JPH0331362B2 - - Google Patents

Info

Publication number
JPH0331362B2
JPH0331362B2 JP7298484A JP7298484A JPH0331362B2 JP H0331362 B2 JPH0331362 B2 JP H0331362B2 JP 7298484 A JP7298484 A JP 7298484A JP 7298484 A JP7298484 A JP 7298484A JP H0331362 B2 JPH0331362 B2 JP H0331362B2
Authority
JP
Japan
Prior art keywords
camera
cross
light spot
measurement
cross filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7298484A
Other languages
Japanese (ja)
Other versions
JPS60218002A (en
Inventor
Akio Aoki
Tosha Maekawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP7298484A priority Critical patent/JPS60218002A/en
Publication of JPS60218002A publication Critical patent/JPS60218002A/en
Publication of JPH0331362B2 publication Critical patent/JPH0331362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/024Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of diode-array scanning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、テレビカメラを使用した光点位置の
計測方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for measuring the position of a light spot using a television camera.

〔従来技術〕[Prior art]

従来、光点位置を計測する手法として、半導体
位置検出器(PSD:Position Sensitive Device)
と赤外線発光ダイオード(LED)を使用し、
LEDターゲットからの赤外光をPSD上に結像さ
せ、PSDからの信号によってLEDターゲットの
位置を計測する手法がある。この手法は、複数個
のLEDターゲットの位置を同時に検出すること
ができないこと、位置測定精度が、測定エリアの
1%程度であつて、LEDの三次元座標計測の誤
差は測定距離の4%程度と精度が低いこと等の問
題点がある。
Conventionally, a semiconductor position detector (PSD: Position Sensitive Device) has been used as a method to measure the position of a light spot.
and infrared light emitting diodes (LEDs),
There is a method in which infrared light from an LED target is imaged onto a PSD, and the position of the LED target is measured using signals from the PSD. This method cannot detect the positions of multiple LED targets at the same time, and the position measurement accuracy is about 1% of the measurement area, and the error in three-dimensional coordinate measurement of LEDs is about 4% of the measurement distance. There are problems such as low accuracy.

また、曲率断面を有する物体を例えばナトリウ
ムランプによつて照明し、特定の表面からの強い
反射光(ハイライトパターン)をTVカメラでと
り込み、物体の位置計測を行なう手法もある。し
かしながら、この手法は、TVカメラの分解能の
制約から、三次元座標計測の誤差は、測定距離3
〜8mの4%程度である。
Another method involves illuminating an object with a curvature cross section using, for example, a sodium lamp, capturing strong reflected light (highlight pattern) from a specific surface with a TV camera, and measuring the position of the object. However, due to the resolution limitations of the TV camera, this method has an error of 3D coordinate measurement due to the measurement distance of 3.
~4% of ~8m.

この様に従来の計測手法においては、いずれ
も、カメラを2台使用したステレオ法による三次
元座標計測における測定精度は、カメラと被写体
の距離の数%となっており、これらの適用は比較
的小さなエリアに限定されていた。
As described above, in all conventional measurement methods, the measurement accuracy in three-dimensional coordinate measurement using the stereo method using two cameras is a few percent of the distance between the camera and the subject, and the application of these methods is relatively difficult. It was limited to a small area.

測定精度を向上させるためには、カメラの分解
能を向上させればよい。現在、一般的に使用され
ている固体素子型のTVカメラの分解能は、視野
の1/400×1/400程度であり、素子数を増大させれば 原理的にはいくらでも分解能を上げることができ
る。しかし、二次元センサでは、分解能の向上の
割合の二乗で素子数が増加するために、例えば分
解能を1桁上げるためには、素子数は100倍とな
る。それ故に、素子数の増加だけで測定精度を上
げることは得策ではない。
In order to improve measurement accuracy, it is sufficient to improve the resolution of the camera. The resolution of currently commonly used solid-state TV cameras is approximately 1/400 x 1/400 of the field of view, and in principle the resolution can be increased as much as the number of elements increases. . However, in a two-dimensional sensor, the number of elements increases with the square of the rate of improvement in resolution, so for example, in order to increase the resolution by one order of magnitude, the number of elements must increase 100 times. Therefore, it is not a good idea to increase measurement accuracy only by increasing the number of elements.

