Raw materials can be fed at high speeds to obtain ingots with a specific gravity of 90%. Therefore, when producing an ingot with a diameter of 435 mm, it is possible to melt at a rate of more than 300 kg/h, and the power consumption can be less than 1,800 kWh/t.

溶解䞭は垞時露点蚈で炉内雰囲気が監芖さ
れ、たた䜕らかの原因で炉内が異垞に昇圧した
堎合、レリヌフ匁が開き、さらに圧が高くなる
ずる぀がが自動的に溶解宀から分離し、溶解宀
に取付けた防爆口が砎壊しお炉内圧を逃がす。
䜜業者は、運転䞭炉䜓回りの防爆壁内に入る必
芁がないため、危害が及ぶこずがない。
During melting, the atmosphere inside the furnace is constantly monitored by a dew point meter, and if the pressure inside the furnace rises abnormally for some reason, the relief valve opens, and when the pressure rises further, the crucible is automatically separated from the melting chamber, and the melting chamber The explosion-proof port installed in the reactor is destroyed and the pressure inside the reactor is released.
Workers do not have to enter the explosion-proof wall around the reactor body during operation, so they are not in any danger.

(C) 鋳塊取出し 溶解が所定量終了するず、アヌク停止の操䜜
で自動的に冷华プロセスに入り、アルゎン雰囲
気を維持しお鋳塊が冷やされ、その埌空気に眮
換される。冷华埌は、鋳塊宀昇降ゞダツキを操
䜜しおる぀がず鋳塊宀を台車に茉せ、油圧駆動
で氎平に移動しお鋳塊取出し䜍眮に移す。る぀
がをクレヌンで陀き、スタブクランプを解陀し
お鋳塊をクレヌンで吊り出す。取出された鋳塊
は、そのたた䞊䞋逆にしおスタブ郚分をVA炉
にクランプし、消耗電極ずしお再溶解される。
(C) Removal of the ingot When a predetermined amount of melting is completed, the cooling process is automatically started by stopping the arc, and the ingot is cooled while maintaining the argon atmosphere, after which it is replaced with air. After cooling, the crucible and ingot chamber are placed on a trolley by operating the ingot chamber lifting jack, and moved horizontally by hydraulic drive to the ingot removal position. The crucible is removed with a crane, the stub clamp is released, and the ingot is lifted out with a crane. The removed ingot is turned upside down and the stub portion is clamped in a VA furnace, where it is remelted as a consumable electrode.

(D) 溶解サむクルタむム PPC溶解における䞀連の䜜業時間の䞀䟋を
次に瀺す。
(D) Melting cycle time An example of a series of work times for dissolving PPC is shown below.

●鋳塊取出しおよび溶解準備72分 ●原料のバツト装入12分 ●原料のドラム装入10分 ●溶解炉本䜓アルゎン眮換14分 ●溶解鋳造300〜400分 ●冷华および空気眮換265分 すなわち、溶解のサむクルは11〜13時間ず
なり、盎皌動では月産75t以䞊が可胜である。
尚本炉はもちろんのこずながらニオブやゞルコ
ニりム等の他の掻性金属にも適甚でき、たた各
皮機胜材料氎玠吞蔵合金、圢状蚘憶合金、超
䌝導合金等の䞀次溶解炉ずしおも有効であ
る。
● Ingot removal and preparation for melting; 72 minutes ● Raw material charging into the vat; 12 minutes ● Raw material drum charging; 10 minutes ● Argon replacement in the melting furnace body; 14 minutes ● Melting and casting; 300 to 400 minutes ● Cooling and air replacement ;265 minutes In other words, one melting cycle takes 11 to 13 hours, and monthly production of 75 tons or more is possible with three-shift operation.
This furnace can of course be applied to other active metals such as niobium and zirconium, and is also effective as a primary melting furnace for various functional materials (hydrogen storage alloys, shape memory alloys, superconducting alloys, etc.).

次に前蚘溶解鋳造装眮を図面に基づいお説明す
る。䞊蚘装眮は第図に瀺されるように、原料䟛
絊蚭備ずプラズマ溶解装眮ず、鋳造装眮ず
を含む。先ず原料䟛絊蚭備においお、バケツト
コンベアは13個のバケツトを有しおお
り、図瀺倖の秀量装眮により秀量された原料をバ
ケツトに受取぀た埌それを䞊方のホツパヌ
に向けお搬送する。䞊蚘コンベアの隣に構築さ
れたフレヌムの䞊には原料䟛絊装眮ずしお甚
いられおいるドラムフむヌダが備えられおい
る。このドラムフむヌダは二぀が䞊列状に䞊
べお備えられおいるもう䞀぀は第図においお
図瀺されおいるものの向こう偎に隠されおいる。
䞊蚘各ドラムフむヌダの䞀端には装入口
が備えられ、ホツパヌから原料を受け入れ埗
るようにな぀おいる。その装入口は原料装入
しない堎合は扉で閉じられる様にな぀おいる。又
ドラムフむヌダの他端にはシナヌトが接
続されおいる。
Next, the melting and casting apparatus will be explained based on the drawings. As shown in FIG. 1, the apparatus includes a raw material supply facility A, a plasma melting device B, and a casting device C. First, in the raw material supply facility A, the bucket conveyor 11 has 13 buckets 12, and after receiving the raw material weighed by a weighing device (not shown) into the buckets 12, it is transferred to the upper hopper 1.
Transport towards 3. A drum feeder 15 used as a raw material supply device is provided on a frame 14 constructed next to the conveyor. Two drum feeders 15 are provided side by side (the other is hidden behind the one shown in FIG. 1).
A charging port 16 is provided at one end of each drum feeder 15.
The hopper 13 is equipped with a hopper 13 and is capable of receiving raw materials. The charging port 16 is closed with a door when raw materials are not being charged. Further, a chute 17 is connected to the other end of the drum feeder 15.

次にプラズマ溶解装眮においお、䞊蚘フレヌ
ムには䞊蚘ドラムフむヌダの䞋方の䜍眮
においお溶解宀が固定されおいる。この溶解
宀は内郚を密閉できる様に構成されおいるず
共に䞊郚の䞭倮郚には原料の装入郚が備わ぀
おいる。装入郚の䞊方は気密包囲郚によ
぀お芆われおおり溶解宀の密封状態を保ち埗
る様にな぀おいる。又、気密包囲郚には前蚘
シナヌトが連通しおいる。䞀方装入郚の
䞋方においおは前蚘気密包囲郚ず䞀䜓圢成の
ガむド筒が垂䞋しおおり前蚘シナヌトか
ら装入郚に向けお装入されおきた原料がその
ガむド筒でガむドされお埌に述べるる぀がの
䞭倮郚分に萜䞋する様にな぀おいる。䞊蚘溶解宀
には䞊蚘装入郚の呚囲においお本のプ
ラズマトヌチが取付けおある。これらのプラ
ズマトヌチは互いに60床の間隔を隔おお取付
けおあり倫々の内郚の陰極は倫々専甚の盎流電源
の負端子に接続されおいる。溶解宀の䞋郚に
は支持杆が図においお巊右ぞの進退を自圚に
備えられおいる。その支持杆の先端には着匧
ピヌスが取付けおある。又支持杆の埌端
は進退装眮に連結されお支持杆が䞊述の
方向に移動できる様にな぀おいる。
Next, in the plasma melting apparatus B, a melting chamber 20 is fixed to the frame 14 at a position below the drum feeder 15. The melting chamber 20 is constructed to be able to be sealed internally, and is provided with a raw material charging section 21 in the upper center. The upper part of the charging part 21 is covered by an airtight surrounding part 22, so that the melting chamber 20 can be kept in a sealed state. Further, the airtight enclosure portion 22 is connected to the chute 17 . On the other hand, below the charging section 21, a guide tube 23 integrally formed with the airtight surrounding section 22 hangs down, and the raw material charged from the chute 17 toward the charging section 21 is guided by the guide tube 23. It is designed so that it falls into the center of the crucible, which will be described later. Six plasma torches 24 are attached to the melting chamber 20 around the charging section 21. These plasma torches 24 are mounted at intervals of 60 degrees from each other, and the internal cathodes of each are connected to the negative terminal of a dedicated DC power supply. A support rod 25 is provided at the bottom of the dissolution chamber 20 so as to be freely movable left and right in the figure. An arching piece 26 is attached to the tip of the support rod 25. Further, the rear end of the support rod 25 is connected to a reciprocating device 27 so that the support rod 25 can move in the above-mentioned direction.

次に鋳造装眮に぀いお説明する。この鋳造装
眮はピツトの内郚に備えられおいる。ピツ
トの底には支持脚が備わ぀おおり、その
䞊郚にはレヌルが第図においお玙面ず垂盎
な方向に長く備えられおいる。台車は車茪
を有しおおり䞊蚘レヌルに沿぀お移動で
きる様にな぀おいる。台車には油圧ゞダツキ
が取付けおあり、そのピストンロツドにはブ
ラケツトを介しお鋳塊宀が取付けおあ
る。鋳塊宀の䞊郚にはる぀がが備えられ
おおり、そのる぀がは前蚘溶解宀の䞋郚
に圢成された透孔に嵌合する。る぀がは呚知
の劂くその内郚に溶湯プヌルを圢成する。鋳塊宀
の内郚にはむンゎツト匕䞋装眮が備えら
れおいる。この匕䞋装眮は倚段シリンダをも
぀お構成されおいる。匕䞋装眮の䞊端にはス
タブクランプが備わ぀おおり、そこにはる぀
がの内偎においおる぀が底を構成すスタブ
が取付けおあり、スタブクランプにはスタ
ブぞ絊電するための絊電端子が各プラズマトヌチ
の前蚘盎流電源の正端子に接続できるよう蚭けら
れおいる。
Next, the casting apparatus C will be explained. This casting device C is provided inside the pit 31. A supporting leg 32 is provided at the bottom of the pit 31, and a long rail 33 is provided above the supporting leg 32 in a direction perpendicular to the plane of the paper in FIG. The trolley 34 has wheels 3
4a, so that it can move along the rail 33. A hydraulic jack 35 is attached to the truck 34, and an ingot chamber 36 is attached to its piston rod via a bracket 35a. A crucible 37 is provided in the upper part of the ingot chamber 36, and the crucible 37 fits into a through hole formed in the lower part of the melting chamber 20. As is well known, the crucible 37 forms a molten metal pool therein. An ingot pulling device 38 is provided inside the ingot chamber 36. This pulling device 38 is constructed with a multi-stage cylinder. A stub clamp 39 is provided at the upper end of the pulling device 38, and a stub 4 constituting the crucible bottom inside the crucible 37 is attached to the stub clamp 39.
0 is attached, and the stub clamp 39 is provided with a power supply terminal for supplying power to the stub so that it can be connected to the positive terminal of the DC power supply of each plasma torch.

