JPH0331458Y2 - - Google Patents

Info

Publication number
JPH0331458Y2
JPH0331458Y2 JP1987162196U JP16219687U JPH0331458Y2 JP H0331458 Y2 JPH0331458 Y2 JP H0331458Y2 JP 1987162196 U JP1987162196 U JP 1987162196U JP 16219687 U JP16219687 U JP 16219687U JP H0331458 Y2 JPH0331458 Y2 JP H0331458Y2
Authority
JP
Japan
Prior art keywords
net
amount
neck
stage
ironed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987162196U
Other languages
Japanese (ja)
Other versions
JPH0168131U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987162196U priority Critical patent/JPH0331458Y2/ja
Publication of JPH0168131U publication Critical patent/JPH0168131U/ja
Application granted granted Critical
Publication of JPH0331458Y2 publication Critical patent/JPH0331458Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、蓋が巻締められるべき開口端部に多
段ネツクイン部を形成された、ビール缶、炭酸飲
料缶、ジユース缶(液体窒素充填)等に用いられ
る絞り−しごき成形缶に関する。 (従来の技術) アルミニウム合金薄板や錫めつき鋼板等の金属
板の円形ブランクより絞り加工によりカツプ状体
を形成し、このカツプ状体を再絞り−しごき加工
してなる絞り−しごき成形缶(所謂DI缶)が、
近時ビール缶等の正内圧性内容物が充填された缶
詰に対して広く採用されている。 この絞り−しごき成形缶の開口端部は、巻締め
られるべき蓋のサイズを小にして、材料コストの
軽減を図る等の目的のためネツクイン部を形成さ
れることが多いが、最近は多段(通常2〜8段;
各段のネツクイン量は実質的に等しい)ネツクイ
ン部を形成することが主流となつてきた。これ
は、蓋の径をより小さくして材料コストダウンを
図るためと、漸新な意匠性によるものと思われ
る。 近時材料コストをさらに低減するため、缶の胴
部の薄肉化が進められている。胴部が薄肉になる
ほど、蓋を巻締めるさいに座屈が起り易いが、従
来の多段ネツクイン部を有する絞り−しごき成形
缶にもこの傾向が認められ、胴部薄肉化の障碍と
なつていた。 (考案が解決しようとする問題点) 本考案は、胴部を薄肉化しても、巻締作業のさ
い胴部の座屈が起り難い、多段ネツクイン部を有
する絞り−しごき成形缶を提供することを目的と
する。 (問題点を解決するための手段) 本考案の絞り−しごき成形缶は、蓋が巻締めら
れるべき開口端部に、各段のネツクイン部が、外
側斜め下方に延びる勾配部、および曲率部を介し
て該勾配部に接続する垂下部よりなる多段ネツク
イン部を形成された絞り−しごき成形缶にあつ
て、少なくとも1段のネツクイン部のネツクイン
量が、残りの段のネツクイン部のネツクイン量よ
りも大きく、かつ最大のネツクイン量の最小のネ
ツクイン量の比が少なくとも1.6であることを特
徴とする。 ここにネツクイン量とは、各段のネツクイン部
内面の片側の半径方向間隔(例えば第2図のd1
をいう。 (作用) 缶に内容物を充填するさいや、蓋を缶に巻締す
る作業のさい、充填ヘツドや、蓋を介してシーミ
ングチヤツクに、胴部を押付けるため、胴部に軸
方向の衝撃荷重や、センターがずれた場合には、
偏荷重が加わり、これらの荷重のため胴部に座屈
が生じ易い。しかし残りの段のネツクイン部より
もネツクイン量の大きいネツクイン部の段がある
場合には、特に最大のネツクイン量と最小のネツ
クイン量の比が少なくとも1.6である場合には、
この段のネツクイン部が軸方向に撓み易く、バネ
定数が小さいので、胴部全体のバネ定数も小さく
なり、衝撃荷重や偏荷重を吸収し易くなり、衝撃
荷重や偏荷重が緩和される。そのため各段のネツ
クイン量が等しい場合に比べて、胴部の座屈が起
り難くなる。 (実施例) 厚さ0.32mmのアルミニウム合金(A3004)ブラ
ンクより、常法により絞り加工、再絞り−3段し
ごき加工により絞り−しごき成形缶を形成した
後、特殊4段ネツキング加工、次いでフランジ加
工を行なつて、第1図に示す形状の、全高が
122.20mm、胴部2の内径D1が65.88mm、短円筒状
の開口部3の内径D2が57.40mm、胴部2の平均肉
厚が0.115mm、フランジ部4の肉厚が0.187mm、胴
部2の上端に4段ネツクイン部5を有する絞り−
しごき成形缶1を作製した。なおネツクイン部5
の肉厚は最下端が0.175mmで、上方に向かつて僅
かであるが徐々に厚くなつている。 第2図はネツクイン部5の拡大図面であるが、
最上段のネツクイン部5a、上より2段目のネツ
クイン部5bおよび上より3段目のネツクイン部
5cのそれぞれのネツクイン量d1,d2およびd3
何れも0.91mmとなるように、かつ最下段のネツク
イン部5dのネツクイン量d4が1.51mmとなるよう
に、また各ネツクイン部5a,5b,5c,5d
の曲率半径rが何れも5mmとなるように、ネツク
イン部5a,5bおよび5cのそれぞれの上部勾
配角θ1,θ2およびθ3が25度となるように、ネツク
イン部5dの勾配角が30度になるように、特殊金
型を用いてネツキング加工を行なつた。この場
合、最大のネツクイン量d4と最小のネツクイン
量d1(d2,d3)の比は1.66となる。なお各段のネ
ツクイン部は勾配部(例えば5a1)、垂下部(例え
ば5a2;5dの場合は胴部2がこれに対応する)お
よび曲率部(例えば5a3)よりなる。 比較のため、第3図に示すように、最上段のネ
ツクイン部15a、上より2段目のネツクイン部
5b、上より3段目のネツクイン部5cおよび最
下段のネツクイン部15dのそれぞれのネツクイ
ン量d′1,d2′,d3′およびd4′が何れも1.06mmで、各
ネツクイン部15a,15b,15c,15dの
曲率半径rが何れも5mm、勾配角θ1,θ2,θ3,θ4
が何れも25度である従来の4段ネツクイン部15
を胴部22の上端に有する以外は、絞り−しごき
成形缶1と同様の寸法、形状の絞り−しごき成形
缶11を作製した。缶11が、従来実用されてい
る、このタイプの缶との相異点は、胴部の平均肉
厚が前者(缶11)が0.115mmであるのに対し、
後者(従来の缶)が0.125mmである点である。 さらに比較のため、最上段のネツクイン部、上
より2段目のネツクイン部、上より3段目のネツ
クイン部のネツクイン量がいづれも0.95mmで、最
下段のネツクイン部のネツクイン量が1.38mmであ
る点以外は絞り−しごき成形缶1と同様の(勾配
角は30度)絞り−しごき成形缶21(図示されな
い)を形成した。 これらの缶1および11,21についてのバネ
定数および耐軸荷重強度、およびビールを充填し
た後、商用巻締機で蓋を2重巻締した場合の座屈
