JPH0331333B2 - - Google Patents

Info

Publication number
JPH0331333B2
JPH0331333B2 JP59191308A JP19130884A JPH0331333B2 JP H0331333 B2 JPH0331333 B2 JP H0331333B2 JP 59191308 A JP59191308 A JP 59191308A JP 19130884 A JP19130884 A JP 19130884A JP H0331333 B2 JPH0331333 B2 JP H0331333B2
Authority
JP
Japan
Prior art keywords
resin liquid
tube
core mold
glass fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59191308A
Other languages
Japanese (ja)
Other versions
JPS6168234A (en
Inventor
Yoshinori Nishino
Masahiko Yamamoto
Ryosuke Okamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP59191308A priority Critical patent/JPS6168234A/en
Publication of JPS6168234A publication Critical patent/JPS6168234A/en
Publication of JPH0331333B2 publication Critical patent/JPH0331333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/002Handling tubes, e.g. transferring between shaping stations, loading on mandrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、樹脂液を含浸させたガラス繊維を円
柱状回転型の外周面上に巻回して繊維強化樹脂管
を得る管製造設備に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to pipe manufacturing equipment for obtaining fiber-reinforced resin pipes by winding glass fibers impregnated with resin liquid onto the outer peripheral surface of a cylindrical rotating mold. .

従来の技術 従来では第10図に示すように、芯材120に
ロール状に巻回してなる長尺のガラス繊維121
を、この芯材120から巻き戻しつつ複数のガイ
ドローラ122を介して樹脂液タンク123内に
導びき、そして樹脂液タンク123内の樹脂液1
24を移動するガラス繊維121に含浸させ、こ
れにより得られた樹脂液含浸ガラス繊維125を
円柱状回転型126の外周面上に巻回させる。そ
して回転型126に巻回された樹脂液含浸ガラス
繊維125を第11図に示すように該回転型12
6と共に加熱炉127に挿入させたのち、加熱装
置128によつて樹脂液を硬化させることにより
繊維強化樹脂管129とし、さらに第12図に示
すように加熱炉127外において繊維強化樹脂管
129から回転型126を脱型していた。
Prior Art Conventionally, as shown in FIG. 10, a long glass fiber 121 is wound around a core material 120 in the form of a roll.
is guided into the resin liquid tank 123 through a plurality of guide rollers 122 while unwinding from this core material 120, and the resin liquid 1 in the resin liquid tank 123 is
24 is impregnated into the moving glass fiber 121, and the resulting resin liquid-impregnated glass fiber 125 is wound on the outer peripheral surface of the cylindrical rotary mold 126. Then, as shown in FIG.
6 into the heating furnace 127, the resin liquid is hardened by the heating device 128 to form the fiber-reinforced resin pipe 129, and then the fiber-reinforced resin pipe 129 is heated outside the heating furnace 127 as shown in FIG. The rotary mold 126 was being demolded.

発明が解決しようとする問題点 上記従来構造によると、複数箇所で管成形を行
なう場合、各箇所において夫々、樹脂液タンク1
23などからなる樹脂液含浸ガラス繊維125の
供給装置を設けていたのであり、したがつて設備
の大型かつ高価格になるだけでなく、樹脂液含浸
ガラス繊維125を巻回した回転型126の取出
しや新たな回転型126の組込み時に供給装置を
停止させておかなければならないことから稼動率
に不利であり、また取出しや組込みはウインチ装
置などを使用するけれども主として手作業である
ことから危険で且つ時間を要することになる。さ
らに供給装置を長い時間停止させたときには、樹
脂液タンク123のタンクライフの問題が発生
し、樹脂液124としては熱硬化性のものしか使
用できないなど制限が生じていた。
Problems to be Solved by the Invention According to the above-mentioned conventional structure, when tube forming is performed at multiple locations, each location has one resin liquid tank and one
23, etc., for the resin liquid-impregnated glass fiber 125, which not only makes the equipment large and expensive, but also makes it difficult to take out the rotary mold 126 around which the resin liquid-impregnated glass fiber 125 is wound. It is disadvantageous to the operating rate because the feeding device must be stopped when installing a new rotary mold 126 or a new rotary mold 126, and it is dangerous and dangerous because taking out and installing is mainly done manually, although a winch device is used. It will take time. Further, when the supply device is stopped for a long time, problems arise in the tank life of the resin liquid tank 123, and there are restrictions such as only thermosetting resin liquids can be used as the resin liquid 124.

問題を解決するための手段 上記問題点を解決するために本発明における管
製造設備は、芯型を支持して回転させる管成形部
を上下複数段設け、これら管成形部の一側に対向
して樹脂液含浸ガラス繊維の供給装置を1台設
け、また他側に対向して芯型供給部と成形管取出
し部とを上下に振分けて配設し、前記芯型供給部
または成形管取出し部と前記管成形部との間で芯
型または成形管の受け渡しを行なう受け渡し装置
を設けている。
Means for Solving the Problems In order to solve the above-mentioned problems, the pipe manufacturing equipment of the present invention is provided with a plurality of upper and lower pipe forming sections that support and rotate the core die, and the pipe forming sections are arranged opposite to each other on one side of the tube forming sections. One supply device for glass fiber impregnated with resin liquid is provided on the other side, and a core supply section and a molded tube take-out section are arranged vertically and arranged facing each other, and the core mold supply section or molded tube take-out section is arranged vertically. A transfer device is provided for transferring the core mold or the formed tube between the core mold and the tube forming section.

