JPH0330601B2 - - Google Patents

Info

Publication number
JPH0330601B2
JPH0330601B2 JP9242283A JP9242283A JPH0330601B2 JP H0330601 B2 JPH0330601 B2 JP H0330601B2 JP 9242283 A JP9242283 A JP 9242283A JP 9242283 A JP9242283 A JP 9242283A JP H0330601 B2 JPH0330601 B2 JP H0330601B2
Authority
JP
Japan
Prior art keywords
polymerization
polymer
liquid phase
phase
polymerization tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9242283A
Other languages
Japanese (ja)
Other versions
JPS59219309A (en
Inventor
Takehiro Ishimoto
Kenichi Tominari
Masayoshi Yasunaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP9242283A priority Critical patent/JPS59219309A/en
Publication of JPS59219309A publication Critical patent/JPS59219309A/en
Publication of JPH0330601B2 publication Critical patent/JPH0330601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は溶解重合、とくに反応条件下に液相を
なす媒体中で形成される重合体が該液媒に溶解す
る条件下に、各種の重合性単量体たとえばオレフ
イン類を重合するタイプの重合方法の改善に関
し、さらには生成重合体の密度及び平均分子量の
調節の容易な重合法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to solution polymerization, in particular, to polymerization of various polymerizable monomers such as olefins under reaction conditions such that the polymer formed in a liquid phase medium is dissolved in the liquid medium. The present invention relates to an improvement in a type of polymerization method for polymerizing polymers, and further relates to a polymerization method that allows easy control of the density and average molecular weight of the resulting polymer.

なお、本発明において重合という語は共重合を
包含した意味で、また同様に重合体という語は共
重合体を包含した意味で用いることがある。
In the present invention, the term "polymerization" may be used to include copolymerization, and similarly, the term "polymer" may be used to include copolymers.

前記タイプの重合方法は、各種の重合性単量体
を重合して重合体を製造する一つのタイプとして
知られている。例えばオレフイン類の重合を例に
例示すると、不活性炭化水素類及び/又は重合す
べきオレフイン類を反応条件下に液相をなす媒体
として用い、形成されるオレフイン重合体類が該
液媒に溶解する条件下にオレフイン類を重合する
手法が知られている。この手法は、とくにスラリ
ー重合を行うのが因難な中・低密度グレードのエ
チレン共重合体の製造に好適な手法である。
The above-mentioned type of polymerization method is known as one type in which a polymer is produced by polymerizing various polymerizable monomers. For example, taking the polymerization of olefins as an example, inert hydrocarbons and/or olefins to be polymerized are used as a medium that forms a liquid phase under reaction conditions, and the olefin polymers formed are dissolved in the liquid medium. A method of polymerizing olefins under such conditions is known. This method is particularly suitable for producing medium- and low-density grade ethylene copolymers for which slurry polymerization is difficult.

このようなタイプの溶解重合の実施に際して、
均一性の良い重合体を得るためには、一般に上部
曇り点と下部曇り点との中間の均一液相を呈する
非二相分離領域条件下で重合を行うことが好まし
く、そのような条件下で重合を行うのが普通であ
る。しかしながら、このようなタイプの溶解重合
手法によつて、高分子量の重合体を製造しようと
する場合には、重合系の溶液粘度が上昇し、重合
熱の除去、生成物のポンプ輸送、重合系の撹拌混
合等が円滑に行えなくなる。そのために、重合体
濃度が希薄な状態での運転を余儀なくされ、その
結果、重合器単位容積当りの生産能力の低下や重
合体分離コストの上昇などの不利益を伴うトラブ
ルがある。
When carrying out this type of solution polymerization,
In order to obtain a polymer with good homogeneity, it is generally preferable to carry out the polymerization under conditions in a non-two-phase separation region that exhibits a uniform liquid phase between the upper cloud point and the lower cloud point. It is common to carry out polymerization. However, when attempting to produce high molecular weight polymers by these types of solution polymerization techniques, the solution viscosity of the polymerization system increases, making it difficult to remove the polymerization heat, pump the product, and process the polymerization system. Stirring and mixing cannot be performed smoothly. For this reason, it is necessary to operate in a state where the polymer concentration is diluted, and as a result, there are problems with disadvantages such as a decrease in production capacity per unit volume of the polymerization vessel and an increase in polymer separation cost.