次に䞊蚘構成のものの䜜動を第図に基づいお
順を远぀お説明する。尚第図においおドラムフ
むヌダは理解を容易にする為に巊右に䞊べお
瀺しおある。たず第図に瀺される様に各ドラ
ムフむヌダの出口偎のシヌル匁を閉じた
状態でそれらのドラムフむヌダに原料が装入
されるず共にその内郚空間がアルゎンガスで眮換
される。たたシヌル匁を閉じた状態で溶解宀
、鋳塊宀の内郚が真空排気され、曎にア
ルゎンガスが気圧たで送り蟌たれる。次にに
瀺される劂く着匧ピヌスをプラズマトヌチ
の䞋に移動させる。次にに瀺される様にその
着匧ピヌスず各プラズマトヌチずの間で
プラズマアヌクを点匧させる。次にに瀺される
様に着匧ピヌスを各プラズマトヌチの䞋
から暪方向に退避させお各プラズマトヌチか
らスタブに向かうメむンアヌクを圢成させ
る。この状態においお、スタブの䞊端が䞊蚘
プラズマアヌクによ぀お溶かされ、そこに溶湯プ
ヌルが圢成される。次にに瀺す劂く䞀方
のドラムフむヌダにおけるシヌル匁を開
き、原料をシナヌトを介しお溶解宀の装
入郚に送り蟌む。その原料はガむド筒で
ガむドされお䞊蚘溶湯プヌルの䞭倮郚に向
けお萜䞋する。そしおその萜䞋した原料はプラズ
マトヌチからのプラズマアヌクによ぀お溶解
される。䞊蚘の様に原料を順次溶解する堎合、匕
䞋装眮を䜜動させお䞊蚘スタブを順次䞋
降させる。その䞋降の速床は䞊蚘溶湯プヌル
の䞊面が垞に䞀定の高さ䜍眮に存圚する様な速
床、即ちる぀が内ぞの䞊蚘原料の単䜍時間圓りの
装入量に察応した速床にする。この様な操䜜を継
続するこずにより、る぀が内に先に装入された原
料が溶解しおできた溶融物は、氎冷構造のる぀が
によ぀お冷华されお䞊蚘スタブず䞀䜓の
むンゎツトずなり、そのむンゎツトは䞊
蚘スタブの䞋降により順次䞋方に向けお匕き
出され、第図に瀺される劂く順次長くな぀お
いく。䞊蚘の様な操䜜を継続するうち䞀方のドラ
ムフむヌダ内の原料が溶解宀に向け䟛絊し尜
くされたならば、に瀺される劂くそのドラムフ
むヌダのシヌル匁を閉じるず共に他方の
ドラムフむヌダのシヌル匁を開きこの
堎合シヌル匁が開かれる偎のドラムフむヌダ
内は予めアルゎンガスで眮換されおいる、
そのドラムフむヌダから原料を溶解宀に
向け前述の堎合ず同様に䟛絊する。そしお䞊蚘空
にな぀たドラムフむヌダには再び前蚘バケツ
トコンベアから原料を装入する。䞊蚘の様な
操䜜を繰り返すこずによりやがおに瀺す劂く所
定の倧きさのむンゎツトが圢成されたなら
ば、溶解宀ぞの原料の䟛絊を停止するず共に
プラズマアヌクの発生も停止する。然る埌鋳塊宀
の内郚をアルゎン雰囲気に保぀た状態で䞊蚘
むンゎツトを冷华する。そしおそのむンゎツ
トが空気に觊れおも酞化しない皋床の枩床た
で冷えたならば、鋳塊宀の内郚を空気ず眮換
する。その埌に瀺される様に鋳塊宀及びる
぀がを溶解宀から切り離し、それらを台
車でも぀おむンゎツト取出し䜍眮ぞ移動させ
る。然る埌に瀺される様にる぀がをクレヌ
ンで取陀き、スタブクランプを解陀しおむン
ゎツトをクレヌンで吊り出す。その取出され
たむンゎツトは次にに瀺される様に䞊䞋を
逆にした状態で呚知の再溶解炉に装入し、そのむ
ンゎツトを消耗電極ずしお再溶解させお、に瀺
される劂く再溶解したむンゎツトを圢成す
る。この堎合スタブずしお再利甚する郚分を
残したずころたで再溶解を行なう。残぀たスタブ
は再びむンゎツト匕䞋装眮に装填しお、
䞊述の堎合ず同様の鋳造䜜業に利甚する。
Next, the operation of the above-mentioned structure will be explained step by step based on FIG. In FIG. 2, the drum feeders 15 are shown side by side for ease of understanding. First, as shown in FIG. 2A, raw materials are charged into each drum feeder 15 with the seal valve 43 on the outlet side of each drum feeder 15 closed, and the internal space thereof is replaced with argon gas. Further, with the seal valve 43 closed, the interiors of the melting chamber 20 and the ingot chamber 36 are evacuated, and argon gas is further fed to a pressure of 1 atmosphere. Next, as shown in FIG.
Move it below 4. Next, as shown in C, a plasma arc is ignited between the arc ignition piece 26 and each plasma torch 24. Next, as shown in D, the arcing piece 26 is laterally retracted from below each plasma torch 24 to form a main arc from each plasma torch 24 toward the stub 40. In this state, the upper end of the stub 40 is melted by the plasma arc, and a molten metal pool 37a is formed there. Next, as shown in E, the seal valve 43 in one drum feeder 15 is opened, and the raw material is fed into the charging section 21 of the melting chamber 20 via the chute 17. The raw material is guided by the guide tube 23 and falls toward the center of the molten metal pool 37a. The fallen raw material is then melted by a plasma arc from the plasma torch 24. When the raw materials are sequentially melted as described above, the lowering device 38 is operated to lower the stubs 40 one after another. The speed of the descent is the molten metal pool 37
The speed is such that the upper surface of the crucible is always at a constant height, that is, the speed is set to correspond to the amount of the raw material charged into the crucible per unit time. By continuing such operations, the molten material created by melting the raw material charged earlier into the crucible is cooled by the water-cooled crucible 37 and becomes an ingot 44 integrated with the stub 40. As the stub 40 descends, the ingot 44 is successively pulled out downward and becomes longer as shown in FIG. 2E. When the raw material in one drum feeder 15 is completely supplied to the melting chamber while continuing the above operations, the seal valve 43 of that drum feeder 15 is closed as shown in F, and the seal of the other drum feeder 15 is closed. Open the valve 43 (in this case, the inside of the drum feeder 15 on the side where the seal valve 43 is opened has been replaced with argon gas in advance),
The raw material is supplied from the drum feeder 15 to the melting chamber 20 in the same manner as in the above case. Then, the empty drum feeder 15 is again charged with raw material from the bucket conveyor 11. By repeating the above operations, when an ingot 44 of a predetermined size is formed as shown in G, the supply of raw materials to the melting chamber 20 is stopped, and the generation of plasma arc is also stopped. Thereafter, the ingot 44 is cooled while the inside of the ingot chamber 36 is kept in an argon atmosphere. When the ingot 44 has cooled to a temperature at which it will not oxidize even when exposed to air, the inside of the ingot chamber 36 is replaced with air. Thereafter, as shown in H, the ingot chamber 36 and crucible 37 are separated from the melting chamber 20, and moved to the ingot removal position using the cart 34. Thereafter, as shown in H, the crucible 37 is removed by the crane 42, the stub clamp is released, and the ingot 44 is lifted out by the crane. The removed ingot 44 is then charged upside down as shown in I into a well-known remelting furnace, and the ingot is remelted as a consumable electrode, and then remelted as shown in J. An ingot 45 is formed. In this case, remelting is performed until a portion to be reused as the stub 40 remains. The remaining stub 40 is loaded into the ingot pulling device 38 again, and
It is used for casting operations similar to those described above.

次にプラズマ溶解装眮を詳现に瀺す第図に
぀いお説明する。溶解宀は前蚘る぀が内
の溶湯プヌルの䞊方空間を囲むようにした
䞭空の炉壁をも぀お構成しおある。䞊蚘炉壁
は䞋郚炉壁ず䞊郚炉壁から成る。これら
の炉壁は䜕れも呚知の劂く氎冷構造ず
な぀おいる。䞋郚炉壁の䞊郚ず䞊郚炉壁
の䞋郚ずの連結郚においおは連結郚材が備え
られおいお、䞊郚炉壁が䞋郚炉壁に察し
回動自圚ずな぀おいる。然もそれら䞋郚炉壁
ず䞊郚炉壁ずの間には、炉壁の内郚ず倖
郚ずを隔おるセパレヌト手段が蚭けられおいお、
炉壁の内郚ず倖郚ずの間で気䜓の流通が生じ
ない様にな぀おいる。次に䞊蚘気密包囲郚は
筒郚ずその䞊端を閉ざすプレヌトを含
む。筒郚の偎壁には点怜口や原料の送蟌
口が蚭けおある。送蟌口には前蚘シナヌ
トず連通するパむプが備えられおい
る。又筒郚の䞋郚ず前蚘䞊郚炉壁の䞊郚
ずの連結郚は連結郚材を甚いお構成されおお
り、䞊郚炉壁が筒郚に察しお回動自圚ず
な぀おいる。たたそこには䞊述のものず同様のセ
パレヌト手段が備わ぀おいる。次に前蚘ガむド筒
は原料貯留槜ずも呌び、盎円筒状の䞊郚ガむ
ド筒ずその䞋端に連蚭されたテヌパヌ状の䞋
郚ガむド筒ずから成る。䞋郚ガむド筒の
内面にはチタンで圢成されたラむニングが備
えられおいる。尚䞊蚘気密包囲郚及びガむド
筒は前述の劂く䞀䜓に圢成され、又これらは
呚知の劂く氎冷構造に構成されおいる。次に䞊蚘
筒郚及び䞊郚ガむド筒の軞心䜍眮にはプ
レヌトに固定されたガむド筒が垂䞋状に
備えさせおある。このガむド筒はチタンで倖
匵されおいる。埓぀お、送蟌口から送り蟌た
れるチタンの原料がこのガむド筒に衝突しお
ガむド筒の䞀郚が削り取られそれが原料ず共
にる぀が内に入぀お溶解される様なこずがあ
぀おも、前述の様に圢成されるむンゎツトの玔床
が䜎䞋する様なこずはない。ガむド筒の䞋郚
にはチタンで筒状に圢成された制限䜓が備わ
぀おいる。この制限䜓はガむド筒内に䞊
䞋動自圚に備えられ昇降筒の䞋端に取付けお
ある。䞊蚘制限䜓及び昇降筒内には内筒
が挿通されおいおそれらは重管構造ずな぀
おいる。又昇降筒の䞊郚には絊氎口ず排
氎口ずが備わ぀おいる。絊氎口から送り
蟌たれる冷华氎は、内筒内及び制限䜓、
昇降筒内を矢印で瀺される様に流通しおそれ
らを冷华した埌、排氎口から排出される。前
蚘プレヌトには支持フレヌムが取付けら
れその䞊郚には昇降甚シリンダが取付けおあ
る。シリンダのピストンロツドは連結具
を介しお昇降筒に連結しおあり、シリン
ダの䜜動によ぀お制限䜓を䞊䞋動させ埗
る様にな぀おいる。尚本件明现曞䞭では䞊蚘シリ
ンダ、昇降筒等を制限䜓の昇降手段
ずも呌ぶ。
Next, FIG. 3, which shows the plasma melting apparatus B in detail, will be explained. The melting chamber 20 has a hollow furnace wall 50 surrounding the space above the molten metal pool 37a in the crucible 37. The furnace wall is composed of a lower furnace wall 51 and an upper furnace wall 52. Both of these furnace walls 51 and 52 have a water-cooled structure as is well known. The upper part of the lower furnace wall 51 and the upper furnace wall 52
A connecting member 53 is provided at the connecting portion with the lower part of the furnace, and the upper furnace wall 52 is rotatable with respect to the lower furnace wall 51. However, those lower furnace walls 51
Separation means is provided between the upper furnace wall 52 and the inside of the furnace wall 50 and the outside,
No gas flow occurs between the inside and outside of the furnace wall 50. Next, the airtight enclosure 22 includes a cylindrical portion 54 and a plate 55 closing the upper end of the cylindrical portion 54. An inspection port 56 and a raw material inlet 57 are provided in the side wall of the cylindrical portion 54 . The inlet 57 is provided with a pipe 57a communicating with the chute 17. Further, a connecting portion between the lower part of the cylindrical part 54 and the upper part of the upper furnace wall 52 is constructed using a connecting member 58, so that the upper furnace wall 52 is rotatable with respect to the cylindrical part 54. It is also provided with separation means similar to those described above. Next, the guide tube 23 is also called a raw material storage tank, and consists of a right cylindrical upper guide tube 59 and a tapered lower guide tube 60 connected to the lower end thereof. The inner surface of the lower guide tube 60 is provided with a lining 61 made of titanium. The airtight enclosure 22 and the guide cylinder 23 are integrally formed as described above, and have a water-cooled structure as is well known. Next, a guide tube 67 fixed to the plate 55 is provided in a hanging shape at the axial center position of the tube portion 54 and the upper guide tube 59. This guide tube 67 is lined with titanium. Therefore, there is a possibility that the titanium raw material sent from the feed port 57 collides with this guide cylinder 67, and a part of the guide cylinder 67 is scraped off, which enters the crucible 37 together with the raw material and is melted. However, the purity of the ingot formed as described above does not decrease. The lower part of the guide tube 67 is provided with a limiter 68 made of titanium and formed into a cylindrical shape. This limiter 68 is provided within the guide tube 67 so as to be able to move up and down, and is attached to the lower end of the elevating tube 69. An inner cylinder 70 is inserted into the limiter 68 and the elevating cylinder 69, and they have a double pipe structure. Further, the upper part of the elevating tube 69 is provided with a water supply port 71 and a drain port 72. Cooling water sent from the water supply port 71 flows into the inner cylinder 70 and the restriction body 68,
After flowing through the elevator cylinder 69 as shown by the arrow and cooling them, they are discharged from the drain port 72. A support frame 73 is attached to the plate 55, and an elevating cylinder 74 is attached to the upper part of the support frame 73. A piston rod 75 of the cylinder 74 is connected to the elevating cylinder 69 via a coupling 76, so that the restriction body 68 can be moved up and down by the operation of the cylinder 74. In this specification, the cylinder 74, the elevating tube 69, etc. are also referred to as elevating means for the restricting body 68.