かかる構成によると、上下方向複数段の管成形
部のうちの1つの段の管成形部に対して供給装置
を作用させている間に、他の段においては、巻回
した樹脂液含浸ガラス繊維の硬化、受け渡し装置
を使用しての芯型と一体的な成形管の取出し、受
け渡し装置を使用しての新たな芯型の供給などを
行なえ、また1つの段の管成形部に対する供給装
置の作用が終了して運転を停止させた直後におい
て該供給装置を、新たな芯型を供給した別の段の
管成形部に対して作用させ得る。
According to this configuration, while the supply device is acting on the pipe forming section of one stage of the plurality of stages of pipe forming sections in the vertical direction, the wound resin liquid-impregnated glass fiber is hardening, taking out the molded tube that is integral with the core mold using the delivery device, and supplying a new core mold using the delivery device. Immediately after the operation has been completed and the operation has been stopped, the feeding device can be operated on another stage of tube-forming section to which a new core has been fed.

実施例 以下に本発明の一実施例を第1図〜第9図に基
づいて説明する。
Embodiment An embodiment of the present invention will be described below based on FIGS. 1 to 9.

第1図〜第3図において1はガラス繊維ストツ
ク部で、ここからのガラス繊維2はガイドバー3
やガイドローラ4を介して1台の供給装置5に達
し、そして供給装置5を通つて樹脂液含浸ガラス
繊維6となつたのち、上下2段(上下複数段)の
管成形部7,8のいずれかの段に供給される。こ
れら管成形部7,8を中にして、前記供給装置5
側とは反対側に芯型供給部9と成形管取出し部1
0とが上下に振分けて配設され、そして前記芯型
供給部9または成形管取出し部10と前記管成形
部7,8との間で芯型11または成形管12の受
け渡しを行なう受け渡し装置13が設けられる。
前記ガイドバー3は定置式、可動式(上下揺動な
ど)のいずれであつてもよく、またガイドローラ
4はそれに応じて上下位置変更自在であつてもよ
い。前記供給装置5や管成形部7,8は枠体14
側に設置される。すなわち、枠体14のストツク
部1側において、左右一対の螺子軸15が、その
長さ方向を上下方向として回転自在に配設され、
これら螺子軸15は傘歯車機構16や駆動軸17
を介して昇降駆動装置18に連動連結している。
両螺子軸15に螺合するナツト体19間に作業台
20が配設され、この作業台20上には送り駆動
装置21に連動する送り螺子22が左右方向に配
設されている。この送り螺子22に螺合するナツ
ト体23が前記供給装置5に取付けてあり、また
供給装置5のスライド案内装置(図示せず)も設
けてある。前記枠体14内に上下一対のベース枠
24,25が設けられ、これらベース枠24,2
5上に前記管成形部7,8が形成される。前記芯
型供給部9ならびに成形管取出し部10は共通の
機枠26に夫々複数の支持レール27,28を配
設することにより形成され、各支持レール27,
28の上部転動面はラバー29,30によつて形
成される。前記受け渡し装置13は、揺動駆動装
置31に連動して前後揺動自在な左右一対(複
数)の伸縮腕32と、これら伸縮腕32の遊端に
取付けたクランプ腕33とからなり、開閉形成の
クランプ腕33は開閉駆動装置(図示せず)を有
する。34はリフト装置で、芯型供給部9へ芯型
11を渡す。
In Figures 1 to 3, 1 is a glass fiber stock part, and glass fibers 2 from here are attached to a guide bar 3.
The glass fibers reach one feeding device 5 via the rollers and guide rollers 4, and after passing through the feeding device 5 and become resin liquid-impregnated glass fibers 6, they are formed into tube forming sections 7 and 8 in two upper and lower stages (multiple upper and lower stages). It is supplied to either stage. With these tube forming parts 7 and 8 inside, the feeding device 5
A core mold supply part 9 and a forming tube take-out part 1 are provided on the opposite side.
0 are disposed vertically and arranged vertically, and a delivery device 13 that transfers the core mold 11 or the molded tube 12 between the core mold supply section 9 or the molded tube take-out section 10 and the tube forming sections 7 and 8. is provided.
The guide bar 3 may be of either a stationary type or a movable type (swinging up and down, etc.), and the guide roller 4 may be able to change its vertical position accordingly. The supply device 5 and the tube forming sections 7 and 8 are connected to the frame 14.
installed on the side. That is, on the side of the stock portion 1 of the frame 14, a pair of left and right screw shafts 15 are rotatably disposed with their longitudinal direction being the up and down direction.
These screw shafts 15 are connected to a bevel gear mechanism 16 and a drive shaft 17.
It is interlocked and connected to the lifting drive device 18 via.
A workbench 20 is disposed between a nut body 19 screwed onto both screw shafts 15, and a feed screw 22 interlocked with a feed drive device 21 is disposed on the workbench 20 in the left-right direction. A nut body 23 screwed onto the feed screw 22 is attached to the feeding device 5, and a slide guide device (not shown) for the feeding device 5 is also provided. A pair of upper and lower base frames 24, 25 are provided within the frame body 14, and these base frames 24, 2
The tube forming portions 7, 8 are formed on the tube 5. The core mold supply section 9 and the forming tube take-out section 10 are formed by respectively arranging a plurality of support rails 27 and 28 on a common machine frame 26, and each support rail 27,
The upper rolling surface 28 is formed by rubbers 29 and 30. The delivery device 13 is composed of a pair (plurality) of left and right telescopic arms 32 that can swing back and forth in conjunction with a rocking drive device 31, and a clamp arm 33 attached to the free ends of these telescopic arms 32, and can be opened and closed. The clamp arm 33 has an opening/closing drive (not shown). 34 is a lift device that delivers the core mold 11 to the core mold supply section 9.