本発明者らは、溶解重合における上記の如き不
利益を回避する改善方法を開発すべく研究を行つ
た。その結果、上述のタイプの溶解重合を、重合
の均一性が失われるであろうことの予測される上
部曇り点以上の二相分離領域条件下で行い、但し
両相が良好な分散混合状態となるような充分な撹
拌条件を採用して該重合を行うことによつて、恰
もより希薄な重合体濃度の液相中に、より濃厚な
重合体濃度の液滴分散系の如き分散混合状態の反
応系が形成できるためと推測されるが、重合の均
一性を損うことなしに前記トラブルが好都合に克
服された改善が達成できることを見出し、特開昭
58−7402号公報にすでに提案した。この方法は、
生成重合液を分離帯域に導いて分相し、重合体濃
度液相を採取し、重合体希薄液相を重合槽に循環
再使用することによつて、重合系の溶液粘度を著
しく増大させることなく、生成物のポンプ輸送、
重合系の撹拌混合、重合熱の除去を円滑に行うこ
とができるので、重合体製造のために合理的プロ
セスであつた。
The present inventors conducted research in order to develop an improvement method that avoids the above-mentioned disadvantages in solution polymerization. As a result, solution polymerizations of the type described above are carried out under conditions in the two-phase separation region above the upper cloud point, where polymerization uniformity would be expected to be lost, but with the exception that both phases are in a well-dispersed state of mixing. By carrying out the polymerization under sufficient stirring conditions, it is possible to create a dispersion-mixed state such as a droplet dispersion system with a higher concentration of polymer in a liquid phase with a lower concentration of polymer. This is presumed to be due to the formation of a reaction system, but it was discovered that an improvement could be achieved in which the above-mentioned troubles could be conveniently overcome without impairing the uniformity of polymerization, and
It has already been proposed in Publication No. 58-7402. This method is
To significantly increase the solution viscosity of the polymerization system by leading the produced polymerization liquid to a separation zone and separating the phases, collecting the polymer concentration liquid phase, and recycling and reusing the polymer diluted liquid phase to the polymerization tank. without pumping the product,
It was a rational process for producing polymers because the stirring and mixing of the polymerization system and the removal of polymerization heat could be carried out smoothly.

本発明者らは、前述の重合プロセスをさらに改
善し、一層合理的なプロセスを開発することを目
的として検討した結果、各重合槽内部の重合系が
上部曇り点以上の二相分離領域にあつて、両相が
分散撹拌混合状態にある多段の重合槽からなる重
合プロセスで重合する際に、第一段目の重合槽に
おいて特定の極限粘度〔ηa〕となるまで重合を行
うことにより最初に高分子量化し、後段の重合槽
によつてさらに重合を続ける方法を採用すること
により、前記公開公報に提案した方法にくらべて
生成重合体の密度調節及び分子量分布調節が著し
く容易にでき、前記目的が達成できることを見出
し、本発明に到達した。本発明によれば、従来の
均一溶液系にくらべて系の見掛粘度がより低い状
態で重合を行うことができ、従つて反応容積当た
りの重合体生産量の増大が達成できること、また
分相された重合体希薄溶液相の粘度は極めて低粘
度でありしかも冷却効率に優れているために重合
反応熱の除去が容易でしかも効率的であること、
媒体の重合槽への循環再使用が容易にかつ効率的
に実施できること、オレフインの重合の際には第
1段目の重合槽において高分子量重合体を生成さ
せるために水素の使用が少なく、第1段目と第2
段目の重合槽の間の水素分離装置を設置する必要
がなくなること、などの多くの利点がある。
As a result of studies aimed at further improving the above-mentioned polymerization process and developing a more rational process, the present inventors found that the polymerization system inside each polymerization tank was in the two-phase separation region above the upper cloud point. When polymerizing in a polymerization process consisting of multiple stages of polymerization tanks in which both phases are dispersed and mixed, the initial viscosity is By adopting a method in which the molecular weight is increased to a higher molecular weight and further polymerization is continued in a subsequent polymerization tank, the density and molecular weight distribution of the resulting polymer can be adjusted much more easily than the method proposed in the above-mentioned publication. The inventors have discovered that the object can be achieved and have arrived at the present invention. According to the present invention, polymerization can be carried out in a state where the apparent viscosity of the system is lower than in conventional homogeneous solution systems, and therefore, an increase in the amount of polymer produced per reaction volume can be achieved, and phase separation is also possible. The viscosity of the polymer dilute solution phase obtained is extremely low and has excellent cooling efficiency, so that the heat of polymerization reaction can be easily and efficiently removed;
The medium can be easily and efficiently circulated and reused in the polymerization tank, and in the case of olefin polymerization, less hydrogen is used in the first stage polymerization tank to produce a high molecular weight polymer. 1st and 2nd row
There are many advantages such as eliminating the need to install a hydrogen separation device between the stages of polymerization tanks.

