JPH0330759Y2 - - Google Patents

Info

Publication number
JPH0330759Y2
JPH0330759Y2 JP1985047624U JP4762485U JPH0330759Y2 JP H0330759 Y2 JPH0330759 Y2 JP H0330759Y2 JP 1985047624 U JP1985047624 U JP 1985047624U JP 4762485 U JP4762485 U JP 4762485U JP H0330759 Y2 JPH0330759 Y2 JP H0330759Y2
Authority
JP
Japan
Prior art keywords
gas
heat
storage cylinder
heat storage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985047624U
Other languages
Japanese (ja)
Other versions
JPS6236366U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985047624U priority Critical patent/JPH0330759Y2/ja
Publication of JPS6236366U publication Critical patent/JPS6236366U/ja
Application granted granted Critical
Publication of JPH0330759Y2 publication Critical patent/JPH0330759Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Details Of Fluid Heaters (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、ガス−水用熱交換器に関する。[Detailed explanation of the idea] Industrial applications The present invention relates to a gas-water heat exchanger.

従来技術とその問題点 ガス−水用熱交換器は、ガス側の熱伝達率が低
いため、一般に伝熱性能が悪い。例えばコイル式
熱交換器をエコノマイザ(ボイラ排熱回収用給水
予熱器)として使用する場合、ガス側の圧力損失
が低く、しかも軽量であるという長所を有する反
面、伝熱性能に難がある。
Prior art and its problems Gas-water heat exchangers generally have poor heat transfer performance because the heat transfer coefficient on the gas side is low. For example, when a coil type heat exchanger is used as an economizer (feed water preheater for boiler exhaust heat recovery), it has the advantage of low pressure loss on the gas side and is lightweight, but has a problem with heat transfer performance.

本考案の目的は、上記問題点を解決し、高温ガ
スと水との熱交換における伝熱性能を高め得るガ
ス−水用熱交換器を提供することにある。
An object of the present invention is to provide a gas-water heat exchanger that can solve the above problems and improve heat transfer performance in heat exchange between high-temperature gas and water.

問題点を解決するための手段 本考案の上記目的は、両端に開口を有する高輻
射率材製の蓄熱筒と、該蓄熱筒の外周部を巻回す
る通水用のコイル状伝熱管と、これら蓄熱筒及び
伝熱管を収容するケーシングとを備えるガス−水
用熱交換器であつて、前記ケーシングは、高温ガ
スを前記蓄熱筒の一端側から該蓄熱筒の内外へ供
給して該蓄熱筒の他端側から排出するようにガス
供給口及び排出口を備え、前記蓄熱筒は、周壁に
多数のガス通過孔が形成されていると共に、圧力
調節用ダンパを前記他端側開口部に備えているこ
とを特徴とするガス−水用熱交換器より達成され
る。
Means for Solving the Problems The above object of the present invention is to provide a heat storage cylinder made of a high emissivity material having openings at both ends, a coiled heat transfer tube for water passage wound around the outer circumference of the heat storage cylinder, A gas-water heat exchanger comprising a heat storage cylinder and a casing that accommodates the heat transfer tube, wherein the casing supplies high-temperature gas from one end side of the heat storage cylinder to the inside and outside of the heat storage cylinder. The heat storage cylinder is provided with a gas supply port and a gas discharge port so as to discharge the gas from the other end side, and the heat storage cylinder has a plurality of gas passage holes formed in the peripheral wall, and a pressure regulating damper is provided in the other end side opening. This is achieved by a gas-water heat exchanger characterized by:

前記コイル状伝熱管は、前記蓄熱筒の外周に一
層に巻回されてもよいが、該伝熱管の伝熱面積を
増大させ、ガス流の乱流化を促進させて熱通過率
を向上させるために、複数層に巻回されているの
が好ましい。
The coiled heat transfer tube may be wound in a single layer around the outer periphery of the heat storage tube, increasing the heat transfer area of the heat transfer tube, promoting turbulence of the gas flow, and improving the heat transfer rate. Therefore, it is preferable that the wire be wound in multiple layers.