次に、前蚘プラズマトヌチは呚知のトヌチ
取付具を甚いお䞊郚炉壁に電気的に絶瞁
しお取付けおある。䞀方溶解宀の䞋郚におい
お、前蚘着匧ピヌスは支持杆に察しおブ
ラケツトを甚いお取付けおあり、本明现曞で
はこの組合せを点匧棒ずも呌ぶ。又この着匧ピヌ
スは支持杆が図においお右方ぞ移動する
こずによ぀お䞋郚炉壁の䞀郚に圢成された収
玍宀内に収玍される様にな぀おいる。䞀方前
蚘る぀がの呚囲には、プラズマトヌチか
ら発せられるプラズマアヌクを偏向させる為の磁
界発生コむルが呚知の劂く備わ぀おいる。
Next, the plasma torch 24 is electrically insulated and mounted on the upper furnace wall 52 using a well-known torch mount 62. On the other hand, in the lower part of the melting chamber 20, the arcing piece 26 is attached to the support rod 25 using a bracket 63, and this combination is also referred to herein as an ignition rod. Further, this arcing piece 26 is stored in a storage chamber 64 formed in a part of the lower furnace wall 51 by moving the support rod 25 to the right in the figure. On the other hand, a magnetic field generating coil 78 for deflecting the plasma arc emitted from the plasma torch 24 is provided around the crucible 37 as is well known.

次に䞋郚炉壁ず䞊郚炉壁ずの連結郚の
構成を図面第図、第図、第図及び第図に
基づいお説明する。䞊蚘連結郚においお連結郚材
は䞋郚炉壁に固定されたフランゞず
䞊郚炉壁に固定されたフランゞを有す
る。フランゞには環状に圢成された保持䜓
の基郚がボルトを甚いお固定しおあ
る。保持䜓は筒状の保持壁を有しおお
り、その倖呚偎に圢成された本の溝には倫々
リングが保持されおいる。又それ
らリングの間にはグリス䟛絊溝
が保持壁の党呚に枡぀お備わ぀おい
る。保持䜓の内郚においおは䞊蚘グリス䟛絊
溝に連通するグリス䟛絊孔が圢成さ
れおいる。その䟛絊孔は呚知の劂く絊脂口
及び排脂口に接続されおいお、垞に䟛絊溝
にグリスを䟛絊できる様にな぀おいる。保持䜓
における基郚の䞊面には、䞊郚炉壁の
重量を支える為の支持䜓が第図に瀺す劂く
倚数取り付けおある。この支持䜓は䞊蚘基郚
の䞊面に取付けられた軞受ずそれに回
動自圚に取付けた支持ロヌラから成る。䞀
方フランゞには環状に圢成されたシヌル䜓
の基郚がボルトを甚いお取付け
おある。シヌル䜓は筒状のシヌル壁
を有しおおり、その壁の内面は前蚘リン
グに接觊しおいる。埓぀おのシヌル壁
ずリングずの接觊により、溶解宀内郚
の雰囲気が倖郚に挏れたり倖郚の空気が溶解宀の
内郚に流入したりするこずが防止される。この構
造を本件明现曞䞭ではセパレヌト手段ずも呌ぶ。
このセパレヌト手段は他の任意呚知の構成であ぀
おもよい。尚シヌル壁ずリングず
の接觊郚分には前蚘グリス䟛絊溝を介しお
グリスが䟛絊され、リングの寿呜が長く
なる様にされおいる。シヌル䜓における基
郚の䞋面には環状の圓お板が取付け
おあり、その圓お板が前蚘支持ロヌラ
の䞊に乗぀おいる。次に䞊蚘保持壁の内呚
偎には䞊郚炉壁の䞀郚をも぀お構成されおい
る遮熱壁が存圚しおおり、溶解宀内のプラ
ズマアヌクの茻射熱によ぀お保持壁が高枩化
しその結果リングが傷む様なこずを防止
する様にな぀おいる。保持䜓における基郚
の䞊面には䞊郚炉壁の芯振れを阻止する為
の振止具が備わ぀おいる。この振止具は
支持ブロツクず振止ロヌラを含む。
支持ブロツクは基郚の䞊偎面に第図
においお巊右方向炉壁の半埄方向ぞ移動
自圚に備えられおおり、その支持ブロツク
には振止ロヌラが回動自圚に取付けおあ
る。䞊蚘基郚の倖呚偎に䞀䜓に圢成された立
䞊郚には抌ねじが螺装しおあり、そ
の抌ねじを回動させるこずによ぀お前蚘支
持ブロツクを䞊蚘の方向に移動させロヌラ
をシヌル壁の倖呚面に隙間なく圧接
させ埗る様にな぀おいる。尚抌ねじの無甚
の回動はロツクナツトによ぀お阻止する様
にな぀おいる。このように䞊郚炉壁が䞋郚炉
壁に察し支持具で支えられか぀振止具
で振止されおいる為、䞊郚炉壁は䞋郚炉壁
に察し軜い力で円滑に回動できる。支持具
の倖呚偎においおはフランゞに取付けられ
た円筒状の防塵カバヌが備わ぀おおり、然
もその防塵カバヌの䞊端のフランゞ郚は凹
溝の内郚に入り蟌たせおあ぀お、䞊蚘セパ
レヌト手段、支持具及び振止具に向けお
ごみが入るこずが防止されおいる。その結果䞋郚
炉壁に察する䞊郚炉壁の回動が垞に円滑
に行なわれ埗る様にな぀おいる。
Next, the configuration of the connecting portion between the lower furnace wall 51 and the upper furnace wall 52 will be explained based on FIGS. 4, 5, 7, and 8. In the connecting portion, the connecting member 53 has a flange 81 fixed to the lower furnace wall 51 and a flange 82 fixed to the upper furnace wall 52. A retainer 9 formed in an annular shape is attached to the flange 81.
A base 98 of 7 is fixed using a bolt 96. The holding body 97 has a cylindrical holding wall 99, and two grooves formed on the outer circumferential side of the holding wall 99 each have an O.
Rings 100, 100 are held. Further, a grease supply groove 101 is provided between the O-rings 100, 100 over the entire circumference of the retaining wall 99. A grease supply hole 102 communicating with the grease supply groove 101 is formed inside the holding body 97 . As is well known, the supply hole 102 is connected to a greasing port and a greasing port, and is always connected to the supply groove 101.
It is now possible to supply grease to the Holder 9
A large number of supports 83 for supporting the weight of the upper furnace wall 52 are attached to the upper surface of the base 98 at 7, as shown in FIG. This support body 83 consists of a bearing 103 attached to the upper surface of the base 98 and a support roller 104 rotatably attached to the bearing 103. On the other hand, the flange 82 has a seal body 1 formed in an annular shape.
A base 107 of 06 is attached using bolts 105. The seal body 106 has a cylindrical seal wall 108
The inner surface of the wall 108 is in contact with the O-ring 100. Former sealing wall 10
8 and the O-ring 100 prevent the atmosphere inside the melting chamber from leaking to the outside and prevent outside air from flowing into the inside of the melting chamber. This structure is also referred to as separation means in this specification.
The separating means may be of any other known configuration. Grease is supplied to the contact portion between the seal wall 108 and the O-ring 100 through the grease supply groove 101, so that the life of the O-ring 100 is extended. An annular backing plate 109 is attached to the lower surface of the base 107 of the seal body 106, and the backing plate 109 is attached to the support roller 10.
It's on top of 4. Next, on the inner peripheral side of the retaining wall 99, there is a heat shielding wall 110 made up of a part of the upper furnace wall 52, and the retaining wall 99 is heated by the radiant heat of the plasma arc in the melting chamber. This is designed to prevent the O-ring 100 from becoming damaged due to high temperatures. Base 9 in holding body 97
A vibration stopper 84 is provided on the upper surface of the furnace wall 8 to prevent the upper furnace wall 52 from wobbling. This steady rest 84 includes a support block 114 and a steady rest roller 115.
A support block 114 is provided on the upper surface of the base 98 so as to be movable in the left-right direction (radial direction of the furnace wall 50) in FIG.
A steady roller 115 is rotatably attached to the holder. A set screw 117 is screwed onto the upright portion 116 integrally formed on the outer peripheral side of the base 98, and by rotating the set screw 117, the support block 114 is moved in the above direction. The roller 115 can be brought into pressure contact with the outer peripheral surface of the seal wall 108 without any gaps. Incidentally, unnecessary rotation of the set screw 117 is prevented by a lock nut 118. In this way, the upper furnace wall 52 is supported by the supporter 83 against the lower furnace wall 51, and the steadying device 8
4, the upper furnace wall 52 can be smoothly rotated with a light force with respect to the lower furnace wall 51. Support 8
3 is provided with a cylindrical dustproof cover 111 attached to the flange 81, and the flange portion at the upper end of the dustproof cover 111 is inserted into the inside of the groove 112, and the above-mentioned separate Dust is prevented from entering the means, the support 83 and the steady rest 84. As a result, the upper furnace wall 52 can always rotate smoothly with respect to the lower furnace wall 51.