上記実施例によると、リフト装置34によつて
渡され芯型供給部9上にストレージされている芯
型11は、自動制御される受け渡し装置13によ
つて受け取られ、そして第1図の矢印イまたはロ
方向に運ばれて上下いずれかの管成形部7,8に
渡される。管成形部7,8にセツトされた芯型1
1に対して供給装置5側から供給される樹脂液含
浸ガラス繊維6が、この芯型11の回転型により
外周面上に巻回され、その際に送り駆動装置21
の作動によつて供給装置5が左右方向に往復移動
することになつて、巻回は全長に亘つて均一な肉
厚で行なわれる。このような巻回作業中におい
て、他段の管成形部7,8ではすでに巻回された
樹脂液含浸ガラス繊維6の樹脂液が硬化し、以つ
て芯型11上に成形管12を成形している。次い
で成形管12は受け渡し装置13によつて受け取
られ、そして矢印ハまたはニ方向に運ばれて成形
管取出し部10に渡される。また成形管12を取
出した管成形部7,8に対して前述の如く新たな
芯型11が渡される。別の段において前述したよ
うに樹脂液含浸ガラス繊維6を所定量巻回したと
きに切断され、その後、昇降駆動装置18の作動
により作業台20を昇降させて新たな芯型11に
切断霜を巻回し得るべくセツトする。
According to the embodiment described above, the core mold 11, which has been delivered by the lift device 34 and stored on the core mold supply unit 9, is received by the automatically controlled transfer device 13, and the core mold 11 is transferred by the lift device 34 and stored on the core mold supply unit 9, and is then received by the automatically controlled transfer device 13 and Alternatively, it is carried in the direction B and passed to either the upper or lower tube forming section 7 or 8. Core mold 1 set in tube forming parts 7 and 8
The resin liquid-impregnated glass fiber 6 supplied from the supply device 5 side to the core mold 11 is wound on the outer circumferential surface by the rotary mold of the core mold 11.
As a result of this operation, the supply device 5 reciprocates in the left-right direction, and winding is performed with a uniform thickness over the entire length. During such winding work, the resin liquid of the resin liquid-impregnated glass fiber 6 that has already been wound hardens in the tube forming sections 7 and 8 of the other stages, and the formed tube 12 is formed on the core mold 11. ing. The formed tube 12 is then received by a transfer device 13 and conveyed in the direction of the arrow C or arrow 2 to the formed tube removal section 10. Further, as described above, a new core mold 11 is delivered to the tube forming sections 7 and 8 from which the formed tube 12 has been taken out. As described above, the resin liquid-impregnated glass fiber 6 is cut when a predetermined amount of glass fiber 6 is wound in another stage, and then the work table 20 is raised and lowered by the operation of the lifting drive device 18 to apply cutting frost to a new core mold 11. Set the winding as much as possible.