従来の均一溶液系の多段重合法では前述の欠点
を回避することが不可能であるので、通常第1段
目の重合槽では低分子量重合体を製造し、後段の
重合槽において高分子量化させる方法が採用され
ていたが、この方法では生成重合体の分子量分布
の調節及び密度の調節をするためには、重合槽間
に水素分離装置が必要となり、更にリサイクル溶
媒中の共重合成分の分離のために大規模な蒸留装
置が必要であつた。これに対して、本発明の方法
では、後述の方法を採用することにより、従来の
多段重合法の欠点を排除し、優れた多段重合プロ
セスとなるという特徴を有している。
Since it is impossible to avoid the above-mentioned drawbacks in the conventional homogeneous solution-based multi-stage polymerization method, a low molecular weight polymer is usually produced in the first stage polymerization tank, and the molecular weight is increased in the subsequent stage polymerization tank. However, this method requires a hydrogen separation device between the polymerization tanks in order to adjust the molecular weight distribution and density of the produced polymer, and it also requires separation of copolymer components in the recycled solvent. Therefore, large-scale distillation equipment was required. In contrast, the method of the present invention is characterized by eliminating the drawbacks of conventional multistage polymerization methods and providing an excellent multistage polymerization process by employing the method described below.

本発明を概説すれば、本発明は、反応条件下に
液相をなす媒体中で、形成される重合体が該媒体
中に溶解する条件を充たす多段の重合槽で単量体
を重合する際に、 (i) 各重合槽内部の重合系は、上部曇り点以上の
二相分離領域にありかつ両相が分散撹拌混合状
態にあり、 (ii) 各重合槽内の重合生成液を分離帯域に導いて
重合体濃厚液相と重合体希薄液相からなる二液
相に分相し、該重合体希薄液相を該重合槽に循
環再使用し、該重合体濃厚液相を後段の重合槽
に供給し、 (iii) 最後段の重合槽からの重合生成液の二液相分
離によつて得られる該重合体濃厚液相から重合
体を分離する、 ことからなる重合プロセスの各重合槽に単量体
を供給し、 (iv) 最後段の重合槽から得られる重合体の極限粘
度〔ηz〕に対する第1段目の重合槽で生成する
重合体の極限粘度〔ηa〕の比が1.1ないし4の
範囲となるまで重合する、 ことを特徴とする重合方法、を発明の要旨とする
ものである。
To summarize the present invention, the present invention provides a method for polymerizing monomers in a multi-stage polymerization tank that satisfies the condition that the polymer formed is dissolved in the medium which forms a liquid phase under the reaction conditions. (i) The polymerization system inside each polymerization tank is in a two-phase separation region above the upper cloud point, and both phases are dispersed and mixed, and (ii) The polymerization product liquid in each polymerization tank is separated into a separation zone. The diluted polymer liquid phase is circulated and reused in the polymerization tank, and the polymer concentrated liquid phase is used in the subsequent polymerization. (iii) separating the polymer from the polymer-concentrated liquid phase obtained by two-liquid phase separation of the polymerization product liquid from the final polymerization tank; (iv) The ratio of the intrinsic viscosity of the polymer produced in the first stage polymerization tank [η a ] to the intrinsic viscosity [η z ] of the polymer obtained from the last stage polymerization tank. The gist of the invention is a polymerization method characterized in that the polymerization is carried out until the polymerization ratio is in the range of 1.1 to 4.

本発明の上記目的及び更に多くの他の目的なら
びに利点は以下の記載から一層明らかになるであ
ろう。
The above objects and many other objects and advantages of the present invention will become more apparent from the following description.

本発明方法は溶解重合が可能で且つ上部曇り点
を示す任意の各種単量体の重合に有利に適用でき
るが、以下においては、オレフイン類の重合を例
に本発明重合方法について更に詳しく説明する。
Although the method of the present invention can be advantageously applied to the polymerization of any various monomers that can be dissolved in solution and exhibit an upper cloud point, the polymerization method of the present invention will be explained in more detail below using the polymerization of olefins as an example. .