次に䞊郚炉壁ず包囲郚ずの連結郚の構
成を図面第図及び第図に基づいお説明す
る。連結郚材は䞊郚炉壁に固定されたフ
ランゞず気密包囲郚に固定されたフラ
ンゞを有する。䞊蚘䞡フランゞ
の間にはセパレヌト手段及び耇数の支持具振
止具が備わ぀おいる。尚それらセパレヌト手段、
支持具及び振止具に関しおは、前蚘䞋方の連結郚
ず均等の構成である為、機胜䞊均等ず考えられる
郚分には同䞀の笊号にアルフアベツトのを付し
お重耇する説明を省略する。
Next, the configuration of the connecting portion between the upper furnace wall 52 and the surrounding portion 22 will be explained based on FIGS. 9 and 10. The connecting member 58 has a flange 121 fixed to the upper furnace wall 52 and a flange 122 fixed to the airtight enclosure 22. Both flanges 121,1 mentioned above
Separation means and a plurality of supporting devices are provided between 22. In addition, those separate means,
As for the supporting device and the steadying device, since they have the same structure as the above-mentioned lower connecting portion, parts that are considered to be functionally equivalent will be given the same reference numerals with the letter e and redundant explanation will be omitted.

次に第図には䞊郚炉壁に連結された回動
装眮が瀺されおいる。䞊蚘䞊郚炉壁の倖
呚面にはギダが取付けられおいる。䞀方図瀺
倖のフレヌムには油圧シリンダが取付けおあ
りそのピストンロツドにはラツクが取付
けおある。ラツクに噛み合わせたピニオン
には軞受により支持された駆動軞
が連繋機構を介しお連繋させおある。駆動
軞には駆動ギダが取付けおありそのギダ
は前蚘ギダず噛み合぀おいる。この様な
構成の回動装眮においおは、油圧シリンダ
のピストンロツドが䌞匵したり収瞮する事
によ぀お、ピニオンが䞀方ぞ回動したり或い
は反察方向ぞ回動する。その動きは連繋機構
、駆動軞を介しお駆動ギダに䌝えら
れ、駆動ギダが同様に回動する。その結果、
䞊郚炉壁は矢印で瀺される様に䞀方或いは反
察方向に埀埩回動する。その回動角床は埀埩回動
の䞭間䜍眮を基準にしお䟋えば䞀方ぞ60°、反察
方向ぞ60°の範囲に蚭定される。又その速床は䟋
えば120°の動きを0.3〜分で行なう様に構成さ
れる。
Next, FIG. 6 shows a rotating device 85 connected to the upper furnace wall 52. As shown in FIG. A gear 86 is attached to the outer peripheral surface of the upper furnace wall 52. On the other hand, a hydraulic cylinder 87 is attached to a frame (not shown), and a rack 89 is attached to its piston rod 88. Pinion 9 meshed with rack 89
0 is a drive shaft 9 supported by bearings 92, 92.
3 are connected via a linking mechanism 91. A drive gear 94 is attached to the drive shaft 93, and the gear 94 meshes with the gear 86. In the rotating device 85 having such a configuration, the hydraulic cylinder 8
7's piston rod 88 expands or contracts, the pinion 90 rotates in one direction or in the opposite direction. The movement is an interlocking mechanism 9
1. It is transmitted to the drive gear 94 via the drive shaft 93, and the drive gear 94 similarly rotates. the result,
The upper furnace wall 52 reciprocates in one direction or the opposite direction as shown by the arrow. The rotation angle is set, for example, in the range of 60° in one direction and 60° in the opposite direction based on the intermediate position of the reciprocating rotation. The speed is such that, for example, a movement of 120° is performed in 0.3 to 3 minutes.

䞊郚炉壁が䞊蚘のように埀埩回動するよう
に構成されおいる為、る぀が内の溶湯プヌル
においおは第図に瀺される劂くその党
範囲を䞀様に均等加熱でき、そこぞ装入される原
料を残すずころなく完党にしかも迅速に溶解させ
る事ができる。
Since the upper furnace wall 52 is configured to reciprocate as described above, the entire range of the molten metal pool 37a in the crucible 37 can be uniformly heated as shown in FIG. The raw materials to be charged can be completely and quickly dissolved without leaving anything behind.

即ち第図においお、本のプラズマトヌチ
から発せられるプラズマアヌクのアヌクスポツト
がA1で瀺される範囲であるずするず、その呚囲
のA2で瀺される範囲は急速な熱䌝達によ぀お原
料が急速に溶解される。そしお曎に時間が経過す
る事により、アヌクスポツトA1の熱が曎に呚蟺
方向にたで広がり、又䞊蚘A1で瀺されるアヌク
スポツトを圢成するプラズマトヌチずは120°隔た
぀た察称䜍眮にある他の本のプラズマトヌチか
らのアヌクによる同様の加熱によ぀お、A3で瀺
される範囲が溶解する。又䞊蚘A1で瀺されるア
ヌクスポツトを圢成するプラズマアヌクは、前蚘
磁界発生コむルから発せられる磁束によ぀お
偏向されおA1′で瀺される様なアヌクスポツトを
圢成する。この為その呚囲の郚分A2′の範囲にお
いおも急速に原料が溶解し、曎に時間の経過によ
぀お溶解範囲は拡倧しおいく。磁束の方向を逆転
すれば、アヌクは同様にA1に察しお察称の䜍眮
に偏向し、A1″で瀺される様なアヌクスポツトを
圢成する。磁束によるアヌクの偏向は同時に他の
本のプラズマトヌチにも生じ、同様な溶解範囲
の拡倧を行う。その結果、前蚘本のプラズマト
ヌチから発せられるプラズマアヌクによ぀おは
A3′で瀺される様な範囲の原料が比范的迅速に溶
解される。又プラズマトヌチは䞊蚘本の他に曎
に他の本が備わ぀おいる為、それらのプラズマ
トヌチによ぀おA3″で瀺されるような範囲の原料
が比范的迅速に溶解される。曎に前述の劂く䞊郚
炉壁は埀埩回動する為、䞊蚘A3′或いは
A3″の範囲は第図においお巊右に埀埩回動す
るこずずなる。その結果、A4で瀺されるように
る぀がの党範囲においおる぀が内の原料が迅
速溶解される。埓぀おる぀が内に挿入された
原料はいずれの郚分も迅速にしかも均質に溶解さ
れる。尚䞊蚘プラズマトヌチの埀埩回動範囲は、
䞀぀のプラズマトヌチからのアヌクが照射される
る぀が内の領域ずその隣のプラズマトヌチからの
アヌクの同照射領域ずが䞀郚重耇する状態ずなる
皋床にするずよい。
That is, in Fig. 11, if the arc spot of the plasma arc emitted from one plasma torch is in the range indicated by A1 , then the surrounding range indicated by A2 is where the raw material is heated due to rapid heat transfer. Dissolves rapidly. As time passes further, the heat of the arc spot A1 spreads further to the periphery, and another plasma torch located at a symmetrical position 120 degrees apart from the plasma torch forming the arc spot indicated by A1 above. Similar heating by arc from two plasma torches melts the area designated A 3 . The plasma arc forming the arc spot indicated by A 1 above is deflected by the magnetic flux generated from the magnetic field generating coil 78 to form an arc spot indicated by A 1 '. Therefore, the raw material is rapidly dissolved in the surrounding area A 2 ', and the dissolution range further expands as time passes. If the direction of the magnetic flux is reversed, the arc will similarly be deflected to a symmetrical position with respect to A 1 , forming an arc spot as shown by A 1 ″.The deflection of the arc by the magnetic flux will simultaneously cause the other two It also occurs in plasma torches, and the melting range is similarly expanded.As a result, depending on the plasma arc emitted from the three plasma torches,
A range of raw materials as indicated by A 3 ' are dissolved relatively quickly. Furthermore, since the plasma torch is equipped with three other plasma torches in addition to the three mentioned above, these plasma torches can melt the raw materials in the range indicated by A 3 ″ relatively quickly. As mentioned above, since the upper furnace wall 52 reciprocates, the above-mentioned A 3 ' or
The range of A 3 '' will reciprocate from side to side in FIG. All parts of the raw material inserted into the plasma torch are melted quickly and homogeneously.The range of reciprocating rotation of the plasma torch is as follows:
The area in the crucible that is irradiated with the arc from one plasma torch may be such that the area that is irradiated with the arc from the adjacent plasma torch partially overlaps.

次に第図に瀺される着匧ピヌスの進退
装眮に぀いお説明する。固定フレヌム
には倫々軞受が取付け
おあり、それらによ぀おねじ杆が回動自圚
に支承されおいる。ねじ杆にはナツト
が螺合しおおりそのナツトは連結具
を甚いお支持杆に連結しおある。支持杆
には着匧ピヌスぞ絊電を行う絊電端子
′が蚭けられ、各プラズマトヌチの前蚘盎流電
源の正極に接続され、前蚘スタブず同電䜍に
結線される。フレヌムには枛速機付モヌタ
が取付けおあり、その出力軞に取付けたス
プロケツトはチ゚ヌンでも぀おねじ
杆に取付けたスプロケツトに連繋さ
せおある。
Next, the advancing/retracting device 27 for the arcing piece 26 shown in FIG. 12 will be explained. Fixed frame 12
Bearings 129 and 130 are attached to 7 and 128, respectively, and a screw rod 131 is rotatably supported by these bearings. Nut 13 is attached to screw rod 131.
2 are screwed together, and the nut 132 is the connector 13.
3 to the support rod 25. Support rod 2
5 is a power supply terminal 2 that supplies power to the arcing piece 26;
5' is provided, connected to the positive electrode of the DC power source of each plasma torch, and connected to the same potential as the stub 40. A motor 134 with a speed reducer is attached to the frame 127, and a sprocket 135 attached to its output shaft is connected to a sprocket 136 attached to a threaded rod 131 through a chain 137.

この様な構成のものにあ぀おは、モヌタ
が䜜動しおスプロケツトが回動するずその
回動はチ゚ヌンを介しおスプロケツト
に䌝えられ、その結果ねじ杆が回動す
る。ねじ杆の回動によりナツトは図
においお右方又は巊方に移動し、その動きは連結
具を介しお支持杆に䌝えられる。その
結果、着匧ピヌスは収玍郚から第図
に瀺される様な䜍眮、即ち各プラズマトヌチ
の先端ずる぀が内のスタブずの間の䜍眮
たで進出したり、或いはその反察に図瀺される䜍
眮から収玍郚内たで退避する事ができる。
In the case of such a configuration, the motor 134
When the sprocket 135 operates and the sprocket 135 rotates, the rotation is transmitted to the sprocket 13 through the chain 137.
6, and as a result, the screw rod 131 rotates. Rotation of the threaded rod 131 causes the nut 132 to move to the right or left in the figure, and this movement is transmitted to the support rod 25 via the connector 133. As a result, the arcing piece 26 is moved from the housing 64 to the position shown in FIG.
It is possible to advance to a position between the tip of the crucible and the stub 40 in the crucible 37, or conversely, to retreat into the storage part 64 from the position shown in the figure.