次に供給装置5の詳細構造と作用とを第7図〜
第9図に基づいて説明する。2は長尺のガラス繊
維で、芯材40に予めロール状に巻回されてスト
ツク部1に収納されている。なおボビン状に巻回
されたものでもよい。41は上部開放の樹脂液タ
ンクで、樹脂液供給装置42から常温硬化性の樹
脂液43が30℃程度に加熱されて供給される。前
記樹脂液供給装置42は、樹脂液収納部44と、
この樹脂液収納部44に連通し且つ樹脂液ポンプ
45を介在してなる樹脂液供給管46と、触媒収
納部47と、この触媒収納部47に連通し且つ触
媒ポンプ48を介在してなる触媒供給管49と、
両供給管46,49が連通するミキシング弁50
とからなり、樹脂液タンク41に設けた液面セン
サー51の検出により樹脂液43が一定レベル以
下になつたときに所定量の樹脂液43を自動的に
供給(補充)すべく構成してある。前記両供給管
46,49中には加熱装置52,53が設けら
れ、また両ポンプ45,48は同軸54で所定比
で供給し得るように構成してある。前記樹脂液4
3は、ドラム55内の例えばポリエステル樹脂液
56をポンプ57、定量器58、弁59を介して
樹脂液収納部44に供給し、そして容器60内の
促進助材(例えばジメチルアンリン)61を温度
コントロールドラムポンプ62と定量器63とを
介して樹脂液収納部44に供給すると共に、容器
64内の顔料65を定量器66を介して樹脂液収
納部44に供給し、この状態で撹拌機67によつ
て撹拌することにより得ることができる。前記樹
脂液タンク41の下部には、開閉弁68を有する
ドレン排出管69が連通してある。70は冷却箱
71内に多数のガラス繊維誘導管72を配設して
構成した湾曲案内装置で、その受入れ口73を前
記樹脂液タンク41の下部に連通すると共に、全
体をJ字状に湾曲して、その取出し口74を該樹
脂液タンク41の設定液レベルよりも上位に設定
している。ここで受入れ口73は、樹脂液タンク
41の下部に45度の角度で連通している。また受
入れ口73と取出し口74のうち少なくとも受入
れ口73において、各ガラス繊維誘導管72の始
端にはリング状のセラミツク75が取付けてあ
る。前記ガラス繊維誘導管72の数は約60本であ
り、また湾曲案内装置70の平均案内長さLは
100mm〜500mmである。前記冷却箱71の上端には
冷却媒体供給管76が連通すると共に、下端には
冷却媒体排出管77が連通し、流される冷却媒体
によりガラス繊維誘導管72内の樹脂液43を約
5℃に降温させる。前記取出し口74の外側には
樹脂液受けタンク78が設けられ、この樹脂液受
けタンク78と前記樹脂液タンク41とを樹脂液
戻し経路79で連通して、樹脂液43を自然流動
によつて樹脂液タンク41に戻すべく構成してあ
る。前記樹脂液受けタンク78の上部に樹脂液切
り装置80が設けられる。この樹脂液切り装置8
0は、下位液切り板81と上位液切り板82とか
らなり、両板81,82の間隔lやラツプ高さh
を調整することによつて樹脂液43の含浸量を決
定し得る。11は円筒状の前記芯型で、その下方
に設けたたれ受け83は戻し路84を介して樹脂
液受けタンク78に連通している。前記樹脂液タ
ンク41からガラス繊維誘導管72を経て樹脂液
受けタンク78の上方に達し、そして樹脂液切り
装置80を通つて芯型11に至るガラス繊維移動
経路が形成される。取出し口74と樹脂液切り装
置80との間において、移動経路の上方に下向き
のアセトンガン85が配設され、このアセトンガ
ン85からのアセトン86によつて樹脂液43の
洗浄を行なう。
Next, the detailed structure and operation of the supply device 5 are shown in FIGS.
This will be explained based on FIG. 9. Reference numeral 2 denotes a long glass fiber, which is previously wound into a roll around a core material 40 and stored in the stock portion 1. Note that it may be wound into a bobbin shape. Reference numeral 41 denotes a resin liquid tank with an open top, into which room-temperature curable resin liquid 43 is heated to about 30° C. and supplied from a resin liquid supply device 42 . The resin liquid supply device 42 includes a resin liquid storage section 44,
A resin liquid supply pipe 46 that communicates with the resin liquid storage section 44 and has a resin liquid pump 45 interposed therebetween, a catalyst storage section 47, and a catalyst that communicates with this catalyst storage section 47 and has a catalyst pump 48 interposed therebetween. a supply pipe 49;
Mixing valve 50 with which both supply pipes 46 and 49 communicate
It is configured to automatically supply (replenish) a predetermined amount of resin liquid 43 when the resin liquid 43 falls below a certain level as detected by a liquid level sensor 51 provided in the resin liquid tank 41. . Heating devices 52, 53 are provided in both supply pipes 46, 49, and both pumps 45, 48 are coaxially connected 54 so as to be able to supply at a predetermined ratio. The resin liquid 4
3 supplies, for example, a polyester resin liquid 56 in the drum 55 to the resin liquid storage section 44 via a pump 57, a quantitative meter 58, and a valve 59, and supplies a promoting aid (for example, dimethylanline) 61 in a container 60. At the same time, the pigment 65 in the container 64 is supplied to the resin liquid storage unit 44 via the temperature control drum pump 62 and the quantitative meter 63, and in this state, the agitator 67. A drain discharge pipe 69 having an on-off valve 68 is connected to the lower part of the resin liquid tank 41 . Reference numeral 70 denotes a bending guide device constructed by arranging a large number of glass fiber guide tubes 72 in a cooling box 71, the receiving port 73 of which is connected to the lower part of the resin liquid tank 41, and the entire structure is bent into a J-shape. The outlet 74 is set above the set liquid level of the resin liquid tank 41. Here, the receiving port 73 communicates with the lower part of the resin liquid tank 41 at an angle of 45 degrees. Furthermore, a ring-shaped ceramic 75 is attached to the starting end of each glass fiber guide tube 72 at least in the receiving port 73 of the receiving port 73 and the extracting port 74 . The number of the glass fiber guide tubes 72 is approximately 60, and the average guide length L of the curved guide device 70 is
It is 100mm to 500mm. A cooling medium supply pipe 76 communicates with the upper end of the cooling box 71, and a cooling medium discharge pipe 77 communicates with the lower end, and the flowing cooling medium cools the resin liquid 43 in the glass fiber guide pipe 72 to about 5°C. lower the temperature. A resin liquid receiving tank 78 is provided outside the outlet 74, and the resin liquid receiving tank 78 and the resin liquid tank 41 are communicated with each other through a resin liquid return path 79 to allow the resin liquid 43 to flow naturally. It is configured to be returned to the resin liquid tank 41. A resin liquid draining device 80 is provided above the resin liquid receiving tank 78. This resin liquid draining device 8
0 consists of a lower liquid cutting plate 81 and an upper liquid cutting plate 82, and the distance l between both plates 81 and 82 and the lap height h
By adjusting the amount, the amount of resin liquid 43 impregnated can be determined. Reference numeral 11 denotes the cylindrical core type, and a drip receiver 83 provided below the core type communicates with the resin liquid receiver tank 78 via a return path 84. A glass fiber moving path is formed from the resin liquid tank 41 through the glass fiber guide pipe 72 to reach the upper part of the resin liquid receiving tank 78, and then through the resin liquid draining device 80 to reach the core mold 11. An acetone gun 85 facing downward is disposed above the moving path between the outlet 74 and the resin liquid draining device 80, and the resin liquid 43 is cleaned with acetone 86 from the acetone gun 85.