また、前記ダンパは、前記蓄熱筒の一端側に1
つだけ配設されてもよいが、ガス通過孔からのガ
ス噴出速度を均一化し乱流化を促進するために、
更に他のダンパを適当位置に設けることもでき
る。
Further, the damper is arranged at one end side of the heat storage cylinder.
However, in order to equalize the gas ejection speed from the gas passage hole and promote turbulence,
Furthermore, other dampers may be provided at appropriate locations.

前記蓄熱筒を構成する高ふく射率蓄熱材料とし
て、例えばセラミツク、耐火物等を挙げることが
できる。セラミツクの例としてアルミナを主成分
とするもの(ふく射率ε=0.93程度のもの)、マ
グネシアを主成分とするもの(ふく射率ε=0.55
程度のもの)等を挙げることができ、耐火物の例
として高アルミナ質のキヤスタブル耐火物、高ア
ルミナ質のプラスチツク耐火物等を挙げることが
できる。
Examples of the high emissivity heat storage material constituting the heat storage cylinder include ceramics, refractories, and the like. Examples of ceramics include those whose main component is alumina (emission rate ε = about 0.93), and those whose main component is magnesia (emission rate ε = 0.55).
Examples of refractories include high alumina castable refractories and high alumina plastic refractories.

蓄熱筒として、更に、一般の金属筒表面に重油
をコーテイングした状態のもの(ふく射率ε=
0.99程度)を使用してもよい。
As a heat storage cylinder, we also use a general metal cylinder whose surface is coated with heavy oil (emission rate ε=
0.99) may be used.

作 用 本考案熱交換器においては、一端側から高輻射
率材製蓄熱筒の内外へ向け高温ガスが供給され、
該蓄熱筒の他端側開口部には圧力調節用ダンパが
設けられる。蓄熱筒の外側に供給されたガスは、
伝熱管の間を通過し、該蓄熱筒の内側へ供給され
たガスは、ダンパの開度に応じて該蓄熱筒周壁の
ガス通過孔から筒外へ流出し伝熱管の間を通り、
両ガスの流れは上記筒外での衝突、及び伝熱管と
の接触に基づき互いに乱流化しつつ前進する。ま
た、斯かる高温ガス流により、蓄熱筒は加熱され
て蓄熱する。従つて、伝熱管内を通る水は、該伝
熱管に接触しつつ対流する高温ガスからの伝達熱
と、蓄熱筒からの固体輻射熱との双方により加熱
される。
Function In the heat exchanger of the present invention, high-temperature gas is supplied from one end to the inside and outside of the heat storage tube made of high emissivity material.
A pressure regulating damper is provided at the opening on the other end side of the heat storage cylinder. The gas supplied to the outside of the heat storage cylinder is
The gas passed between the heat exchanger tubes and supplied to the inside of the heat storage cylinder flows out from the gas passage hole in the heat storage cylinder peripheral wall according to the opening degree of the damper and passes between the heat exchanger tubes,
The flows of both gases advance while becoming turbulent with each other due to the collision outside the cylinder and contact with the heat transfer tube. Further, the heat storage cylinder is heated and stores heat by such a high-temperature gas flow. Therefore, the water passing through the heat transfer tube is heated by both the transfer heat from the high temperature gas that convects while contacting the heat transfer tube and the solid radiant heat from the heat storage tube.