発生率を第1表に示した。
(Industrial Application Field) The present invention is suitable for use in beer cans, carbonated beverage cans, youth cans (liquid nitrogen filled), etc., which have a multi-stage neck-in portion formed at the opening end where the lid is to be tightened. Regarding molded cans. (Prior art) A cup-shaped body is formed by drawing from a circular blank of a metal plate such as an aluminum alloy thin plate or a tin-plated steel plate, and this cup-shaped body is re-drawn and ironed to obtain a drawn-iron-formed can ( The so-called DI can) is
Recently, it has been widely adopted for canned goods filled with positive internal pressure contents, such as beer cans. The opening end of this drawn and ironed can is often formed with a neck-in part for the purpose of reducing the size of the lid to be sealed and reducing material costs. Usually 2-8 steps;
It has become mainstream to form a net-in portion (the amount of net-in in each stage is substantially equal). This seems to be due to the attempt to reduce material costs by making the diameter of the lid smaller, and the innovative design. In recent years, in order to further reduce material costs, efforts have been made to make the bodies of cans thinner. The thinner the body, the more likely it is to buckle when tightening the lid, and this tendency has also been observed in conventional drawn and ironed cans with multi-stage neck-in sections, which has been an obstacle to making the body thinner. . (Problems to be Solved by the Invention) The present invention provides a drawn and ironed can having a multi-stage neck-in portion, in which buckling of the body is unlikely to occur during seaming work even if the body is made thinner. With the goal. (Means for Solving the Problems) In the drawn and ironed can of the present invention, the neck-in portion of each stage has a sloped portion extending diagonally downward to the outside and a curved portion at the opening end where the lid is to be tightened. In a drawn and ironed can formed with a multi-stage neck-in portion consisting of hanging portions connected to the slope portion through large, and characterized in that the ratio of the maximum netquin amount to the minimum netquin amount is at least 1.6. Here, the net-in amount is the radial interval on one side of the inner surface of the net-in portion of each stage (for example, d 1 in Fig. 2).
means. (Function) When filling the can with contents or sealing the lid onto the can, the body is pressed against the filling head and the seaming chuck through the lid, so the body is pressed against the seaming chuck in the axial direction. If the shock load or the center shifts,
Unbalanced loads are applied, and these loads tend to cause buckling of the body. However, if there is a stage of netquin parts with a larger amount of netquin than the netquin parts of the remaining stages, especially if the ratio of the maximum amount of netquin to the minimum amount of netquin is at least 1.6,