次に第図乃至第図には着匧ピヌス
の圢状及びその着匧ピヌスによるプラズマト
ヌチの点匧状況が瀺されおいる。着匧ピヌス
は黒鉛をその材料ずしお圢成され、又図瀺される
様に各プラズマトヌチの先端ずる぀が内
の空間スタブの存圚する箇所ずの間に介
入状に䜍眮できる倧きさに圢成されおいる。又第
図に瀺される様な退出䜍眮から収玍宀内
の収玍䜍眮ぞ向けお埌退する過皋においお埌偎ず
なる呚瞁は、その断面圢状を図瀺される様
に斜面䞊向きの傟斜断面圢状に圢成されおいる。
埓぀お、着匧ピヌスにおける䞊面即ちトヌチ
察向面′よりも䞋面即ち溶湯プヌル察向面
″のほうが広くな぀おいる。
Next, FIGS. 13 to 17 show the arcing piece 26.
The shape of the plasma torch and the ignition situation of the plasma torch by the arcing piece 26 are shown. Arc landing piece 26
is made of graphite, and is sized so that it can be positioned between the tip of each plasma torch 24 and the space within the crucible 37 (where the stub 40 is present), as shown in the figure. There is. In addition, in the process of retreating from the exit position to the storage position in the storage chamber 64 as shown in FIG. It is formed.
Therefore, the lower surface, ie, the surface 2 facing the molten metal pool, of the arcing piece 26 is lower than the upper surface, ie, the torch facing surface 26'.
6″ is wider.

次にプラズマトヌチの点匧操䜜に぀いお説
明する。先ず進退装眮を䜜動させお着匧ピヌ
スを第図、第図に瀺される様な䜍眮
に䜍眮させる。尚この堎合における党プラズマト
ヌチの各先端ず着匧ピヌスずの間隔は、
トヌチずスタブずの間の距離よりも小さく、トヌ
チからのパむロツトアヌクが着匧ピヌス
に届き埗る距離即ち着火開始距離䟋えば40mm繋
床ず成るように予め蚭定されおいる。たた䞊郚
炉壁を回転させお耇数のプラズマトヌチ
が着匧ピヌスの進退方向に察し巊右察称に䜍
眮するようにしおおく。次に各プラズマトヌチ
にプラズマ生成甚のガスを䟛絊しおそれをノズ
ルから吹き出させるず共に、各プラズマトヌチ
の陰極ずる぀が内の被溶解物スタブ及
び着匧ピヌスずの間にはプラズマアヌク圢成
甚の電圧を印加しおおく。この状態でプラズマト
ヌチにおける陰極ずノズルずの間で呚知の劂く高
呚波攟電を行なわせおパむロツトアヌクを圢成
点匧させる。するず呚知の劂くトヌチの陰極
から着匧ピヌスに至るメむンアヌクが
圢成される。この堎合のメむンアヌクはア
ヌクの維持に必芁な最少限の少い電流倀にしおお
く。尚䞊蚘の様な各プラズマトヌチから着匧
ピヌスぞ向けおのメむンアヌクの圢成は本
のプラズマトヌチに぀いお同時的に行なわれ
るが、これは個々別々に行な぀おもよい。次に䞊
蚘のようにプラズマトヌチから着匧ピヌスに
至るメむンアヌクが圢成されたならば、進退装眮
を䜜動させお着匧ピヌスをトヌチず
被溶解物ずの間から収玍宀に向けお退避
させる。尚その速床は䟋えば毎分500mm皋床で行
なわれる。このように着匧ピヌスを退避させ
る堎合、各プラズマトヌチず被溶解物スタ
ブずの間から着匧ピヌスが退くず、そ
れたでトヌチから着匧ピヌスに向か぀お
いたメむンアヌクはトヌチから被溶解物
に向うように為る。そしお党おのトヌチから被溶
解物に向うメむンアヌクが圢成された
ならば、そのメむンアヌクの電流倀を倧きくしお
被溶解物の溶解を開始する。
Next, the ignition operation of the plasma torch 24 will be explained. First, the advancing/retracting device 27 is operated to position the arching piece 26 at the position shown in FIGS. 12 and 13. In this case, the distance between each tip of the entire plasma torch 24 and the arcing piece 26 is as follows:
The pilot arc from the torch 24 is smaller than the distance between the torch and the stub.
The distance is set in advance so that it can reach the target, that is, the ignition starting distance (for example, about 40 mm). Also, by rotating the upper furnace wall 52, a plurality of plasma torches 24
are positioned symmetrically with respect to the direction in which the arching piece 26 moves forward and backward. Next, each plasma torch 2
4 and blows it out from the nozzle, and each plasma torch 2
A voltage for plasma arc formation is applied between the cathode No. 4, the material to be melted (stub) in the crucible 37, and the arc starting piece 26. In this state, a high frequency discharge is caused between the cathode and the nozzle of the plasma torch, as is well known, to form (ignite) a pilot arc. Then, as is well known, a main arc 140 is formed from the cathode of the torch to the arc starting piece 26. In this case, the main arc 140 is set to the minimum current value necessary to maintain the arc. Although the formation of the main arc from each plasma torch 24 toward the arc-starting piece 26 as described above is performed simultaneously for the six plasma torches 24, this may be performed individually. Next, once the main arc from the plasma torch to the arcing piece 26 is formed as described above, the advancing/retracting device 27 is operated to move the arcing piece 26 from between the torch 24 and the material to be melted 40 into the storage chamber 64. Evacuate towards. The speed is, for example, about 500 mm per minute. When retracting the arcing piece 26 in this way, when the arcing piece 26 is withdrawn from between each plasma torch 24 and the object to be melted (stub) 40, the main The arc is from the torch 24 to the material to be melted 40
I look forward to it. When a main arc 140 is formed from all the torches toward the object 40, the current value of the main arc is increased to start melting the object 40.

䞊蚘のように着匧ピヌスを甚いおプラズマ
トヌチの点匧をする堎合、第図に瀺され
る劂く、各プラズマトヌチから攟出されるプ
ラズマアヌクはそのアヌクに流れる
電流及び着匧ピヌスに流れる電流によ぀お矢印
で瀺す劂く着匧ピヌスから逃げる方向の
力を受ける。又各プラズマトヌチから攟出さ
れるアヌクはそれらのアヌクが盞互に匕き
合う力即ち第図においお矢印で瀺され
る様な力も受ける。この為䞊述の様に着匧ピヌス
を退避させる堎合、る぀がの䞭心軞に察
しお着匧ピヌスの退避する方向ずは反察偎
第図においお巊偎にあるプラズマトヌチ
からのアヌクは、䞊蚘二぀の力が互い
に盞殺しあう状態ずなる。しかも、アヌク
から着匧ピヌスに向぀お流れる電流による力
によ぀おアヌクが屈折するのは被溶解物に
達するアヌクの長さがより短くなる方向に生じ、
被溶解物ずの電流通路の確保が容易な為、着
匧ピヌスから被溶解物ぞのアヌクの移行
が安定に行なわれる。䞀方䞊蚘る぀がの䞭心軞に
察しお着匧ピヌスの退避方向偎にあるトヌチ
第図においお右偎に瀺されおいるトヌ
チから攟出されるプラズマアヌクは、䞊
蚘逃げる力ずアヌクが盞互に匕き合う力
ずが同じ方向であり、しかもアヌクの
屈折する方向が被溶解物に達するアヌクの長
さが長くなる方向にあ぀お被溶解物ずの電流
通路確保が困難な方向にある為、プラズマアヌク
が着匧ピヌスから被溶解物ぞ移行しよ
うずする堎合アヌクが着匧ピヌスの埌
端郚ではね䞊げられ被溶解物にずどかず電流
通路を倱぀お消滅しおしたう。しかしながら着匧
ピヌスの埌退時においお埌端ずなる郚分は前
述の劂く斜面に圢成されおいる為、プラズ
マトヌチから着匧ピヌスぞのプラズマア
ヌクは、着匧ピヌスが退避しおアヌク
から離れる堎合でも、着匧ピヌスの䞋郚すな
わち被溶解物に近い郚分たでアヌクず
着匧ピヌスの接觊を保぀こずができる。しか
も被溶解物に向けおプラズマトヌチから噎出
されるアヌクの媒䜓ずなるプラズマガスは
着匧ピヌスがアヌクから離れる際でもスムヌ
ズに被溶解物に向わせるこずができアヌクの
乱れを生じさせない。この結果プラズマガスが速
やかに被溶解物に達し、それず同時にアヌク
の䞀郚が容易に被溶解物に到達しお電
流通路を確保し、その分着匧ピヌスが負担する電
流が枛少しお力を匱めるため、アヌクが垞
に安定に維持され、円滑な移行を行うこずができ
る。
When the plasma torch 24 is ignited using the arc ignition piece 26 as described above, as shown in FIG. Arrow 1 due to the current flowing through the piece
As shown by 41, a force is applied in a direction escaping from the arcing piece 26. The arcs 140 emitted from each plasma torch 24 are also subject to mutually attractive forces, ie, forces as indicated by arrows 142 in FIG. 16. Therefore, when retracting the arcing piece 26 as described above, the arc from the plasma torch 24 on the opposite side (the left side in FIG. 16) of the direction in which the arcing piece 26 is retracted with respect to the central axis of the crucible 37 At 140, the above two forces cancel each other out. Moreover, Arc 140
Force 14 due to the current flowing from to the arcing piece
1, the arc is bent in the direction in which the length of the arc reaching the object 40 to be melted becomes shorter,
Since it is easy to secure a current path with the object 40 to be melted, the arc can be stably transferred from the arc starting piece 26 to the object 40 to be melted. On the other hand, the plasma arc 140 emitted from the torch 24 (the torch shown on the right side in FIG. 16) located on the retracting direction side of the arcing piece 26 with respect to the central axis of the crucible is caused by the escape force 141 and the arc. Mutual attraction force 1
42 are in the same direction, and furthermore, the direction in which the arc 140 is bent is the direction in which the length of the arc reaching the object to be melted 40 becomes longer, making it difficult to secure a current path with the object to be melted 40. When the plasma arc 140 attempts to move from the arcing piece to the object to be melted 40, the arc 140 is sprung up at the rear end of the arcing piece 26, does not reach the object to be melted 40, loses the current path, and is extinguished. However, since the rear end portion of the arcing piece 26 when it retreats is formed on the slope 26a as described above, the plasma arc 140 from the plasma torch 24 to the arcing piece 26 is prevented by the arcing piece 26 retracting. Even when moving away from the arc, contact between the arc 140 and the arcing piece 26 can be maintained up to the lower part of the arcing piece 26, that is, the portion close to the object 40 to be melted. Moreover, the plasma gas, which is the medium of the arc 140 ejected from the plasma torch toward the object 40, can be smoothly directed toward the object 40 even when the arc starting piece 40 leaves the arc, thereby preventing arc disturbances. Don't let it happen. As a result, the plasma gas quickly reaches the object 40 to be melted, and at the same time, a part of the arc 140 easily reaches the object 40 to secure a current path, thereby reducing the current borne by the arc piece. Since the force 141 is weakened, the arc is always maintained stably and a smooth transition can be performed.

尚着匧ピヌスにおける埌退時の埌端面が第
図に瀺す劂く垂盎に圢成されおいるず、その着匧
ピヌスがトヌチず被溶解物ずの間から退避する堎
合、䞊蚘の様にプラズマアヌクに働く力
の存圚によ぀おそのアヌクは
被溶解物に向けお移行し難く、電磁堎の倧きな乱
れを匕き起す。その結果、そのトヌチから攟出さ
れるプラズマアヌクは勿論のこず、既に他
のトヌチから被溶解物ぞ向けお攟出されおいるア
ヌクも䞊蚘電磁堎の乱れによる圱響を受けお消匧
しおしたう。しかしながら䞊述の劂く本装眮にあ
぀おは着匧ピヌスの埌端面が前述のよ
うに圢成されおいる為、前述の劂く着匧ピヌスか
ら被溶解物ぞ向けおプラズマアヌクの移行が安定
しお行なわれる。
Note that the rear end surface of the arched piece when retreating is the 17th
If the arcing piece is vertically formed as shown in the figure, when the arcing piece retreats from between the torch and the object to be melted, the force acting on the plasma arc 140 as described above will be 1.
41,142 makes it difficult for the arc 140 to move toward the object to be melted, causing a large disturbance in the electromagnetic field. As a result, not only the plasma arc 140 emitted from that torch but also the arcs already emitted from other torches toward the object to be melted are affected by the disturbance of the electromagnetic field and extinguished. However, as described above, in this apparatus, since the rear end surface 26a of the arcing piece 26 is formed as described above, the transition of the plasma arc from the arcing piece to the object to be melted is stabilized as described above. It is done.