上記実施例によると、芯型11側の回転巻取り
力によつて、多数本のガラス繊維2は芯材40か
ら巻戻され、そしてガイドローラ4を介して樹脂
液タンク41の樹脂液43内に入る。そしてガラ
ス繊維2は樹脂液43とともにガラス繊維誘導管
72内を移動する間に該樹脂液43が含浸され、
取出し口74から樹脂液含浸ガラス繊維6として
取出される。そして樹脂液切り装置80を移動す
る間に余剰の樹脂液43が除去され、希望する含
浸樹脂量になる。その後、芯型11の外周に巻回
される。このような含浸作業中において、樹脂液
43はガラス繊維2とともにガラス繊維誘導管7
2中を移動することから、樹脂液タンク41の樹
脂液収納量が少量で且つ抵抗が少ない条件下でガ
ラス繊維誘導管72の内径ならびに長さを決定し
たものでありながら充分な含浸を行なえることに
なる。また、たれ受け83の樹脂液43は樹脂液
受けタンク78へ、さらに樹脂液受けタンク78
の樹脂液43は樹脂液タンク41に夫々自動的に
戻り、すなわち循環させるとともに自動撹拌状態
にし得ることから、前述したように充分に含浸さ
せ得ることも相俟つて使用樹脂量を少量にし得
る。これらのことにより、タンクライフの問題か
らみて常温硬化性の樹脂液43を容易に採用し
得、また常温硬化性の樹脂液43の採用によつ
て、芯型11に巻回し積層した後において常温下
で樹脂液43を硬化し得、以つて加熱硬化工程を
採用することなくガラス繊維強化の成形管12を
得られる。なお作業経過に伴つて樹脂液43が次
第になくなつて行くが、これは液面センサー51
からの指示によつてミキシング弁50を介して補
充されることになる。
According to the above embodiment, a large number of glass fibers 2 are unwound from the core material 40 by the rotational winding force on the core mold 11 side, and are then passed through the guide rollers 4 into the resin liquid 43 of the resin liquid tank 41. to go into. The glass fiber 2 is impregnated with the resin liquid 43 while moving inside the glass fiber guide tube 72 together with the resin liquid 43,
The glass fibers 6 are taken out from the takeout port 74 as resin liquid-impregnated glass fibers 6. Then, while moving through the resin liquid draining device 80, excess resin liquid 43 is removed, resulting in the desired amount of impregnated resin. Thereafter, it is wound around the outer periphery of the core mold 11. During such impregnation work, the resin liquid 43 flows into the glass fiber guide tube 7 together with the glass fiber 2.
2, sufficient impregnation can be performed even though the inner diameter and length of the glass fiber guide tube 72 are determined under conditions where the amount of resin liquid stored in the resin liquid tank 41 is small and the resistance is low. It turns out. Further, the resin liquid 43 in the drip tray 83 is transferred to the resin liquid receiving tank 78, and further to the resin liquid receiving tank 78.
The resin liquids 43 are automatically returned to the resin liquid tanks 41, that is, circulated, and can be automatically stirred, so that sufficient impregnation can be achieved as described above, and the amount of resin used can be reduced. Due to these, from the viewpoint of tank life issues, it is possible to easily adopt the resin liquid 43 that hardens at room temperature, and by adopting the resin liquid 43 that hardens at room temperature, the resin liquid 43 can be cured at room temperature after being wound around the core mold 11 and laminated. The resin liquid 43 can be cured at the bottom, and the glass fiber-reinforced molded tube 12 can be obtained without employing a heat curing process. Note that as the work progresses, the resin liquid 43 gradually disappears, but this is caused by the liquid level sensor 51.
It will be replenished via the mixing valve 50 according to instructions from the mixing valve 50.

なお、例えば1日の作業終了時においては、ア
セトンガン85からアセトン86を供給し、そし
て樹脂液43と同様に循環させながら洗浄を行な
い、次回の作業に備えるものである。
For example, at the end of a day's work, acetone 86 is supplied from an acetone gun 85 and cleaned while being circulated in the same manner as the resin liquid 43, in preparation for the next work.