考案の効果 本考案熱交換器においては、多数のガス通過孔
を有する高輻射率材製の蓄熱筒を備え、該蓄熱筒
の内外に高温ガスを供給するので、ガスが有する
熱の一部が熱輻射率の高い蓄熱筒に蓄熱され、該
蓄熱筒からの固体輻射熱により伝熱管内の水への
伝熱性能が高められる。更に、蓄熱筒の出口側開
口部に圧力調節用ダンパを設けたので、該ダンパ
により適切なバツフル効果を付与することがで
き、低圧力損失で大なるガス乱流が得られ、該乱
流化に基づき高温ガスが効率良く伝熱管に接触
し、該伝熱管内の水への伝熱性能が向上する。従
つて、本考案によれば、上記の固体輻射熱による
良好な伝熱性能と、伝熱管に対する乱流ガスの効
率良い接触に基づく高い伝熱性能とが相俟つて優
れた熱交換を行うことがきるガス−水用熱交換器
を提供することができる。
Effects of the invention The heat exchanger of the present invention is equipped with a heat storage tube made of a high emissivity material and has a large number of gas passage holes, and high-temperature gas is supplied inside and outside of the heat storage tube, so that part of the heat contained in the gas is Heat is stored in a heat storage cylinder with a high thermal radiation rate, and solid radiant heat from the heat storage cylinder improves heat transfer performance to water in the heat transfer tube. Furthermore, since a pressure regulating damper is provided at the outlet side opening of the heat storage cylinder, an appropriate buffling effect can be provided by the damper, and a large gas turbulence can be obtained with low pressure loss. Based on this, the high-temperature gas efficiently contacts the heat exchanger tube, and the heat transfer performance to the water inside the heat exchanger tube improves. Therefore, according to the present invention, it is possible to perform excellent heat exchange by combining the above-mentioned good heat transfer performance due to solid radiant heat and high heat transfer performance based on efficient contact of turbulent gas with the heat transfer tube. A gas-water heat exchanger can be provided.

また、本考案熱交換器は、前述の如く圧力損失
が低いので、エコノマイザとしてボイラに取り付
け使用しても、ボイラにおける燃焼に悪影響を与
えないほか、前記蓄熱筒の蓄熱作用のため、ボイ
ラON−OFF時の熱交換器出口水の初期温度も向
上する。
In addition, since the heat exchanger of the present invention has low pressure loss as mentioned above, even if it is installed and used in a boiler as an economizer, it will not have an adverse effect on combustion in the boiler. The initial temperature of the heat exchanger outlet water when OFF is also improved.

実施例 以下に、本考案の実施例を、添付図面を参照し
つつ説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、本考案の1実施例にかかるガス−水
用熱交換器を示す。該熱交換器Hは、両端に開口
11,12を有する高輻射率材製の蓄熱筒1と、
該蓄熱筒1の外周を巻回する通水用のコイル状伝
熱管2と、これら蓄熱筒1及び伝熱管2を収容す
るケーシング4とを備えている。該ケーシング4
は、断熱材411を含有する壁体412で構成さ
れた筒状部41を備え、該筒状部41の両端に、
高温ガスを蓄熱筒1の一端側から該蓄熱筒1の内
外へ供給して該蓄熱筒1の他端側方向から排出す
るガス供給口42及び排出口43を備えている。
これらガス供給口42及び排出口43は、蓄熱筒
1の両端部及び該蓄熱筒両端部の周りを巻回する
伝熱管2に臨んでいる。蓄熱筒1は、その周壁に
多数のガス通過孔14が形成されており、また該
蓄熱筒1の出口側開口12近傍部に圧力調節用ダ
ンパ3が設けられている。伝熱管2は、蓄熱筒1
を複数層に巻回しており、給水口21から給水さ
れて出湯口22から出湯する。ダンパ3は、蓄熱
筒1の出口側開口12を開閉し得るようにケーシ
ング4に回動可能に軸支されている。本実施例に
おいては、ダンパ3が蓄熱筒1の出口側に1つだ
け配設されているが、必要に応じて例えば第1図
に仮想線で示す位置に、他のダンパを設けること
もできる。該他のダンパを設けることにより、ガ
ス通過孔14からのガス噴出速度をより均一化し
乱流化を促進することが可能となる。
FIG. 1 shows a gas-water heat exchanger according to one embodiment of the present invention. The heat exchanger H includes a heat storage cylinder 1 made of a high emissivity material and having openings 11 and 12 at both ends;
It includes a coiled heat exchanger tube 2 for water flow that is wound around the outer periphery of the heat storage cylinder 1, and a casing 4 that accommodates the heat storage cylinder 1 and the heat exchanger tube 2. The casing 4
is equipped with a cylindrical part 41 composed of a wall 412 containing a heat insulating material 411, and at both ends of the cylindrical part 41,
A gas supply port 42 and a discharge port 43 are provided for supplying high-temperature gas to the inside and outside of the heat storage cylinder 1 from one end side of the heat storage cylinder 1 and discharging it from the other end side of the heat storage cylinder 1.
These gas supply ports 42 and discharge ports 43 face both ends of the heat storage cylinder 1 and the heat transfer tubes 2 wound around both ends of the heat storage cylinder 1. The heat storage cylinder 1 has a large number of gas passage holes 14 formed in its peripheral wall, and a pressure regulating damper 3 is provided near the outlet opening 12 of the heat storage cylinder 1. The heat exchanger tube 2 is the heat storage cylinder 1
is wound in multiple layers, and water is supplied from a water supply port 21 and hot water is discharged from a hot water tap 22. The damper 3 is rotatably supported by the casing 4 so as to be able to open and close the outlet opening 12 of the heat storage cylinder 1 . In this embodiment, only one damper 3 is disposed on the outlet side of the heat storage cylinder 1, but other dampers may be provided, for example, at the position shown by the imaginary line in FIG. 1, if necessary. . By providing this other damper, it becomes possible to make the gas ejection velocity from the gas passage hole 14 more uniform and to promote turbulence.