Since the neck-in portion of this stage is easily deflected in the axial direction and has a small spring constant, the spring constant of the entire body is also small, making it easier to absorb impact loads and uneven loads, thereby alleviating impact loads and uneven loads. Therefore, buckling of the body is less likely to occur than when the amount of neck-in at each stage is equal. (Example) An aluminum alloy (A3004) blank with a thickness of 0.32 mm was drawn using a conventional method, and a drawn-iron-formed can was formed by re-drawing and three-stage ironing, followed by special four-stage necking and then flange processing. By doing this, the total height of the shape shown in Figure 1 is
122.20 mm, the inner diameter D 1 of the body 2 is 65.88 mm, the inner diameter D 2 of the short cylindrical opening 3 is 57.40 mm, the average wall thickness of the body 2 is 0.115 mm, the wall thickness of the flange 4 is 0.187 mm, A diaphragm having a four-stage neck-in part 5 at the upper end of the body part 2.
A pressed molded can 1 was produced. In addition, network part 5
The wall thickness is 0.175mm at the bottom, and it gradually gets thicker towards the top. FIG. 2 is an enlarged drawing of the neck-in part 5,
The net-in amounts d 1 , d 2 , and d 3 of the top-most net-in portion 5a, the second-row net-in portion 5b from the top, and the third net-in portion 5c from the top are all 0.91 mm, and Also, each neck-in portion 5a, 5b , 5c, 5d is
The slope angle of the neck-in part 5d is set to 30 degrees so that the radius of curvature r of each of the neck-in parts 5a, 5b, and 5c is 5 mm, and the upper slope angles θ 1 , θ 2 , and θ 3 of each of the neck-in parts 5a, 5b, and 5c are 25 degrees. We used a special mold to perform the netting process. In this case, the ratio between the maximum net-in amount d4 and the minimum net-in amount d1 (d2, d3) is 1.66. Note that the neck-in portion of each stage consists of a slope portion (for example, 5a 1 ), a drooping portion (for example, 5a 2 ; in the case of 5d, the body portion 2 corresponds to this), and a curvature portion (for example, 5a 3 ). For comparison, as shown in FIG. 3, the net-in amount of each of the net-in portion 15a at the top, the net-in portion 5b at the second from the top, the net-in portion 5c at the third from the top, and the net-in portion 15d at the bottom. d' 1 , d 2 ', d 3 ', and d 4 ' are all 1.06 mm, the radius of curvature r of each neck-in portion 15a, 15b, 15c, and 15d is all 5 mm, and the slope angles θ 1 , θ 2 , θ 3 , θ 4
Conventional 4-stage neck-in section 15 in which both angles are 25 degrees.
A drawn and ironed can 11 having the same dimensions and shape as the drawn and ironed can 1 was produced except that the upper end of the body 22 had the same size and shape as the drawn and ironed can 1. The difference between can 11 and this type of can that has been used in the past is that the average wall thickness of the body of the former (can 11) is 0.115 mm;
The latter (conventional can) is 0.125mm. Furthermore, for comparison, the amount of net-in at the top layer, the second layer from the top, and the third layer from the top is 0.95 mm, and the amount at the bottom layer is 1.38 mm. A drawn and ironed can 21 (not shown) which was similar to the drawn and ironed can 1 except for certain points (the slope angle was 30 degrees) was formed. Table 1 shows the spring constant and axial load strength of these cans 1, 11, and 21, as well as the buckling incidence when the lid is double-sealed using a commercial seaming machine after filling with beer. .