本発明の重合方法の実施に際しては、例えば従
来中・低圧法に提案されているような各種の遷移
金属含有触媒を用いることができる。このような
触媒としては、例えば遷移金属化合物触媒成分と
周期律表第1族ないし第3族金属の有機金属化合
物触媒成分とから形成された遷移金属含有触媒を
用いることができる。
When carrying out the polymerization method of the present invention, various transition metal-containing catalysts, such as those conventionally proposed for medium and low pressure methods, can be used. As such a catalyst, for example, a transition metal-containing catalyst formed from a transition metal compound catalyst component and an organometallic compound catalyst component of a metal from Group 1 to Group 3 of the periodic table can be used.

前記遷移金属化合物触媒成分は、チタン、バナ
ジウム、クロム、ジルコニウムなどの遷移金属の
化合物であつて、使用条件下で液状のものであつ
ても固体状のものであつてもよい。これらは単一
化合物である必要はなく、他の化合物に担持され
ていたりあるいは混合されていてもよい。さら
に、他の化合物との錯化合物や複化合物であつて
もよい。好適な上記成分は、遷移金属1ミリモル
当た5000g以上、とくに8000g以上のオレフイン
重合体を製造することができる高活性遷移金属化
合物触媒成分であつて、その代表的なものとして
マグネシウム化合物によつて高活性化されたチタ
ン触媒成分を例示することができる。例えば、チ
タン、マグネシウム及びハロゲンを必須成分とす
る固体状のチタン触媒成分であつて、非晶化され
たハロゲン化マグネシウムを含有し、その比表面
積は、好ましくは約40m2/g以上、とくに好まし
くは約80m2/gの成分を例示することができる。
そして電子供与体、例えば有機酸エステル、ケイ
酸エステル、酸ハライド、酸無水物、ケトン、酸
アミド、第三アミン、リン酸エステル、亜リン酸
エステル、エーテルなどを含有していてもよい。
このチタン触媒成分は、例えば、チタンを約0.5
ないし約10重量%、とくに約1ないし約8重量%
含有し、チタン/マグネシウム(原子比)が約1/
2ないし約1/100、とくに約1/3ないし約1/50、ハ
ロゲン/チタン(原子比)が約4ないし約100、
とくに約6ないし約80、電子供与体/チタン(モ
ル比)が0ないし約10、とくに0ないし約6の範
囲にあるものが好ましい。
The transition metal compound catalyst component is a compound of a transition metal such as titanium, vanadium, chromium, zirconium, etc., and may be liquid or solid under the conditions of use. These do not need to be a single compound, and may be supported on other compounds or mixed. Furthermore, it may be a complex compound or composite compound with other compounds. The above-mentioned preferred component is a highly active transition metal compound catalyst component capable of producing 5000 g or more, particularly 8000 g or more of olefin polymer per 1 mmol of transition metal, and a typical example thereof is a magnesium compound. A highly activated titanium catalyst component can be exemplified. For example, a solid titanium catalyst component containing titanium, magnesium and halogen as essential components, containing amorphous magnesium halide, and having a specific surface area of preferably about 40 m 2 /g or more, particularly preferably can be exemplified by a component of about 80 m 2 /g.
It may also contain electron donors such as organic acid esters, silicate esters, acid halides, acid anhydrides, ketones, acid amides, tertiary amines, phosphoric esters, phosphorous esters, ethers, and the like.
This titanium catalyst component contains, for example, approximately 0.5 titanium.
from about 1 to about 10% by weight, especially from about 1 to about 8% by weight
Contains titanium/magnesium (atomic ratio) of approximately 1/1
2 to about 1/100, especially about 1/3 to about 1/50, halogen/titanium (atomic ratio) about 4 to about 100,
Particularly preferred are those in which the electron donor/titanium (molar ratio) is in the range of about 6 to about 80, and the electron donor/titanium (molar ratio) is in the range of 0 to about 10, especially 0 to about 6.

あるいは、このようなチタン触媒成分として、
アルコールのような電子供与体の共存下に炭化水
素溶媒に溶解された状態のマグネシウム化合物と
液状のチタン化合物とを併用したチタン触媒成分
を例示することができる。
Alternatively, as such a titanium catalyst component,
An example of a titanium catalyst component is a combination of a magnesium compound dissolved in a hydrocarbon solvent and a liquid titanium compound in the presence of an electron donor such as alcohol.