このように構成された熱交換器Hは、例えば第
2図に示すように、ボイラBからの煙道パイプ5
にケーシング4のガス供給口42が接続され、排
気パイプ6にガス排出口43が接続される。
The heat exchanger H configured in this way has a flue pipe 5 from the boiler B, as shown in FIG.
A gas supply port 42 of the casing 4 is connected to the gas supply port 42 of the casing 4, and a gas discharge port 43 is connected to the exhaust pipe 6.

なお第2図中、7は給水パイプ、8は出湯(又
は蒸気)パイプ、9はパイプ7から熱交換器Hへ
至る水供給パイプ、91はポンプ、10は熱交換
器Hからパイプ7に戻るパイプである。
In Figure 2, 7 is a water supply pipe, 8 is a hot water (or steam) pipe, 9 is a water supply pipe from pipe 7 to heat exchanger H, 91 is a pump, and 10 is from heat exchanger H returning to pipe 7. It's a pipe.

パイプ9から熱交換器Hへ送られた水は入口2
1から伝熱管2へ入り、他方、ボイラBからの排
気高温ガスが煙道5を通つて熱交換器H中の筒1
の内外へ向け進入する。このガスのうち筒1の外
側に供給されたガスは伝熱管の間を前進し、他
方、筒1の中へ入つたガスは、ダンパ3の開度に
応じて筒壁13の孔14から筒外へ出て伝熱管2
の間を通りガス出口43の方へ前進する。この結
果、筒1内外のガス流れの干渉作用によつて伝熱
管2の周囲のガス流れは乱流を促進される。この
間、筒1には蓄熱され、伝熱管2内の水は、ガス
からの熱伝達と、筒1からの熱ふく射のため予熱
され、出湯口22から出て、パイプ10を通りボ
イラBへ向かう。
Water sent from pipe 9 to heat exchanger H is inlet 2
1 into the heat exchanger tube 2, and on the other hand, the exhaust high temperature gas from the boiler B passes through the flue 5 to the tube 1 in the heat exchanger H.
Enter inside and outside. Of this gas, the gas supplied to the outside of the cylinder 1 advances between the heat exchanger tubes, while the gas that has entered the cylinder 1 flows through the hole 14 of the cylinder wall 13 into the cylinder according to the opening degree of the damper 3. Go outside and heat transfer tube 2
It passes through the gap and moves forward toward the gas outlet 43. As a result, the interference between the gas flows inside and outside the cylinder 1 promotes turbulence in the gas flow around the heat transfer tube 2. During this time, heat is stored in the tube 1, and the water in the heat transfer tube 2 is preheated due to heat transfer from the gas and heat radiation from the tube 1, and exits from the outlet 22 and heads to the boiler B through the pipe 10. .