【表】【table】

【表】 註:(1) 第1図に示すタイプの治具6を、空缶の
開口部に挿入し、毎分10mmの速度で圧縮荷重を
加え、荷重−たわみ曲線の直線部の勾配より求
めた。 (2) (1)の荷重−たわみ曲線のピーク値 (3) 巻締速度毎分1400缶、巻締数約6000缶、リフ
ター圧90Kg、シーミングチヤツクハイト114.65
mm(巻締中のリフタのベースプレート上面とシ
ーミングチヤツク底面間の高さ) (4) ネツクイン量比は、最大のネツクイン量と最
小のネツクイン量の比d max/d minを示
す。 本考案は以上の実施例によつて制約されるもの
でなく、例えば最上段のネツクイン部5a、又は
上より2段目のネツクイン部5b、もしくは上よ
り3段目のネツクイン部5cのネツクイン量が、
他のネツクイン部のネツクイン量より大であつて
もよい。さらに例えばネツクイン部5aと5bの
ネツクイン量が等しく、またネツクイン部5cと
5dのネツクイン量が等しく、かつ後者5c,5
dのネツクイン量が前者5a,5bのネツクイン
量より大きくてもよく、もしくはその逆であつて
もよい。 さらに多段ネツクイン部の段数は2〜8段であ
つてもよい。なおネツクイン量最大部のネツクイ
ン量(d max)とネツクイン量最小部(通常
はネツクイン量が最大のネツクイン部以外の他の
ネツクイン部のネツクイン量は互にほぼ等しい)
のネツクイン量(d min)の比d max/d
minは1.6以上であることが耐座屈性の点で望ま
しい。なお、比d max/d minの上限値は、
ネツキング加工の成形限界、つまり一工程(1段
のネツクイン部を形成する工程)あたり成形可能
ネツキング率(%)に基づき、全ネツクイン量、
ネツクイン段数等を勘案して定められる。 ここにネツキング率(%)=(1−1段ネツクイ
ン部成形後のネツクイン部内径/成形前の胴部内
径)×100 上記成形限界はアルミニウム合金薄板の場合約
5.5%、錫めつき鋼板の場合も同様に、約5.5%で
ある。 例えば211Dから206Dへのネツクイン部形成の
場合の比d max/d minの上限値は、4段ネ
ツクイン部の場合は約2.4、5段ネツクイン部の
場合は約3.2となる。 またネツクイン量が大きいネツクイン部の曲率
半径rは3〜7mm、勾配角θは27.5〜35度の範囲
内にあることが望ましい。残りのネツクイン部の
曲率半径rは3〜7mm、勾配角θは12〜27.5度で
あることが望ましい。 (考案の効果) 本考案の多段ネツクイン部を有する絞り−しご
き成形缶は、胴部を薄肉化しても、巻締作業のさ
い胴部の座屈が起り難いという効果を奏する。
[Table] Note: (1) Insert the jig 6 of the type shown in Figure 1 into the opening of an empty can, apply a compressive load at a rate of 10 mm per minute, and I asked for it. (2) Peak value of the load-deflection curve in (1) (3) Sealing speed 1400 cans per minute, number of seams approx. 6000 cans, lifter pressure 90Kg, seaming chuck height 114.65
mm (height between the top surface of the base plate of the lifter and the bottom surface of the seaming chuck during seaming) (4) The neck-in amount ratio indicates the ratio of the maximum neck-in amount to the minimum neck-in amount d max / d min. The present invention is not limited to the above-described embodiments, and for example, the amount of net-in in the topmost net-in portion 5a, the second net-in portion 5b from the top, or the third net-in portion 5c from the top is ,
The amount of netquin may be larger than the amount of netquin in other netquin portions. Further, for example, if the amount of net-in in the net-in portions 5a and 5b is equal, and the amount of net-in in the net-in portions 5c and 5d is equal, and the latter
The net-in amount of d may be larger than the net-in amount of the former 5a and 5b, or vice versa. Furthermore, the number of stages of the multi-stage neck-in section may be 2 to 8 stages. Note that the netquin amount (d max) at the maximum netquin amount portion and the netquin amount at the minimum netquin amount portion (normally, the netquin amounts in other netquin portions other than the netquin portion with the maximum netquin amount are almost equal to each other)
The ratio d max / d of the amount of netquin (d min) of
It is desirable that min is 1.6 or more in terms of buckling resistance. Note that the upper limit of the ratio d max / d min is
Based on the forming limit of the netting process, that is, the netting rate (%) that can be formed per one process (the process of forming one stage of the neck-in part), the total amount of net-in,