次に管成形部7,8の詳細を第4図に基づいて
説明する。90A,90Bは一対の台車で車輪9
1A,91Bを介して前記ベース枠24,25上
に敷設したレール92A,92B上に載置してあ
り、走行駆動装置93を介して互いに接近離間自
在に構成してある。走行駆動装置93は、正逆駆
動自在なモータ94と、このモータ94に歯車機
構95を介して連動して出退動自在な左右一対の
螺子軸96A,96Bとからなり、これら螺子軸
96A,96Bを前記台車90A,90Bに連動
している。前記台車90A,90Bの相対向面側
には夫々コーン状の保持具97A,,97Bが配
設され、これら保持具97A,97Bは夫々軸受
98A,98Bを介して台車走行方向に沿つた同
一の軸心99の周りに回転自在に配設されてい
る。前記保持具97A,97Bの相対向面側に
は、夫々複数の芯型保持部100A,100Bが
階段状に形成してある。一方の台車90Aには、
一方の保持具97Aに連動する回転駆動装置10
1が設けられ、この回転駆動装置101は、モー
タ102と、このモータ102と一方の保持具9
7Aとを連動する巻掛伝動機構103とから構成
される。前記軸心99上において両保持具97
A,97B間に亘つて挿抜自在で且つ中間に膨縮
体104を有する中軸105が設けられ、さらに
中軸105に連動する挿抜作動装置106が設け
られる。すなわち軸心99上において両保持具9
7A,97Bには貫通孔107A,107Bが形
成され、これら貫通孔107A,107B間に亘
つて中軸105が挿抜自在となる。挿抜作業装置
106は、一方の台車90Aに取付けた多段シリ
ンダ装置108と、そのピストンロツド109に
取付けた可動体110とからなり、この可動体1
10に中軸105の一方端が連結される。前記膨
縮体104は例えばゴムチユーブからなり、前記
中軸105の中間部に形成した小径部105aに
外嵌されたのち、その両端部が該小径部105a
に固着される。膨縮体104を膨縮させるための
流体路111が中軸105内の小径部105aか
ら一方端側に亘つて形成され、この流体路111
の内端は膨縮体104内において開口し、また外
端はAロータリジヨイント112を介して流体給
排管113に連通している。中軸105の先端に
は被クランプ部114が形成され、この被クラン
プ部114に作用するクリツクストツプ式のクラ
ンプ装置115が他方の台車90Bに設けられ
る。前記中軸105の一端側近くにおけるロータ
リジヨイント112の内側に受圧板116が固着
され、この受圧板116に内側から対向するシリ
ンダ装置117が一方の台車90Aに取付けられ
る。118は軸受を示す。
Next, details of the tube forming parts 7 and 8 will be explained based on FIG. 4. 90A and 90B are a pair of carts with wheels 9
They are placed on rails 92A and 92B laid on the base frames 24 and 25 via 1A and 91B, and are configured to be able to move toward and away from each other via a traveling drive device 93. The travel drive device 93 consists of a motor 94 that can be driven in forward and reverse directions, and a pair of left and right screw shafts 96A, 96B that can move forward and backward in conjunction with the motor 94 via a gear mechanism 95. 96B is interlocked with the carts 90A and 90B. Cone-shaped holders 97A, 97B are disposed on opposite sides of the bogies 90A, 90B, respectively, and these holders 97A, 97B are attached to the same holder along the running direction of the bogies via bearings 98A, 98B, respectively. It is arranged rotatably around an axis 99. A plurality of core-shaped holding parts 100A and 100B are formed in a step-like manner on opposing surfaces of the holding tools 97A and 97B, respectively. One trolley 90A has
Rotary drive device 10 interlocked with one holder 97A
1 is provided, and this rotary drive device 101 includes a motor 102, this motor 102, and one holder 9.
7A, and a winding transmission mechanism 103 that interlocks with Both holders 97 on the axis 99
A center shaft 105 is provided which can be freely inserted and removed between A and 97B and has an expansion/contraction body 104 in the middle, and an insertion/extraction actuating device 106 that is interlocked with the center shaft 105 is provided. That is, both holders 9 on the axis 99
Through holes 107A and 107B are formed in 7A and 97B, and the center shaft 105 can be freely inserted and removed between these through holes 107A and 107B. The insertion/extraction work device 106 consists of a multi-stage cylinder device 108 attached to one truck 90A and a movable body 110 attached to its piston rod 109.
One end of a center shaft 105 is connected to 10. The expansion/contraction body 104 is made of, for example, a rubber tube, and is fitted onto the small diameter portion 105a formed at the middle portion of the center shaft 105, and then both ends thereof are attached to the small diameter portion 105a.
is fixed to. A fluid path 111 for expanding and contracting the expansion and contraction body 104 is formed from the small diameter portion 105a in the center shaft 105 to one end side.
The inner end thereof is open in the expansion/contraction body 104, and the outer end thereof is communicated with a fluid supply/discharge pipe 113 via an A rotary joint 112. A clamped portion 114 is formed at the tip of the center shaft 105, and a click-stop type clamping device 115 that acts on the clamped portion 114 is provided on the other carriage 90B. A pressure receiving plate 116 is fixed to the inside of the rotary joint 112 near one end of the center shaft 105, and a cylinder device 117 facing the pressure receiving plate 116 from the inside is attached to one of the carts 90A. 118 indicates a bearing.