次に第図には着匧ピヌスにおける退避時の
埌端郚の圢状の異なる䟋が瀺されおいる。着匧ピ
ヌスの埌端郚は前述のように真盎ぐな斜面に圢成
するこずなくこの第図に瀺さえる様な凞状の
斜面圢状に圢成しおもよい。
Next, FIG. 18 shows an example in which the shape of the rear end of the arching piece when retracted is different. The rear end of the arching piece may not be formed into a straight slope as described above, but may be formed into a convex slope as shown in FIG. 18.

なお、機胜䞊前図のものず同䞀又は均等構成ず
考えられる郚分には、前図ず同䞀の笊号にアルフ
アベツトのを付しお重耇する説明を省略した。
たた第図乃至第図のものにおいおも同
様の考えでアルフアベツトのを付しお重耇する
説明を省略する。 次に第図乃至第図には着匧ピヌスの圢
状に異なる䟋が瀺されおいる。これらの図に瀺さ
れた着匧ピヌスにおいおは、ピヌス
の退避時における埌端郚においお図瀺される様な
现溝が圢成しおある。この溝の幅
は、第図に瀺される劂くプラズマトヌチ
から着匧ピヌスに照射されるプラズマア
ヌクの䞭心郚がその溝を通り抜けおる぀が
内の被溶解物に達する様な寞法䟋えば10mm繋
床に圢成される。又第図に瀺される劂くそ
の溝の溝底は前述の堎合ず同様に
斜面に圢成される。尚この溝底は笊号
a′で瀺されるように垂盎面ずな぀おお぀おもよ
い。 この様な構成の着匧ピヌスを甚いおプラ
ズマトヌチの点匧をする堎合には、前蚘䞊郚炉壁
を回動させおこの着匧ピヌスに察する各プ
ラズマトヌチからのアヌクの照射郚䜍が笊号
で瀺される様な䜍眮に来るようにしおおく。そ
しおこの状態で前述の劂く点匧を行なう。然る埌
着匧ピヌスを笊号で瀺される方向に
退避させる。この様に着匧ピヌスを退避さ
せる堎合、ピヌスが想像線で瀺されるよう
に移動しお、笊号′で瀺される郚䜍に溝
が到達した堎合には、第図及び第図
に瀺される劂くその溝に向けお照射される
アヌクの䞭心郚が前述の劂く溝を
通぀おる぀が内ぞ向かう。埓぀お曎にピヌス
が埌退するこずによ぀お、そのアヌクも着匧ピ
ヌスからる぀が内の被溶解物ぞ向けお安定に移行
する。この堎合溝の䞡瞁郚
の存圚により、着匧ピヌスの埌退時においお
埌退端ずなる偎の端瞁の断面圢状をプラズマトヌ
チ察向面よりも溶湯プヌル察向面の方が倧きくな
るように斜面䞊向きの傟斜断面圢状にしたのず均
等の効果を埗るこずができお、䞊蚘アヌクの移行
を安定に行なわしめ埗る。
It should be noted that parts that are functionally the same or equivalent to those in the previous figure are given the same reference numerals as in the previous figure with an alphanumeric letter "f", and redundant explanations are omitted.
(Also, the same concept is used in the figures in Figs. 19 to 21, and the redundant explanation is omitted by adding the letter g in the alphabet.) Next, in Figs. 19 to 21, the shapes of the arcing pieces are different. An example is shown. In the arcing piece 26g shown in these figures, the piece 26g
A narrow groove 145 as shown in the figure is formed at the rear end portion when the is retracted. The width of this groove 145 is determined by the width of the plasma torch 24 as shown in FIG.
The center part of the plasma arc irradiated from g to the arcing piece 26g passes through the groove 145 and reaches the material to be melted in the crucible (for example, about 10 mm). Further, as shown in FIG. 21, the groove bottom 145a of the groove 145 is formed as a slope in the same manner as in the above case. (The bottom of this groove is code 145.
It may also be placed on a vertical plane as shown by a′. ) When igniting a plasma torch using the arc ignition piece 26g having such a configuration, the upper furnace wall is rotated so that the irradiation area of the arc from each plasma torch on the arc ignition piece 26g is aligned. 14
Make sure that it is in the position shown in 6. In this state, ignition is performed as described above. The subsequent arcing piece 26g is retracted in the direction indicated by reference numeral 144. When the arcing piece 26g is retracted in this way, the piece 26g moves as shown by the imaginary line, and a groove is formed in the part indicated by the reference numeral 146'.
45, as shown in FIGS. 20 and 21, the center of the arc 140g irradiated toward the groove 145 heads into the crucible through the groove 145 as described above. Therefore, further piece 26
As g recedes, the arc also stably moves from the arc starting piece toward the material to be melted in the crucible. In this case, both edges 145b, 14 of the groove 145
5b, the cross-sectional shape of the edge on the side that becomes the retreating end when the arcing piece retreats is made into an upwardly inclined cross-sectional shape so that the surface facing the molten metal pool is larger than the surface facing the plasma torch. It is possible to obtain an effect equivalent to that of the above, and the above-mentioned arc transition can be performed stably.

次に第図及び第図には溶解宀内に
原料を装入しおそれをプラズマトヌチからのアヌ
クによ぀お溶解させる堎合の様子が瀺されおい
る。以䞋その堎合の操䜜に぀いお説明する。先ず
通垞は前蚘昇降甚シリンダにより制限䜓
を䞋降させ、その䞋端が䞋郚ガむド筒におけ
る䞋方開口郚に臚んだ状態にする。この堎
合開口郚の内面ず制限䜓の倖面ずの間
には现粒状或いはスポンゞ状のチタン原料その
倧きさは䟋えばmm〜20mm皋床が通過できる間
隙をもたせる。この状態においお前蚘ドラ
ムフむヌダからシナヌト、送蟌口を介し
お装入郚ぞ向けお送り蟌たれお来た原料の内
スポンゞ状或いは现粒状等の小型のチタン原料
は、䞊郚ガむド筒、䞋郚ガむド筒に
より溶解宀の䞭心郚る぀がの䞭心郚に向けお
案内され、曎に前蚘間隙を通り抜けおる぀
が内の溶湯プヌルの䞭心郚に向けお装
入される。䞀方䞊蚘装入郚に送り蟌たれお来
た原料の内スクラツプなどの倧型のチタン原料
は䞊蚘間隙を通り抜けるこずができ
ず、第図に瀺される劂く䞋郚ガむド筒ず
制限䜓ずの間に挟た぀おそこで停止する。こ
の様に倧型の原料が䞊蚘のような堎所で停
止したならば、䞊蚘小型のチタン原料を溶
湯プヌルぞ向けお萜䞋させる状態をしばら
く継続した埌、第図に瀺される劂く制限䜓
を䞊昇させお䞊蚘倧型の原料をる぀が内
の溶湯プヌルぞ向けお萜䞋させる。この堎合、䞊
蚘の様に先に小型の原料がる぀が内の
溶湯プヌルの䞭倮郚ぞ向けお萜䞋させられ
おそこにそれら小型の原料が溜た぀た状態ずな぀
おおり、そこに䞊蚘倧型の原料が萜ずされ
る。この為、先に萜䞋されお溶湯プヌルの䞭倮郚
に積぀おいる小型の原料が緩衝材ずな぀お、䞊蚘
倧型の原料の萜䞋の衝撃を緩和する。こを
ように倧型の原料の装入でも、制限䜓の䜜甚
による萜䞋速床の抑制ず小型の原料による緩衝効
果で溶湯が飛散するこずが防止される。
Next, FIGS. 22 and 23 show a situation in which raw materials are charged into the melting chamber 20 and melted by an arc from a plasma torch. The operation in that case will be explained below. First, normally, the limiter 68 is moved by the lifting cylinder 74.
is lowered so that its lower end faces the lower opening 60a of the lower guide cylinder 60. In this case, a gap 149 is provided between the inner surface of the opening 60a and the outer surface of the restricting body 68 through which a fine grained or spongy titanium raw material (the size of which is, for example, about 3 mm to 20 mm) can pass. In this state, small titanium raw materials 1 such as spongy or fine granular raw materials are fed from the drum feeder to the charging section 21 through the chute 17 and the feed port 57.
50 is guided toward the center of the melting chamber (the center of the crucible) by an upper guide tube 59 and a lower guide tube 60, and further passes through the gap 149 toward the center of the molten metal pool 37a in the crucible 37. charged. On the other hand, a large titanium raw material 1 such as internal scrap of the raw material fed into the charging section 21
51 cannot pass through the above-mentioned gap 149, and as shown in FIG. 22, it is caught between the lower guide tube 60 and the restrictor 68 and stops there. Once the large raw material 151 has stopped at the above location, the small titanium raw material 150 continues to fall toward the molten metal pool 37a for a while, and then the restriction body 151 is stopped as shown in FIG. 6
8 is raised and the large raw material 151 is dropped toward the molten metal pool in the crucible. In this case, as described above, the small raw materials 150 are first dropped toward the center of the molten metal pool 37a in the crucible 37, and the small raw materials are accumulated there. A large raw material 151 is dropped. Therefore, the small-sized raw materials that have been dropped first and are piled up in the center of the molten metal pool act as a cushioning material, which cushions the impact of the large-sized raw material 151 falling. Even when such a large raw material is charged, scattering of the molten metal is prevented by suppressing the falling speed by the action of the restrictor 68 and by the buffering effect of the small raw material.

尚䞊蚘制限䜓はそれを䜍眮させる高さを適
宜遞定するこずにより䞊蚘間隙の倧きさを
皮々に蚭定できる。これにより䞊述の劂くガむド
筒内で䞀旊停止させる原料の倧きさを皮々に
遞定するこずができる。又䞊蚘の様に制限䜓
が溶解宀内にあり、る぀がに比范的近い䜍眮
で倧型の原料を䞀旊停止させおからる぀がの䞭に
向けお萜䞋できるため、る぀がの倖に萜䞋しおる
぀がを傷めるのを防止でき、たた予め小型の原料
を投入しその䞊に倧型の原料を投入
する堎合には、倧型の原料がる぀が内の溶
湯に盎接萜ち蟌むこずが防止される為、その溶湯
がる぀がの䞊にあふれたり飛抹がトヌチに付
着しそれを傷めたりするこずが防止される。
The size of the gap 149 can be set variously by appropriately selecting the height at which the limiter 68 is positioned. Thereby, as described above, the size of the raw material to be temporarily stopped within the guide cylinder 60 can be selected from various sizes. Also, as mentioned above, the limiter 68
is located in the melting chamber 20, and the large raw material can be stopped at a position relatively close to the crucible and then dropped into the crucible, which prevents it from falling outside the crucible and damaging the crucible. When a small raw material 150 is charged in advance and a large raw material 151 is charged on top of it, the large raw material 151 is prevented from falling directly into the molten metal in the crucible, so that the molten metal does not overflow onto the crucible. This prevents flying particles from adhering to the torch 24 and damaging it.