上記実施例におけるダンパ3を開いた状態で、
筒1がある場合とない場合とにおいて熱通過率を
求めたところ、筒1がある場合は、筒1がない場
合より熱通過率が約7〜17%向上した。(第3図
参照)。
With the damper 3 in the above embodiment open,
When the heat transfer rate was determined with and without the tube 1, when the tube 1 was present, the heat transfer rate was improved by about 7 to 17% compared to the case without the tube 1. (See Figure 3).

これは、ガスふく射が固体ふく射に変換された
だけ熱通過率が向上したことを意味している。
This means that the heat transfer rate was improved by converting gas radiation into solid radiation.

また上記実施例におけるダンパ3を閉じたまま
で、筒1がある場合とない場合につき熱通過率を
求めたところ、筒1がある場合は、筒1がない場
合より熱通過率が約20〜26%向上した(第3図参
照)。
In addition, when the damper 3 in the above embodiment was kept closed and the heat transfer rate was determined with and without the tube 1, the heat transfer rate with the tube 1 was approximately 20 to 26% higher than that without the tube 1. % (see Figure 3).

これはガスふく射が固体ふく射に変換されると
共にダンパ3のバツフル効果により熱通過率が向
上したことを意味している。
This means that the gas radiation is converted to solid radiation and the heat transfer rate is improved due to the buffling effect of the damper 3.

また、第4図からわかるように、熱交換器Hの
ダンパ3を閉めて、筒1が有る場合と、これを無
しにした場合とにつきボイラ昇温特性を調べたと
ころ、30℃昇温を基準とする場合、筒1がある場
合は、筒1が無い場合の約14%向上した。
In addition, as can be seen from Fig. 4, when the damper 3 of the heat exchanger H was closed and the boiler temperature rise characteristics were investigated with and without cylinder 1, it was found that the temperature rise was 30°C. When used as a standard, when tube 1 is present, the improvement is approximately 14% compared to when tube 1 is not present.

更に、第5図からわかるように、熱交換器Hの
ダンパ3を閉めて、筒1が有る場合と無い場合と
につき、ボイラON−OFF時の熱交換器出湯口2
2の水の昇温特性を調べたところ、筒1がある場
合は無い場合に比べ該水の初期温度が15%向上し
た。これは筒1の蓄熱作用に基づいている。
Furthermore, as can be seen from Fig. 5, when the damper 3 of the heat exchanger H is closed, the heat exchanger outlet 2 is closed when the boiler is turned on and off, depending on whether the cylinder 1 is present or not.
When the temperature rise characteristics of the water in No. 2 were investigated, the initial temperature of the water was increased by 15% when tube 1 was present compared to when it was not present. This is based on the heat storage effect of the cylinder 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の1実施例の概略断面図、第2
図は第1図の熱交換器の使用状態説明図、第3図
は第1図の実施例におけるダンパを開いた状態と
閉じた状態において高ふく射率多孔蓄熱筒が有る
場合と無い場合とについて求めた熱通過率K−空
気比n線図、第4図は第1図実施例におけるダン
パを閉じた状態において蓄熱筒が有る場合と無い
場合とについて求めたボイラ昇温Δt−経過時間
t線図、第5図は第1図実施例におけるダンパを
閉じた状態において蓄熱筒があるときと無いとき
について求めた熱交換器出湯口の水の昇温Δt−
経過時間t線図である。 H……熱交換器、1……高ふく射率材製の蓄熱
筒、11,12……筒端、13……筒周壁、14
……ガス通過孔、2……伝熱管、3……ダンパ、
4……ケーシング、42……ガス供給口、43…
…ガス排出口。
Fig. 1 is a schematic sectional view of one embodiment of the present invention;
The figure is an explanatory diagram of the usage state of the heat exchanger shown in Fig. 1, and Fig. 3 shows the damper in the embodiment shown in Fig. 1 in the open and closed states with and without the high emissivity porous heat storage cylinder. The obtained heat transfer rate K - air ratio n diagram, and Fig. 4 is the boiler temperature rise Δt - elapsed time t line obtained with and without the heat storage cylinder with the damper closed in the example of Fig. 1. 5 shows the temperature increase Δt− of the water at the heat exchanger outlet obtained with and without the heat storage cylinder with the damper closed in the example of FIG. 1.
It is an elapsed time t diagram. H... Heat exchanger, 1... Heat storage cylinder made of high emissivity material, 11, 12... Cylinder end, 13... Cylinder peripheral wall, 14
...Gas passage hole, 2...Heat transfer tube, 3...Damper,
4...Casing, 42...Gas supply port, 43...
...Gas outlet.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 両端に開口を有する高輻射率材製の蓄熱筒と、
該蓄熱筒の外周部を巻回する通水用のコイル状伝
熱管と、これら蓄熱筒及び伝熱管を収容するケー
シングとを備えるガス−水用熱交換器であつて、
前記ケーシングは、高温ガスを前記蓄熱筒の一端
側から該蓄熱筒の内外へ供給して該蓄熱筒の他端
側から排出するようにガス供給口及び排出口を備
え、前記蓄熱筒は、周壁に多数のガス通過孔が形
成されていると共に、圧力調節用ダンパを前記他
端側開口部に備えていることを特徴とするガス−
水用熱交換器。
A heat storage cylinder made of high emissivity material with openings at both ends,
A gas-water heat exchanger comprising a coiled heat transfer tube for water flow that is wound around the outer periphery of the heat storage cylinder, and a casing that accommodates the heat storage cylinder and the heat transfer tube,
The casing is provided with a gas supply port and a gas discharge port so that high-temperature gas is supplied from one end of the heat storage cylinder into the inside and outside of the heat storage cylinder and discharged from the other end of the heat storage cylinder, and the heat storage cylinder has a A large number of gas passage holes are formed in the gas passageway, and a pressure regulating damper is provided at the opening on the other end side.
Heat exchanger for water.
JP1985047624U 1985-03-29 1985-03-29 Expired JPH0330759Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985047624U JPH0330759Y2 (en) 1985-03-29 1985-03-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985047624U JPH0330759Y2 (en) 1985-03-29 1985-03-29