有機金属化合物触媒成分は、周期律第1族ない
し第3族の金属と炭素の結合を有する有機金属化
合物であつて、その例としては、アルカリ金属の
有機化合物、アルカリ土類金属の有機金属化合
物、有機アルミニウム化合物などが挙げられる。
例えば、アルキルリチウム、アリールナトリウ
ム、アルキルマグネシウム、アリールマグネシウ
ム、アルキルマグネシウムハライド、アリールマ
グネシウムハライド、アルキルマグネシウムヒド
リド、トリアルキルアルミニウム、アルキルアル
ミニウムハライド、アルキルアルミニウムヒドリ
ド、アルキルアルミニウムアルコキシド、アルキ
ルリチウムアルミニウム、これらの混合物などが
例示できる。
The organometallic compound catalyst component is an organometallic compound having a bond between a metal of Group 1 to 3 of the periodic law and carbon, and examples thereof include organic compounds of alkali metals and organometallic compounds of alkaline earth metals. , organic aluminum compounds, etc.
For example, alkyl lithium, aryl sodium, alkyl magnesium, aryl magnesium, alkyl magnesium halide, aryl magnesium halide, alkyl magnesium hydride, trialkyl aluminum, alkyl aluminum halide, alkyl aluminum hydride, alkyl aluminum alkoxide, alkyl lithium aluminum, mixtures thereof, etc. can be exemplified.

前記2成分に加え、立体規則性、分子量、分子
量分布などを調節する目的で、水素、ハロゲン化
炭化水素、電子供与体触媒成分、例えば有機酸エ
ステル、ケイ酸エステル、カルボン酸ハライド、
カルボン酸アミド、第三アミン、酸無水物、エー
テル、ケトン、アルデヒドなどを使用してもよ
い。この電子供与体成分は、重合に際し、予め有
機金属化合物触媒成分と錯化合物(又は付加化合
物)を形成した態様で使用してもよく、またトリ
ハロゲン化アルミニウムのようなルイス酸の如き
他の化合物との錯化合物(又は付加化合物)を形
成した形で使用してもよい。触媒は、1段重合体
反応器のみに供給してもよく、1段及びその他の
各々の重合反応器へパラレルに供給してもよい。
In addition to the above two components, for the purpose of adjusting stereoregularity, molecular weight, molecular weight distribution, etc., hydrogen, halogenated hydrocarbons, electron donor catalyst components such as organic acid esters, silicate esters, carboxylic acid halides,
Carboxylic acid amides, tertiary amines, acid anhydrides, ethers, ketones, aldehydes, etc. may also be used. During polymerization, this electron donor component may be used in the form of forming a complex compound (or addition compound) with the organometallic compound catalyst component in advance, or may be used in the form of a complex compound (or addition compound) with the organometallic compound catalyst component, or may be used in the form of a complex compound (or addition compound) with the organometallic compound catalyst component, or may be used in the form of a complex compound (or addition compound) with the organometallic compound catalyst component, or may be used in the form of a complex compound (or addition compound) with the organometallic compound catalyst component. It may be used in the form of a complex compound (or addition compound) with. The catalyst may be supplied only to the first stage polymerization reactor, or may be supplied to the first stage and each of the other polymerization reactors in parallel.

重合に用いられるオレフインの例としては、エ
チレン、プロピレン、1−ブテン、1−ペンテ
ン、1−ヘキセン、1−オクテン、1−デセン、
1−ドデセン、1−テトラデセン、1−ヘキサデ
セン、1−オクタデセン、3−メチル−1−ブテ
ン、3−メチル−1−ペンテン、4−メチル−1
−ペンテン、4,4−ジメチル−1−ペンテン、
ブタジエン、1−イソプレン、1,4−ヘキサジ
エン、ジシクロペンタジエン、5−エチリデン−
2−ノルボルネン、1,7−オクタジエンなどを
例示できる。これらは単独で使用してもよいし、
2種以上の混合使用であつてもよい。とくに本発
明は、エチレンの単独重合体又はエチレンを約90
モル%以上含有する樹脂状エチレン共重合体の製
造に好適である。
Examples of olefins used in polymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene,
1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1
-pentene, 4,4-dimethyl-1-pentene,
Butadiene, 1-isoprene, 1,4-hexadiene, dicyclopentadiene, 5-ethylidene-
Examples include 2-norbornene and 1,7-octadiene. These can be used alone or
A mixture of two or more types may be used. In particular, the present invention provides a homopolymer of ethylene or ethylene containing about 90%
It is suitable for producing resinous ethylene copolymers containing mol% or more.