次に第図乃至第図にはガむド筒の異な
る䟋が瀺されおいる。これらの図に瀺されたガむ
ド筒は内郚に原料の萜䞋速床を緩める為の緩衝手
段を備えおいる。図においお、気密包囲郚
の筒郚及びガむド筒の䞊郚ガむド筒
の軞心䜍眮には筒䜓が備わ぀おい
る。この筒䜓の倖呚面はその䞊郚郚分を陀
いおチタンで圢成された保護パむプで芆わ
れおいる。その結果、原料の送蟌口から送
り蟌たれおきた原料が保護パむプに圓た぀
おその䞀郚が削り取られ、その削り取られたもの
が原料ず共にる぀がぞ向けお萜䞋する事態に至぀
おも、る぀が内の原料の玔床を䜎めない様にな぀
おいる。䞊蚘筒䜓の䞋端には保持甚のリン
グが止付具を甚いお固定しおある。
䞊蚘リングには陣笠状の基板の䞊端
が連結されおいる。又その基板はステンレ
スで圢成され、その䞊面はチタンで圢成されたラ
むナヌによ぀お芆われおいる。このラむナ
ヌは前蚘保護パむプず同様の目的で
備えられたものである。䞊蚘基板の䞋面に
は耇数の支持片が取付けおある。これらの
支持片によ぀お軞䜓が支持されおい
る。軞䜓は筒䜓の軞心を䞭心ずする
リング状に圢成しおある。䞊蚘軞䜓には連
結片が揺動自圚に吊り䞋げられおいる。そ
の連結片には、チタンで圢成された緩衝片
の䞊端郚が耇数の止付具を甚いお固
定されおいる。その結果、緩衝片は䞊蚘軞
䜓を䞭心にしおガむド筒の半埄方向
に振子の様に揺動できる様にな぀おいる。䞊蚘連
結片にはそれず䞀䜓に圢成された重り
が取付いおいる。この重りの存圚により
緩衝片はその䞋端が倖方向に開く様な付勢
力を受ける。この為第図に瀺される状態にお
いおは、緩衝片の䞋端は䞋郚ガむド筒
の内面に備わ぀おいるラむニングに圓接
した状態にな぀おいる。尚䞊蚘保護パむプ
の䞋端には耇数の支持片の䞀端が取付けら
れおいる。その支持片の他端は䞊郚ガむド
筒の内面に接觊されおいる。その結果䞊蚘
筒䜓がガむド筒の軞心䜍眮に固定的
に䜍眮しおいる。
Next, FIGS. 24 to 28 show different examples of guide tubes. The guide cylinder shown in these figures is equipped with a buffer means for slowing down the falling speed of the raw material. In the figure, the airtight enclosure 22h
A cylinder body 152 is provided at the axial center position of the cylinder portion 54h and the upper guide cylinder 59h of the guide cylinder 23h. The outer peripheral surface of this cylindrical body 152, except for its upper part, is covered with a protection pipe 153 made of titanium. As a result, even if the raw material fed from the raw material inlet 57h hits the protection pipe 153 and is partially scraped off, and the scraped material falls together with the raw material toward the crucible, It is designed so as not to reduce the purity of the raw materials inside the crucible. A retaining ring 154 is fixed to the lower end of the cylindrical body 152 using a fastener 155.
The ring 154 is connected to the upper end of a cap-shaped substrate 156 . The substrate 156 is made of stainless steel, and its upper surface is covered with a liner 157 made of titanium. This liner 157 is provided for the same purpose as the protection pipe 153. A plurality of support pieces 158 are attached to the lower surface of the substrate 156. A shaft body 159 is supported by these support pieces 158. The shaft body 159 is formed into a ring shape centered on the axis of the cylinder body 152. A connecting piece 160 is swingably suspended from the shaft 159. The upper end portion of a buffer piece 161 made of titanium is fixed to the connecting piece 160 using a plurality of fasteners 162. As a result, the buffer piece 161 can swing like a pendulum in the radial direction of the guide tube 23h about the shaft 159. The connecting piece 160 has a weight 16 integrally formed therewith.
3 is installed. Due to the presence of this weight 163, the buffer piece 161 receives a biasing force that causes its lower end to open outward. Therefore, in the state shown in FIG. 24, the lower end of the buffer piece 161 is connected to the lower guide tube 60.
It is in a state of being in contact with a lining 61h provided on the inner surface of h. In addition, the above protection pipe 153
One end of a plurality of support pieces 164 is attached to the lower end of the support piece 164 . The other end of the support piece 164 is in contact with the inner surface of the upper guide cylinder 59h. As a result, the cylinder 152 is fixedly located at the axial center position of the guide cylinder 59h.

䞊蚘の様な構成のものにあ぀おは、送蟌口
に送り蟌たれおきた小型の原料は䞊郚ガむド筒
に案内されお䞋方に萜䞋する。曎にその原
料は䞋郚ガむド筒に案内されお䞭心方向に
寄り、緩衝片に突き圓たる。そしおその原
料は緩衝片を内方ぞ傟動させ、その緩衝片
ずラむニングずの間にできた隙間を
通぀おガむド筒の䞋郚開口郚ahに向
い、そこから前述の堎合ず同様にる぀が内の溶湯
プヌルに萜䞋する。埓぀お䞊蚘の堎合、小型の原
料が送蟌口から勢いよくガむド筒内
に入぀おきおも、その勢いは䞊蚘緩衝片で
取陀かれ、䞊蚘原料は緩やかにる぀が内の溶湯プ
ヌルに投入される。埓぀おその原料はる぀がの瞁
郚あるいはる぀がの倖に萜ち蟌むようなこずはな
く確実にる぀がの䞭心郚におちる。尚䞊蚘の様な
緩衝䜜甚は小型の原料に限るこずなく倧型の原料
に぀いおも同様に行なわれる。たた非垞に軜くお
䞊蚘緩衝片を傟動させられないような原料
が緩衝片の倖偎に萜䞋しおきた堎合には、
その原料が䞀旊そこに溜たる。そしおその溜た぀
たものの重量が緩衝片を傟動させるに充分
な倀ずなるず、それら溜た぀た原料が緩衝片
を傟動させお、る぀が内に萜ち蟌む。
In the case of the above configuration, the inlet 57
The small raw material fed into h is guided by the upper guide cylinder 59h and falls downward. Further, the raw material is guided by the lower guide tube 60h, moves toward the center, and hits the buffer piece 161. Then, the raw material tilts the buffer piece 161 inward, passes through the gap created between the buffer piece 161 and the lining 61h, and heads toward the lower opening 60ah of the guide tube 60h, and from there, the same process as in the previous case is carried out. It falls into the molten pool inside the crucible. Therefore, in the above case, even if a small raw material enters the guide tube 23h from the inlet 57h with force, the force is removed by the buffer piece 161, and the raw material gently flows into the molten metal pool in the crucible. will be put into the Therefore, the raw material is ensured to fall in the center of the crucible without falling to the edges of the crucible or outside the crucible. Incidentally, the above-mentioned buffering effect is not limited to small-sized raw materials, but is similarly performed on large-sized raw materials. Furthermore, if a raw material that is too light to tilt the buffer piece 161 falls outside the buffer piece 161,
The raw materials are stored there. When the weight of the accumulated material reaches a value sufficient to tilt the buffer piece 161, the accumulated raw materials are removed from the buffer piece 16.
1 is tilted and falls into the crucible.

次に、䞊蚘ガむド筒においおは第図
に想像線で瀺される様に前述の堎合ず同様の制限
䜓を備えさせおもよい。この様な制限䜓
を備えさせた構造のものにあ぀おは、次のよ
うな働きを埗るこずができる。即ち、小型の原料
に関しおは䞊蚘の堎合ず同様に緩衝片によ
぀お原料の萜䞋の勢いを陀去した状態でその原料
をる぀が内に向かわせるこずができる。又倧型の
原料に関しおは、第図に想像線で瀺す劂く緩
衝片が制限䜓に圓接する為、倧型の
原料はその緩衝片ず䞋郚ガむド筒
の内面ずの間で停止する。そしお制限䜓
を䞊昇させるこずにより、原料は䞊
蚘緩衝片を曎に傟動させその䞋をくぐ぀お
䞋郚開口郚ahからる぀が内ぞ向けお萜䞋で
きる。尚この䟋においおも制限䜓を予め䜍
眮させおおく高さを皮々に遞定するこずによ぀
お、倫々所望の倧きさ以䞊の原料を䞊述の劂く䞀
旊停止させるこずができる。
Next, the guide tube 23h may be provided with a restriction body 68h similar to that described above, as shown in imaginary lines in FIG. Such a restriction body 6
In the case of a structure equipped with 8h, the following functions can be obtained. That is, in the case of a small-sized raw material, it is possible to direct the raw material into the crucible while the falling force of the raw material is removed by the buffer piece 161, as in the case described above. Regarding large raw materials, the buffer piece 161 comes into contact with the limiter 68h as shown by the imaginary line in FIG. 24, so the large raw material 151h stops between the buffer piece 161 and the inner surface of the lower guide cylinder 60h. . and limit body 6
By raising 8h, the raw material 151h can further tilt the buffer piece 161, pass under it, and fall into the crucible from the lower opening 60ah. In this example as well, by selecting various heights at which the limiter 68h is positioned in advance, raw materials larger than a desired size can be temporarily stopped as described above.

なお、第図乃至第図に瀺されたものの
説明においお機胜䞊前図のものず同䞀又は均等構
成ず考えられる郚分には、前図ず同䞀の笊号にア
ルフアベツトのを付しお重耇する説明を省略し
た。
In addition, in the description of the items shown in FIGS. 24 to 28, parts that are functionally the same or equivalent to those in the previous drawings will be designated with the same reference numerals as those in the previous drawings with the letter "h" added. Explanation omitted.

以䞊のように本発明にあ぀おは、溶湯プヌル
を炉壁で囲むず共に、炉壁の䞊方に
蚭ける原料装入郚の䞊方を包囲郚でも぀
お囲むものであるから、䞊蚘の溶湯プヌル
の䞊方空間を任意の雰囲気䟋えば䞍掻性ガスの
雰囲気、或は汚染ガスを攟散させない状態に維
持しながら、耇数のプラズマトヌチ 
でも぀お溶湯プヌル䞊の原料を溶湯に倉え
るこずのできる効果がある。
As described above, in the present invention, the molten metal pool 3
7a is surrounded by the furnace wall 50, and the upper part of the raw material charging part 21 provided above the furnace wall 50 is also surrounded by the surrounding part 22, so that the above-mentioned molten metal pool 37a
A plurality of plasma torches 24, 24, .
This has the effect of converting the raw material on the molten metal pool 37a into molten metal.

その䞊、プラズマトヌチは耇数を備
えさせるばかりでなく、これらは溶湯プヌル
を䞭心にしお回動するものであるから、䞊蚘溶
湯プヌル䞊の原料は極めお均等に受熱し、
均質な溶湯に速やかに倉化しお良質の溶湯を胜率
良く埗るこずのできる優れた効果もある。
Moreover, not only are the plasma torches 24, 24 provided with a plurality of them, but they are also connected to the molten metal pool 37.
Since it rotates around point a, the raw material on the molten metal pool 37a receives heat extremely evenly,
It also has the excellent effect of quickly changing into a homogeneous molten metal and efficiently obtaining a high-quality molten metal.