〔発明の目的〕[Purpose of the invention]

ここにおいて、本発明は、TVカメラの分解能
を上げることなく高精度で、かつ多数の光点位置
を同時に測定できる計測方法を提供しようとする
ものである。
Here, the present invention aims to provide a measurement method that can measure a large number of light spot positions simultaneously with high precision without increasing the resolution of a TV camera.

〔発明の概要〕[Summary of the invention]

本発明の計測方法は、TVカメラのレンズにク
ロスフイルタを取付け、被測定位置からの光点を
クロスフイルタによってストリーク状の複数の線
状像に変換しTVカメラの撮像面に投影させ、前
記光点の位置を複数の線状像の交点として認識
し、位置計測を行なうようにしたものである。
The measurement method of the present invention involves attaching a cross filter to the lens of a TV camera, converting a light point from a position to be measured into a plurality of streak-like linear images by the cross filter, and projecting the streak-like linear images onto the imaging surface of the TV camera. The position of a point is recognized as an intersection of a plurality of linear images, and the position is measured.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の方法を実施するための装置
の一例を示す構成図である。この図において、1
は位置測定すべきターゲツトの光点を示すハロゲ
ンランプあるいはナトリウムランプのような発光
体、2はTVカメラ、3はこのTVカメラのレン
ズに取付けたクロスフイルター(クロススクリー
ン)で、TVカメラ2の固体撮像素子の配列方向
(X、Y)に対して45゜回転させて取付けてある。
5はTVカメラ2からの信号を入力する画像処理
装置、6は画像処理装置5でフリーズされた画像
信号を入力する計算機である。
FIG. 1 is a block diagram showing an example of an apparatus for carrying out the method of the present invention. In this figure, 1
is a light emitter such as a halogen lamp or sodium lamp that indicates the light spot of the target to be located, 2 is a TV camera, and 3 is a cross filter (cross screen) attached to the lens of this TV camera. It is mounted rotated by 45 degrees with respect to the arrangement direction (X, Y) of the image sensor.
5 is an image processing device that inputs the signal from the TV camera 2, and 6 is a computer that inputs the image signal frozen by the image processing device 5.

第2図は、TVカメラ2のレンズに取付けるク
ロフイルターの平面図である。図示するクロスフ
イルター3を通して発光体1を見ると、第3図に
示すようなクロスマークが観測される。なお、こ
の図は便宜上白黒を反転させた状態で図示してあ
る。
FIG. 2 is a plan view of the black filter attached to the lens of the TV camera 2. When the light emitter 1 is viewed through the illustrated cross filter 3, a cross mark as shown in FIG. 3 is observed. Note that this figure is illustrated with black and white inverted for convenience.

TVカメラ2は、発光体1をクロースフイルタ
ー3を介して撮影しており、その固体撮像素子の
撮像画には、第3図に示されるクロスマークが投
影される。TVカメラ2からの映像信号は、画像
処理装置5に印加され、ここでフリーズされる。
フリーズされた画像は、計算機6に与えられ、2
値化され、背景の中からクロスマークが取り出さ
れる。
The TV camera 2 photographs the light emitter 1 through a cross filter 3, and a cross mark shown in FIG. 3 is projected onto the image captured by the solid-state image sensor. The video signal from the TV camera 2 is applied to the image processing device 5, where it is frozen.
The frozen image is given to the computer 6 and 2
The cross mark is extracted from the background.