Publications (2)

Publication Number Publication Date
JPS6236366U JPS6236366U (en) 1987-03-04
JPH0330759Y2 true JPH0330759Y2 (en) 1991-06-28

Family

ID=30868400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985047624U Expired JPH0330759Y2 (en) 1985-03-29 1985-03-29

Country Status (1)

Country Link
JP (1) JPH0330759Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7459570B2 (en) * 2020-03-05 2024-04-02 三菱マテリアル株式会社 Heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352801A (en) * 1976-10-09 1978-05-13 Viessmann Hans Boiler for burning liquid or gaseous fuel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898540U (en) * 1981-12-25 1983-07-05 松下電器産業株式会社 fluid heating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352801A (en) * 1976-10-09 1978-05-13 Viessmann Hans Boiler for burning liquid or gaseous fuel

Also Published As

Publication number Publication date
JPS6236366U (en) 1987-03-04

Similar Documents

Publication Publication Date Title
JPH0330759Y2 (en)
JPS6319685Y2 (en)
EP1306626B1 (en) Equipment for water heater
JP2694894B2 (en) Heat exchanger
JPS5966646A (en) Hot water boiler
JP2522856Y2 (en) Heat exchanger
JPH08247684A (en) Heat exchanger
JPH0429217Y2 (en)
SU941794A1 (en) Recuperator
JPS6161022B2 (en)
JPS6284258A (en) Fluid heating device
JPH09303875A (en) Hot water boiler for heating
JPH0227348Y2 (en)
JPS6020047A (en) Water heater
KR790001026Y1 (en) Hot water briquette boiler
JPS6124849Y2 (en)
JPS5924921Y2 (en) Heat exchanger for water heater
JPS6115452U (en) hot air generator
SU591681A1 (en) Tubular heater
SU1353979A1 (en) Recuperator
CN114127483A (en) Wave-shaped smoke tube structure of boiler
JPH0619218B2 (en) Combustion air preheater for radiant tubes
JPH0372909B2 (en)
JPS61192106U (en)
KR890005742Y1 (en) Twofold heat exchanger