It is determined by taking into consideration the number of netskuin stages, etc. Here, the netting rate (%) = (1-1 stage neck-in part inner diameter after forming/body inner diameter before forming) x 100 The above forming limit is approx.
Similarly, in the case of tinned steel plate, it is approximately 5.5%. For example, when forming a neck-in portion from 211D to 206D, the upper limit of the ratio d max /d min is approximately 2.4 in the case of a four-stage neck-in portion and approximately 3.2 in the case of a five-stage neck-in portion. Further, it is desirable that the radius of curvature r of the neck-in portion where the amount of neck-in is large is within the range of 3 to 7 mm, and the slope angle θ is within the range of 27.5 to 35 degrees. It is desirable that the radius of curvature r of the remaining neck-in portion is 3 to 7 mm, and the slope angle θ is 12 to 27.5 degrees. (Effects of the Invention) The drawn and ironed can having a multi-stage neck-in portion according to the present invention has the effect that buckling of the body is unlikely to occur during the seaming operation even if the body is made thin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例である絞り−しごき成
形缶の縦断面図、第2図は第1図の絞り−しごき
成形缶のネツクイン部近傍であるA部の拡大詳細
図、第3図は比較例である絞り−しごき成形缶の
ネツクイン部近傍の拡大詳細縦断面図である。 1……絞り−しごき成形缶、5……多段ネツク
イン部、d1,d2,d3,d4……ネツクイン量。
Fig. 1 is a longitudinal sectional view of a drawn and ironed can according to an embodiment of the present invention, Fig. 2 is an enlarged detailed view of section A near the neck-in portion of the drawn and ironed can of Fig. 1, and Fig. 3. 1 is an enlarged detailed vertical cross-sectional view of the vicinity of the neck-in portion of a drawn and ironed can as a comparative example. 1...Drawing and ironing forming can, 5...Multi-stage neck-in part, d1 , d2 , d3 , d4 ...Neck-in amount.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 蓋が巻締められるべき開口端部に、各段のネツ
クイン部が、外側斜め下方に延びる勾配部、およ
び曲率部を介して該勾配部に接続する垂下部より
なる多段ネツクイン部を形成された絞り−しごき
成形缶において、少なくとも1段のネツクイン部
のネツクイン量が、残りの段のネツクイン部のネ
ツクイン量よりも大きく、かつ最大のネツクイン
量と最小のネツクイン量の比が少なくとも1.6で
あることを特徴とする絞り−しごき成形缶。
A diaphragm in which each stage of the neck-in part is formed with a multi-stage neck-in part consisting of a slope part extending outward diagonally downward and a hanging part connected to the slope part via a curvature part at the opening end where the lid is to be tightened. - The ironed forming can is characterized in that the amount of net-in in the net-in portion of at least one stage is larger than the amount of net-in in the net-in portions of the remaining stages, and the ratio of the maximum amount of net-in to the minimum amount of net-in is at least 1.6. Drawn and ironed cans.
JP1987162196U 1987-10-23 1987-10-23 Expired JPH0331458Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987162196U JPH0331458Y2 (en) 1987-10-23 1987-10-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987162196U JPH0331458Y2 (en) 1987-10-23 1987-10-23