第4図イは、このクロスマークを示す。計算機
6は、次に、X−Y軸を45゜回転したx−y軸方
向に対するクロスマークのヒストグラムHx(x)、
Hy(y)を計算する。第4図ロは軸へ投影したヒ
ストグラムを示す。続いて、このヒストグラム
Hx(x)、Hy(y)をそれぞれx、yで1回微分
し、H′x(x)、H′y(y)を得る。第4図ハはH′y
(y)を示す。
Figure 4A shows this cross mark. Next, the calculator 6 generates a histogram Hx(x) of the cross mark in the x-y axis direction, which is obtained by rotating the X-Y axis by 45 degrees.
Calculate Hy(y). FIG. 4B shows a histogram projected onto the axis. Then this histogram
Differentiate Hx(x) and Hy(y) once with respect to x and y, respectively, to obtain H′x(x) and H′y(y). Figure 4 C is H′y
(y) is shown.

そしてH′x(x)、H′y(y)が極大値、極小値を
もつときのx、yの値をxA、xB、yA、yBとし、
xA≦x≦xB、yA≦y≦yBそれぞれのバンドエリア
内に存在するクロスマークの画像の位置(xi、
yi)データを使用し、最小二乗法により2直線の
式を求め、これらの2直線の交点の位置を計算
し、光点位置を求める。
Then, let the values of x and y when H′x(x) and H′y(y) have maximum and minimum values be x A , x B , y A , y B ,
The position of the image of the cross mark ( xi ,
yi) Using the data, find the equation of two straight lines by the least squares method, calculate the position of the intersection of these two straight lines, and find the light spot position.

なお、上記の説明では、クロスフイルター3を
カメラ系の軸に対して45゜方向に回転させて取り
付けたものであるが、この角度は何度でもよい。
In the above description, the cross filter 3 is attached by being rotated at 45 degrees with respect to the axis of the camera system, but this angle may be any number.

クロスフイルター3を、レンズ軸のまわりに回
転できる様に取り付け、所定回転角度ごとにクロ
ス像を複数回取り込み、それぞれ所定の演算を行
ない、最適の光点位置を演算するようにすれば、
測定精度と信頼性を向上させることができる。
If the cross filter 3 is installed so that it can rotate around the lens axis, the cross image is captured multiple times at each predetermined rotation angle, and the predetermined calculation is performed for each time to calculate the optimal light spot position.
Measurement accuracy and reliability can be improved.

なお、クロスフイルター3は、クロスマークが
得られるものの他、光点を中心に6本のストリー
クが出る形式のもの等、他の種類のクロスフイル
ターを用いてもよい。
As the cross filter 3, other types of cross filters may be used, such as one that produces a cross mark, or one that produces six streaks around a light spot.

また、発光体としては、ランプの他、レーザ投
光器と光反射体の組合せであつてもよい。
In addition to a lamp, the light emitter may be a combination of a laser projector and a light reflector.

第1図装置において、同一ターゲツトを多数回
繰り返して光点位置測定した結果によれば、再現
精度は平均二乗誤差でカメラ画素の約1/10であつ
た。この場合、カメラの画素数は400×400であつ
たが、本発明の方法を採用することによって、カ
メラの視野の1/4000×1/4000の分解能で光点位置
を測定することができた。
According to the results of measuring the light spot position by repeating the same target many times using the apparatus shown in FIG. 1, the reproduction accuracy was approximately 1/10 of the camera pixel in mean square error. In this case, the number of pixels of the camera was 400 x 400, but by adopting the method of the present invention, it was possible to measure the light spot position with a resolution of 1/4000 x 1/4000 of the camera's field of view. .