第4図は小径の成形管12を成形した状態を示
す。その際に中軸105は挿通されており、その
先端被クランプ部114をクランプ装置115が
クランプすると共に、シリンダ装置117が受圧
板116に作用して中軸105を一方端側に引張
つて該中軸105の位置を緊張状態と成し、さら
に流体路111などを介して膨縮体104内に空
気などの流体を供給し、膨らませた膨縮体104
を芯型11の内面に圧接させて、これら芯型11
と中軸105とを一体回転自在としている。した
がつて回転駆動装置101を作動させることによ
つて、両保持具97A,97B、中軸105、芯
型11などが軸心99の周りで回転し、そして前
述したように供給装置5側からの樹脂液含浸ガラ
ス繊維6を芯型11上に巻回積層することによつ
て成形管12が得られる。その際に小径の芯型1
1は、その中間部が膨縮体104を介して中軸1
05側で保持されていることから、たわんだりす
ることなく所期の積層成形が行なえる。第4図に
示すように成形管12を成形したのち、先ず受け
渡し装置13によつて該成形管12の中間部をク
ランプする。そしてクランプ装置115によるク
ランプを解除した状態で、挿抜作動装置106を
作動させて中軸105を抜出させる。このとき膨
縮体104はすでに縮められており、また抜出は
被クランプ部114が貫通孔107A内に納まる
程度まで行なわれる。次いで走行駆動装置93を
作動させて両台車90A,90Bを離間動させ、
以つて第5図に示すように芯型11から両保持具
97A,97Bを抜出させる。これにより成形管
12は芯型11とともに受け渡し装置13に完全
にあずけられ、そして該受け渡し装置13の作動
によつて成形管取出し部10に渡される。その
後、受け渡し装置13によつて芯型供給部9内の
芯型11が取出され、そして前述とは逆動作を行
なうことによつて該芯型11をセツトし得る。
FIG. 4 shows a state in which a small-diameter molded tube 12 is molded. At this time, the center shaft 105 is inserted, and the clamp device 115 clamps the clamped portion 114 at the tip end, and the cylinder device 117 acts on the pressure receiving plate 116 to pull the center shaft 105 toward one end. The inflatable body 104 is in a tensioned position and then inflated by supplying fluid such as air into the inflatable body 104 through the fluid path 111 or the like.
are pressed against the inner surface of the core mold 11, and these core molds 11
and the center shaft 105 are integrally rotatable. Therefore, by operating the rotation drive device 101, both holders 97A, 97B, the center shaft 105, the core mold 11, etc. rotate around the axis 99, and as described above, the rotation from the supply device 5 side is caused. A molded tube 12 is obtained by winding and laminating the resin liquid-impregnated glass fiber 6 on the core mold 11. At that time, small diameter core type 1
1, the middle part is connected to the central shaft 1 through the expansion and contraction body 104.
Since it is held on the 05 side, the desired lamination molding can be performed without bending. After forming the formed tube 12 as shown in FIG. 4, first, the middle portion of the formed tube 12 is clamped by the transfer device 13. Then, with the clamp by the clamp device 115 released, the insertion/extraction actuating device 106 is activated to extract the center shaft 105. At this time, the expansion and contraction body 104 has already been contracted, and the extraction is performed to the extent that the clamped portion 114 is accommodated in the through hole 107A. Next, the travel drive device 93 is activated to move both carts 90A and 90B apart,
Then, as shown in FIG. 5, both holders 97A and 97B are pulled out from the core mold 11. As a result, the forming tube 12 is completely entrusted to the transfer device 13 together with the core mold 11, and is then transferred to the forming tube take-out section 10 by the operation of the transfer device 13. Thereafter, the core mold 11 in the core mold supply section 9 is taken out by the transfer device 13, and the core mold 11 can be set by performing an operation opposite to that described above.

第6図は大径の成形管12を形成した状態を示
し、このとき中軸105などは非作用状態で行な
われる。
FIG. 6 shows a state in which a large-diameter forming tube 12 is formed, with the center shaft 105 and the like being inactive.

なお成形管12の径変化に対しては、芯型11
の保持位置を、保持具97A,97Bにおける最
適の芯型保持部100A,100Bに外嵌保持さ
せることによつて対処し得る。
In addition, regarding the diameter change of the formed tube 12, the core mold 11
The holding position can be handled by externally fitting and holding the optimum core-type holding parts 100A, 100B in the holders 97A, 97B.

発明の効果 上記構成の本発明における管製造設備による
と、上下方向複数段の管成形部のうちの1つの段
の管成形部に対して供給装置を作用させている間
に、他の段においては、巻回した樹脂液含浸ガラ
ス繊維の硬化、受け渡し装置を使用しての芯型と
一体的な成形管の取出し、受け渡し装置を使用し
ての新たな芯型の供給などを行なうことができ、
また1つの段の管成形部に対する供給装置の作用
が終了して運転を停止させた直後において該供給
装置を、新たに芯型を供給した別の段の管成形部
に対して作用させることができる。したがつて、
夫々1台(1基)の供給装置、芯型供給部、成形
管取出し部、受け渡し装置を複数段の管成形部に
対応させ作用させることができることから、設備
全体を小型化且つ低価格化でき、また受け渡し装
置の採用によつて、取出しや組込みの機械化のみ
ならず自動化も可能にできて安全且つ迅速に行な
うことができる。さらに供給装置の停止は短時間
であることからタンクライフの問題を解決でき、
例えば常温硬化性など他の樹脂液でも容易に採用
できる。
Effects of the Invention According to the pipe manufacturing equipment of the present invention having the above configuration, while the feeding device is acting on the tube forming section of one stage of the plurality of stages of pipe forming sections in the vertical direction, the pipe forming section of the other stage is being operated. It is possible to harden the wound glass fiber impregnated with resin liquid, use the delivery device to take out the molded tube that is integral with the core mold, and use the delivery device to supply a new core mold. ,
Further, immediately after the feeding device has finished its action on the tube forming section of one stage and the operation has been stopped, the feeding device can be started to act on the tube forming section of another stage to which a core mold has been newly supplied. can. Therefore,
Since one feeding device, core feeding section, forming tube take-out section, and delivery device can each correspond to and operate on multiple stages of tube forming sections, the entire equipment can be made smaller and lower in price. Furthermore, by employing a delivery device, it is possible to not only mechanize the removal and installation but also to automate it, making it possible to perform it safely and quickly. Furthermore, since the supply equipment only needs to be stopped for a short time, tank life problems can be solved.
For example, other resin liquids such as room-temperature curable resin liquids can also be easily adopted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第9図は本発明の一実施例を示し、第
1図は全体の概略側面図、第2図は第1図におけ
るA−A矢視図、第3図は同B−B矢視図、第4
図〜第6図は管成形部の一部切欠き正面図、第7
図は供給装置の側面説明図、第8図は同要部断面
図、第9図は第7図におけるC−C断面図、第1
0図〜第12図は従来例を示す工程説明図であ
る。 1…ガラス繊維ストツク部、2…ガラス繊維、
5…供給装置、6…樹脂液含浸ガラス繊維、7,
8…管成形部、9…芯型供給部、10…成形管取
出し部、11…芯型、12…成形管、13…受け
渡し装置、20…作業台、70…湾曲案内装置、
97A,97B…保持具、100A,100B…
芯型保持部。
1 to 9 show one embodiment of the present invention, FIG. 1 is a schematic side view of the whole, FIG. 2 is a view taken along arrow A-A in FIG. 1, and FIG. Arrow view, 4th
Figures 7 to 6 are partially cutaway front views of the tube forming part.
The figure is an explanatory side view of the supply device, FIG. 8 is a cross-sectional view of the same essential parts, FIG.
0 to 12 are process explanatory diagrams showing a conventional example. 1...Glass fiber stock part, 2...Glass fiber,
5... Supply device, 6... Resin liquid impregnated glass fiber, 7,
8... Pipe forming section, 9... Core mold supply section, 10... Forming tube take-out section, 11... Core mold, 12... Forming tube, 13... Delivery device, 20... Work table, 70... Curving guide device,
97A, 97B...Holder, 100A, 100B...
Core holding part.