Publications (2)

Publication Number Publication Date
JPH0168131U JPH0168131U (en) 1989-05-02
JPH0331458Y2 true JPH0331458Y2 (en) 1991-07-04

Family

ID=31445804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987162196U Expired JPH0331458Y2 (en) 1987-10-23 1987-10-23

Country Status (1)

Country Link
JP (1) JPH0331458Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045507A (en) * 2005-08-12 2007-02-22 Jfe Steel Kk Two-piece can, its production method and sheet steel for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841311B2 (en) * 1976-05-20 1983-09-10 ロ−ヌ↓−プ−ラン・スペシアリテ・シミ−ク Stabilizing compositions based on polyvinyl chloride
JPS59115239A (en) * 1982-12-07 1984-07-03 岸本 昭 Upper body of metallic vessel and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841311B2 (en) * 1976-05-20 1983-09-10 ロ−ヌ↓−プ−ラン・スペシアリテ・シミ−ク Stabilizing compositions based on polyvinyl chloride
JPS59115239A (en) * 1982-12-07 1984-07-03 岸本 昭 Upper body of metallic vessel and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045507A (en) * 2005-08-12 2007-02-22 Jfe Steel Kk Two-piece can, its production method and sheet steel for the same
JP4670543B2 (en) * 2005-08-12 2011-04-13 Jfeスチール株式会社 Two-piece can and manufacturing method thereof, and steel plate for two-piece can

Also Published As

Publication number Publication date
JPH0168131U (en) 1989-05-02

Similar Documents

Publication Publication Date Title
US3942673A (en) Wall construction for containers
US4953738A (en) One piece can body with domed bottom
US6419110B1 (en) Double-seamed can end and method for forming
US5351852A (en) Base profile for a drawn container
AU2017252313B2 (en) Beverage can having a grommet
US4522049A (en) Aluminum alloy food can body and method for making same
KR890002739B1 (en) Container
JPH0261861B2 (en)
CA2451453A1 (en) Can shell and double-seamed can end
US4485663A (en) Tool for making container
US4294373A (en) Lightweight metal container
US4412440A (en) Process for making container
JP2024045461A (en) Can body
JPH0331458Y2 (en)
WO2002057137A2 (en) Beverage can end with reduced countersink
JPH04311445A (en) Can body
US4439081A (en) Container produced by triple drawn method using tin coated steel
JP3125580B2 (en) Squeezing-ironing can and ironing punch
JP2544222Y2 (en) End wall for pressure vessel
US4863063A (en) Metal vessel having circumferential side seam
EP0005025B1 (en) Lightweight metal container
US5501362A (en) Can bottom with inside or outside surfaces secured together by circular weld or bond
JP2002178072A (en) Can-top
US5263354A (en) Drawn can body methods, apparatus and products
US20140197181A1 (en) Three-piece can