なお、この計測において、物体上のあらかじめ
指定されたポイントの三次元座標を得たい場合に
は、指定されたポイントに物体の反射強度より高
い反射塗料又は反射テープを設置し、レーザ光を
物体全体に走査させるか、あるいはハロゲンラン
プ等、通常のランプで物体を照射し、指定ポイン
トが他の部位に比べて十分明るく輝く状態とすれ
ば、同様の計測が行なえる。
In addition, in this measurement, if you want to obtain the three-dimensional coordinates of a pre-specified point on an object, place reflective paint or reflective tape with a higher reflection intensity than the object at the specified point and direct the laser beam to the entire object. Similar measurements can be made by scanning the object or by illuminating the object with a normal lamp such as a halogen lamp so that the specified point shines sufficiently brightly compared to other parts.

この方法により、約5m離れて設置した物体の
表面形状を±5mm以内で計測することができ、こ
れは、従来方法に比べて、精度が1桁以上良好な
結果であつた。
With this method, the surface shape of an object placed approximately 5 meters away could be measured within ±5 mm, which was an order of magnitude better in accuracy than the conventional method.

第5図は、本発明の方法を実現するための装置
の他の構成図で、ここでは、三次元物体の形状計
測を行なう場合を示している。
FIG. 5 is another configuration diagram of an apparatus for implementing the method of the present invention, and here shows a case where the shape of a three-dimensional object is measured.

この装置は、走査型レーザ投光器4、クロスフ
イルター3をそれぞれ有する2台のTVカメラ
2a,2b、この2台のTVカメラ2a,2bからの信号
を入力する画像処理装置5、計機機6及び出力装
置7で構成されている。
This device consists of two TV cameras each having a scanning laser projector 4 and a cross filter 3.
2a , 2b , an image processing device 5 that inputs signals from these two TV cameras 2a , 2b , a measuring device 6, and an output device 7.

走査型レーザ投光器4からの高輝度のレーザ束
は、三次元物体1に向け投射され、計算機6から
の指示により物体1上を走査あるいは停止する。
物体1上のレーザスポットは、2台のカメラ2a
2bによつて、それぞれクロスフイルター3を介し
て、クロスパターンとして撮像される。画像処理
装置5及び計算機6は、第1図装置と同様に所定
の演算を行なつて、光点位置が演算される。2台
のTVカメラ2a,2b間の距離は一定距離(基準長)
となっており、この基準長と、各カメラ2a,2b
よつて得られた各位置からステレオ法にて、物体
1上のスポツトの三次元座標値を演算する。
A high-intensity laser beam from the scanning laser projector 4 is projected toward the three-dimensional object 1, and scans or stops on the object 1 according to instructions from the computer 6.
The laser spot on object 1 is detected by two cameras 2 a ,
2b , each is imaged as a cross pattern via the cross filter 3. The image processing device 5 and the computer 6 perform predetermined calculations in the same manner as the device shown in FIG. 1 to calculate the light spot position. The distance between the two TV cameras 2a and 2b is a constant distance (standard length)
The three-dimensional coordinate values of the spot on the object 1 are calculated using the stereo method from this reference length and each position obtained by each of the cameras 2 a and 2 b .

物体1上のスポツトの走査と三次元座標の計測
を同期して順次行なうことにより、三次元物体1
の表面形状を測定することができる。
By synchronizing and sequentially scanning the spot on the object 1 and measuring the 3D coordinates, the 3D object 1
surface shape can be measured.

〔発明の効果〕 以上説明したように、本発明によればTVカメ
ラの分解能を上げることなく、高精度でかつ多数
の光点位置を同時に測定できる計測方法が提供で
きる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a measurement method that can simultaneously measure a large number of light spot positions with high precision without increasing the resolution of the TV camera.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための装置の一例を
示す構成図、第2図はクロスフイルターの平面
図、第3図はクロスフイルターによつて得られる
クロスマークを示す図、第4図は計算機6の演算
の一例を説明する波形図、第5図は本発明の方法
を実現するための装置の他の構成図である。 1……発光体、2……TVカメラ、3……クロ
スフイルター、5……画像処理装置、6……電算
機。
FIG. 1 is a block diagram showing an example of an apparatus for carrying out the present invention, FIG. 2 is a plan view of a cross filter, FIG. 3 is a diagram showing a cross mark obtained by the cross filter, and FIG. 4 is a diagram showing a cross mark obtained by the cross filter. A waveform diagram illustrating an example of the calculation of the computer 6, and FIG. 5 is another configuration diagram of an apparatus for implementing the method of the present invention. 1... Light emitter, 2... TV camera, 3... Cross filter, 5... Image processing device, 6... Computer.