その䞊、䞊蚘プラズマトヌチの回動
は、䞋郚炉壁ず、包囲郚ずを固定しおお
き、䞭間に䜍眮する䞊郚炉壁のみを回動さ
せ、それに装着するこずによ぀おプラズマトヌチ
の回動を行なわせるようにしたものであるか
ら、プラズマトヌチは比范的軜快に動
䜜させるこずができ、䜜動゚ネルギヌをあたり芁
するこずなく運転できる合理的効果もある。
Moreover, the plasma torches 24, 24 can be rotated by fixing the lower furnace wall 51 and the surrounding part 22, rotating only the upper furnace wall 52 located in the middle, and attaching them thereto. Since the plasma torch 24 is rotated by the rotation of the plasma torch 24, the plasma torches 24, 24 can be operated relatively easily, and there is also a rational effect that the plasma torches 24 can be operated without requiring much operating energy.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本願の実斜䟋を瀺すもので、第図は溶
解鋳造装眮の略瀺瞊断面図、第図は第図の装
眮の䜜動を順を远぀お説明する為の図、第図は
溶解装眮の瞊断面図、第図は䞋郚炉壁ず䞊郚炉
壁ずの連結郚を瀺す平面図、第図は同正面図、
第図は䞊郚炉壁の回動装眮の機構を瀺す図、第
図は−線断面図、第図は−線断面
図、第図及び第図は䞊郚炉壁ず気密包囲郚
ずの連結郚においお第図及び第図ず同様の構
造を瀺す図、第図はる぀が内における溶解範
囲を説明する為の平面図、第図は溶解装眮に
おける着匧ピヌスずそれの進退装眮ずの関係を瀺
す瞊断面図、第図はプラズマトヌチず着匧ピ
ヌスずの関係を瀺す平面図、第図は着匧ピヌ
スの平面図、第図は−線断面図、第
図及び第図は着匧ピヌスから被溶解物ぞ
のプラズマアヌクの移行を説明する為の図、第
図は着匧ピヌスの埌端郚の断面圢状の異なる䟋
を瀺す図、第図は着匧ピヌスの異なる䟋を瀺
す平面図、第図は溝ずプラズマアヌクずの関
係を瀺す断面図、第図は第図における
XI−XI線断面図、第図はガむド筒内での原
料の移動を説明する為の瞊断面図、第図はガ
むド筒及びそこから投入される原料ずる぀が及び
プラズマトヌチずの関係を瀺す瞊断面図、第
図はガむド筒の異なる䟋を瀺す瞊断面図、第
図は緩衝片ずそれを支持する郚材ずの関係を瀺す
瞊断面図、第図は第図に瀺された郚材の
平面図䞀郚砎断図、第図は基板ず緩衝片
ずの関係を詳现に瀺す図、第図は−
線断面図。   プラズマ溶解装眮、  溶湯プヌ
ル、  炉壁、  プラズマトヌチ、
  原料装入郚。
The drawings show an embodiment of the present application, and FIG. 1 is a schematic vertical cross-sectional view of a melting and casting apparatus, FIG. 2 is a diagram for explaining the operation of the apparatus shown in FIG. 1, and FIG. is a longitudinal cross-sectional view of the melting device, FIG. 4 is a plan view showing the connection between the lower furnace wall and the upper furnace wall, and FIG. 5 is a front view of the same.
Figure 6 is a diagram showing the mechanism of the rotating device for the upper furnace wall, Figure 7 is a cross-sectional view taken along the - line, Figure 8 is a cross-sectional view taken along the - line, and Figures 9 and 10 are the upper furnace wall and the airtight enclosure. Fig. 11 is a plan view for explaining the melting range in the crucible, and Fig. 12 shows the arcing piece in the melting device and its structure. Fig. 13 is a plan view showing the relationship between the plasma torch and the arcing piece, Fig. 14 is a plan view of the arcing piece, Fig. 15 is a - line sectional view, Figures 16 and 17 are diagrams for explaining the transition of the plasma arc from the arc starting piece to the object to be melted.
Fig. 8 is a diagram showing different examples of cross-sectional shapes of the rear end of the arcing piece, Fig. 19 is a plan view showing different examples of the arcing piece, and Fig. 20 is a sectional view showing the relationship between the groove and the plasma arc. , Figure 21 is the same as in Figure 20.
A sectional view taken along the line XI-XI, Fig. 22 is a longitudinal sectional view to explain the movement of the raw material within the guide cylinder, and Fig. 23 shows the relationship between the guide cylinder and the raw material introduced therein, the crucible, and the plasma torch. Longitudinal sectional view shown, No. 24
The figure is a longitudinal sectional view showing different examples of the guide tube, No. 25.
The figure is a longitudinal sectional view showing the relationship between the buffer piece and the member that supports it, Figure 26 is a plan view (partially cut away) of the member shown in Figure 25, and Figure 27 is a diagram showing the relationship between the board and the buffer piece. Figure 28, a diagram showing the relationship in detail, is -
Line sectional view. B... Plasma melting device, 37a... Molten metal pool, 50... Furnace wall, 24... Plasma torch, 2
1... Raw material charging section.

Claims (1)

【特蚱請求の範囲】[Claims]  装入された原料を受止めお、そこで溶解させ
るようにしおある溶湯プヌルず、その溶湯プヌル
の䞊方空間の呚囲を囲むようにしおあ぀お、自䜓
の䞊方の䞭倮郚には原料装入郚が蚭けおある炉壁
ず、䞊蚘原料装入郚の䞊方を囲むように蚭けら
れ、か぀原料の送り蟌口を備える包囲郚ず、䞊蚘
炉壁の呚囲に倫々装着されおいお䞊蚘溶湯プヌル
に向けおプラズマアヌクを攟射するようにしおあ
る耇数のプラズマトヌチずから成り、䞊蚘包囲郚
に蚭けられおいる原料の送り蟌み口から入れた原
料を溶湯プヌルに至らしめ、その原料を䞊蚘プラ
ズマアヌクで溶湯にするようにしおあるプラズマ
溶解装眮においお、䞊蚘炉壁は、溶湯プヌルの䜍
眮ずプラズマトヌチ装着䜍眮ずの䞭間の䜍眮でも
぀お䞊䞋別䜓にするず共に䞋郚炉壁の䞊方に察し
お䞊郚炉壁の䞋方は回動可胜に連結しおあり、か
぀、回動状態での内倖気の区分を可胜にセパレヌ
ト手段を斜しおあり、その䞊、䞊郚炉壁の䞊方ず
包囲郚ずも別䜓に構成するず共に包囲郚の䞋方に
察しお䞊郚炉壁の䞊方は回動可胜に連結しおあ
り、か぀、回動状態での内倖気の区分を可胜にセ
パレヌト手段を斜しおあり、䞋郚炉壁ず包囲郚を
䞍動のたたにした状態でも぀お䞊蚘耇数のプラズ
マトヌチを䞊蚘溶湯プヌルを䞭心にしお回動させ
埗るようにしたこずを特城ずするプラズマ溶解装
眮。
1. A molten metal pool that receives charged raw materials and melts them there, and a space above the molten metal pool that surrounds the periphery, and a raw material charging section is provided in the center above the molten metal pool. A surrounding part is provided around the furnace wall to surround the upper part of the raw material charging part and includes a raw material inlet, and a surrounding part is installed around the furnace wall to direct plasma toward the molten metal pool. It consists of a plurality of plasma torches designed to emit an arc, and the raw material introduced from the raw material inlet provided in the surrounding part is brought into the molten metal pool, and the raw material is turned into molten metal by the plasma arc. In the plasma melting apparatus, the furnace wall is separated into upper and lower parts at an intermediate position between the molten metal pool position and the plasma torch mounting position, and the lower part of the upper furnace wall is rotated relative to the upper part of the lower furnace wall. They are movably connected, and are equipped with a separating means to separate the inside and outside air in a rotating state.Furthermore, the upper part of the upper furnace wall and the surrounding part are constructed separately, and the surrounding part is separated from the surrounding part. The upper part of the upper furnace wall is rotatably connected to the lower part, and a separation means is provided to separate the inside and outside air in the rotating state, leaving the lower furnace wall and the surrounding part stationary. A plasma melting apparatus characterized in that the plurality of plasma torches can be rotated around the molten metal pool even in a state where the plasma melting apparatus is in a state where the plasma melting apparatus is
JP58234807A 1983-12-13 1983-12-13 Plasma dissolver Granted JPS60126585A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58234807A JPS60126585A (en) 1983-12-13 1983-12-13 Plasma dissolver
GB848430082A GB8430082D0 (en) 1983-12-13 1984-11-28 Melting cast installation
GB08430608A GB2151761B (en) 1983-12-13 1984-12-04 A melting and casting installation
US06/680,869 US4610296A (en) 1983-12-13 1984-12-12 Melting cast installation
FR848419013A FR2556253B1 (en) 1983-12-13 1984-12-12 INSTALLATION AND PROCESS FOR MELTING AND CASTING
DE3445534A DE3445534C2 (en) 1983-12-13 1984-12-13 Melting plant for metallic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58234807A JPS60126585A (en) 1983-12-13 1983-12-13 Plasma dissolver

Publications (2)

Publication Number Publication Date
JPS60126585A JPS60126585A (en) 1985-07-06
JPH0331770B2 true JPH0331770B2 (en) 1991-05-08

Family

ID=16976694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58234807A Granted JPS60126585A (en) 1983-12-13 1983-12-13 Plasma dissolver

Country Status (2)

Country Link
JP (1) JPS60126585A (en)
GB (1) GB8430082D0 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126586A (en) * 1983-12-14 1985-07-06 倧同特殊鋌株匏䌚瀟 Plasma dissolver
JPS60129593A (en) * 1983-12-16 1985-07-10 倧同特殊鋌株匏䌚瀟 Plasma dissolver
JPWO2009148000A1 (en) * 2008-06-02 2011-10-27 有限䌚瀟ニュヌネむチャヌ Active steam generator

Also Published As

Publication number Publication date
GB8430082D0 (en) 1985-01-09
JPS60126585A (en) 1985-07-06

Similar Documents

Publication Publication Date Title
US3775091A (en) Induction melting of metals in cold, self-lined crucibles
JPS62104652A (en) Continuous casting method and device for composite ingot
US4610296A (en) Melting cast installation
EP0471798B1 (en) Induction skull melt spinning of reactive metal alloys
US3975184A (en) Method and apparatus for production of high quality powders
US2866700A (en) Drip-melting of refractory metals
FI102770B (en) Process and apparatus for smelting scrap
US3771585A (en) Device for melting sponge metal using inert gas plasmas
EP0395286A2 (en) Induction melting of metals without a crucible
US2955333A (en) Electric arc furnaces
US3587715A (en) Plant for producing ingots differing in size by an electric remelting of metal
JPH0331770B2 (en)
US2688169A (en) Method for melting metal powders
JPH0117408B2 (en)
RU2346221C1 (en) Method of vacuum-plasma melting of metals and alloys in skull furnace and facility for its implementation
RU2089633C1 (en) Device for melting and casting of metals and alloys
US4117253A (en) High integrity atmosphere control of electroslag melting
JPH0359355B2 (en)
US4007770A (en) Semi-consumable electrode vacuum arc melting process for producing binary alloys
JPS6338535A (en) Apparatus for producing reactive metal
JPS60126586A (en) Plasma dissolver
US3905803A (en) Process for producing ingots by electric resistance melting particulate metal under slag
Clites The inductoslag melting process
Sears Current processes for the cold-wall melting of titanium
JPH055131A (en) Plasma melting apparatus