Claims (1)

【特許請求の範囲】[Claims] 1 芯型を支持して回転させる管成形部を上下複
数段設け、これら管成形部の一側に対向して樹脂
液含浸ガラス繊維の供給装置を1台設け、また他
側に対向して芯型供給部と成形管取出し部とを上
下に振分けて配設し、前記芯型供給部または成形
管取出し部と前記管成形部との間で芯型または成
形管の受け渡しを行なう受け渡し装置を設けたこ
とを特徴とする管製造設備。
1 A plurality of upper and lower tube forming sections are provided to support and rotate the core mold, one feeding device for resin liquid impregnated glass fiber is provided facing one side of these tube forming sections, and a core mold is provided opposite to the other side. A mold supply part and a molded tube take-out part are arranged vertically and a transfer device is provided for transferring the core mold or molded tube between the core mold supply part or the molded tube take-out part and the tube forming part. Pipe manufacturing equipment characterized by:
JP59191308A 1984-09-12 1984-09-12 Pipe manufacturing equipment Granted JPS6168234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191308A JPS6168234A (en) 1984-09-12 1984-09-12 Pipe manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191308A JPS6168234A (en) 1984-09-12 1984-09-12 Pipe manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS6168234A JPS6168234A (en) 1986-04-08
JPH0331333B2 true JPH0331333B2 (en) 1991-05-02

Family

ID=16272397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191308A Granted JPS6168234A (en) 1984-09-12 1984-09-12 Pipe manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS6168234A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571675B1 (en) * 1992-05-27 1997-07-23 Toray Industries, Inc. Filament winding apparatus
DE102011121987A1 (en) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Winding method for producing a rotationally symmetrical, tubular hollow body molding, apparatus for producing a rotationally symmetrical, tubular hollow body molding and method for producing a device for producing a rotationally symmetrical, tubular hollow body molding
JP5752627B2 (en) * 2012-03-19 2015-07-22 村田機械株式会社 Filament winding equipment

Also Published As

Publication number Publication date
JPS6168234A (en) 1986-04-08

Similar Documents

Publication Publication Date Title
CN105711161B (en) A kind of automated manufacturing system for being used to prepare bamboo coiled composite tube
CN205573247U (en) A automated manufacturing system for preparing compound pipe of bamboo winding
CN205614995U (en) Multistation internal -rib integration production reinforcing glass fiber -reinforced plastic cylinder's mould equipment
CN113300187B (en) Manufacturing production line and manufacturing process for CT slip ring
JP2018531161A6 (en) Manufacturing method and apparatus for liner hose for pipe
JP2018531161A (en) Manufacturing method and apparatus for liner hose for pipe
CN107150450B (en) Automatic production line and production method for bamboo winding vehicle body
JPH0331333B2 (en)
WO2009075525A2 (en) Field-assemblable apparatus for manufacturing steel pipes
CN113854124B (en) Using method of door frame type PE pipe sleeving and mounting unit of reel sprinkler
CN113499931A (en) Gluing system and method based on intelligent automatic electronic component protective film
CN111086914B (en) Embossing device and embossing method for composite material
KR200317060Y1 (en) Filament winding machine
KR101261972B1 (en) The device for rolling
EP3181321B1 (en) Process for manufacturing hollow elongated bodies made of composite material
GB2129764A (en) Apparatus and method for the manufacture of fibre-reinforced cylindrical products
CN111716737B (en) Use method of reel end PE pipe sleeving and mounting unit
CN2247091Y (en) Moulding machine for glass fibre reiforced plastic storage tank and pipe line
JPH0331332B2 (en)
EP3181320B1 (en) Apparatus for manufacturing hollow elongated bodies made of composite material
CN216836337U (en) Waterproofing membrane apparatus for producing convenient to change wind-up roll
CN220883398U (en) Automatic sealing device for end face of composite pipe
CN2567027Y (en) Shaping machine for glass fibre reinforced plastic pipeline
CN219563267U (en) Medical PVC pipe cutting machine
JPH0331335B2 (en)