Claims (1)

【特許請求の範囲】[Claims] 1 TVカメラのレンズにクロスフィルタを取付
け、被測定物体からの光点を前記クロスフィルタ
によつてストリーク状の複数の線状像に変換し、
前記TVカメラの撮像面に投影させ、前記光点の
位置を複数の線状像の交点として認識し当該光点
位置の計測を行なうことを特徴とする光点位置計
測方法。
1. A cross filter is attached to the lens of the TV camera, and the light point from the object to be measured is converted into a plurality of streak-like linear images by the cross filter,
A method for measuring the position of a light spot, characterized in that the position of the light spot is measured by projecting the light spot onto an imaging surface of the TV camera and recognizing the position of the light spot as an intersection point of a plurality of linear images.
JP7298484A 1984-04-13 1984-04-13 Measuring method of light spot position Granted JPS60218002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7298484A JPS60218002A (en) 1984-04-13 1984-04-13 Measuring method of light spot position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7298484A JPS60218002A (en) 1984-04-13 1984-04-13 Measuring method of light spot position

Publications (2)

Publication Number Publication Date
JPS60218002A JPS60218002A (en) 1985-10-31
JPH0331362B2 true JPH0331362B2 (en) 1991-05-02

Family

ID=13505160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7298484A Granted JPS60218002A (en) 1984-04-13 1984-04-13 Measuring method of light spot position

Country Status (1)

Country Link
JP (1) JPS60218002A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548392A (en) * 1995-01-31 1996-08-20 Kabushikikaisha Wacom Optical position detector having scale pattern spot-illuminated to increase resolution

Also Published As

Publication number Publication date
JPS60218002A (en) 1985-10-31

Similar Documents

Publication Publication Date Title
USRE39978E1 (en) Scanning phase measuring method and system for an object at a vision station
US6549288B1 (en) Structured-light, triangulation-based three-dimensional digitizer
US6256099B1 (en) Methods and system for measuring three dimensional spatial coordinates and for external camera calibration necessary for that measurement
US6031606A (en) Process and device for rapid detection of the position of a target marking
US7006086B2 (en) Method and apparatus for accurate alignment of images in digital imaging systems by matching points in the images corresponding to scene elements
JP2006514739A5 (en)
KR20010101576A (en) Method and device for inspecting objects
JP2002509259A (en) Method and apparatus for three-dimensional inspection of electronic components
JP2005195335A (en) Three-dimensional image photographing equipment and method
US10955236B2 (en) Three-dimensional measuring system
JPH0758172B2 (en) Shape measuring method and apparatus
JPH0331362B2 (en)
US20040263862A1 (en) Detecting peripheral points of reflected radiation beam spots for topographically mapping a surface
JPH0723684Y2 (en) Range finder
JPH0914914A (en) Laser light projection method and apparatus therefor in device measuring for moving value by laser speckle pattern
CN219245763U (en) High-speed laser displacement sensor based on monochromatic laser line scanning and triangulation
JPH10185515A (en) Coil position detector
JP2521156Y2 (en) Position measurement target
JP2006189390A (en) Optical displacement measuring method and device
JPH01242905A (en) Method for measuring actual size of visual device
JPH01250706A (en) Method and apparatus for measuring shape of three-dimensional curved surface
JP2530605B2 (en) Object shape recognition device
JPS6217606A (en) Underwater measuring device
JPH068485Y2 (en) Two-dimensional position detector
JPS60140107A (en) Shape detecting method and apparatus thereof