オレフイン類の重合は、形成されるオレフイン
重合体が反応条件下に液相をなす媒体中に、溶解
する条件下に行われる。重合溶媒として利用され
る前記媒体としては、不活性炭化水素及び/又は
重合に使用するオレフイン類を挙げることができ
る。不活性炭化水素としては、例えば、プロパ
ン、ブタン、ペンタン、ヘキサン、ヘプタン、オ
クタン、ノナン、デカン、ドデカン、灯油のよう
な脂肪族炭化水素類;例えば、シクロペンタン、
メチルシクロペンタン、シクロヘキサン、メチル
シクロヘキサンのような脂環族炭化水素類;例え
ばベンゼン、トルエン、キシレンのような芳香族
炭化水素類;あるいはこれらの任意の2成分以上
の混合物などを例示することができる。
The polymerization of olefins is carried out under conditions such that the olefin polymer formed is dissolved in a medium that is in a liquid phase under the reaction conditions. Examples of the medium used as a polymerization solvent include inert hydrocarbons and/or olefins used in polymerization. Examples of inert hydrocarbons include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, nonane, decane, dodecane, and kerosene; for example, cyclopentane,
Examples include alicyclic hydrocarbons such as methylcyclopentane, cyclohexane, and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; or a mixture of two or more of these components. .

本発明の方法では、反応条件下に液相をなす媒
体中で、形成される重合体が該媒体中に二液相を
形成して溶解分散する条件を充たす多段の重合槽
で重合が実施され、その際各重合槽内部の重合系
は上部曇り点以上の二相分離領域にあり、かつ両
相が分散撹拌混合状態になる。そして、各重合槽
内で生成した生成重合液は分離帯域に導いて重合
体濃厚液相と重合体希薄液相からなる二液相に分
相され、該重合体希薄液相は該重合槽に循環再使
用され、該重合体濃厚液相は後段の重合槽に供給
去れ、重合反応が継続される。本発明の方法にお
いて、最後段の重合槽からの生成重合液は前記同
様に分離帯域に導いて重合体濃厚液相と重合体希
薄液相からなる二液相に分相され、該重合体希薄
液相は該重合槽に循環して再使用され、該重合体
濃厚液相からは常法に従つて重合体が分離回収さ
れる。
In the method of the present invention, polymerization is carried out in a multi-stage polymerization tank that satisfies the conditions that the polymer formed forms two liquid phases and is dissolved and dispersed in a medium that forms a liquid phase under reaction conditions. At this time, the polymerization system inside each polymerization tank is in a two-phase separation region above the upper cloud point, and both phases are in a dispersed stirring mixed state. The resulting polymer solution produced in each polymerization tank is then led to a separation zone where it is separated into two liquid phases consisting of a polymer-rich liquid phase and a polymer-dilute liquid phase. The polymer is recycled and reused, and the polymer concentrated liquid phase is supplied to a subsequent polymerization tank to continue the polymerization reaction. In the method of the present invention, the polymerization liquid produced from the last stage polymerization tank is led to the separation zone in the same manner as described above, where it is separated into two liquid phases consisting of a polymer-concentrated liquid phase and a polymer-dilute liquid phase. The liquid phase is circulated to the polymerization tank and reused, and the polymer is separated and recovered from the polymer-concentrated liquid phase according to a conventional method.

本発明の方法においては、前述の重合プロセス
を構成する重合槽に単量体、触媒及び媒体がそれ
ぞれ別個に又は二種以上の混合物として供給さ
れ、後述の条件において重合される。その際、本
発明の方法においては、最後段の重合槽から得ら
れる重合体の極限粘度〔ηz〕に対する第1段目の
重合槽において生成する重合体の極限粘度〔ηa
の比〔ηa〕/〔ηz〕は1.1ないし4、好ましくは
1.2ないし2.5となるまで重合させられる。また、
その際生成重合体の密度に関しては第1段目の重
合槽において生成する重合体の密度(da)と最後
段の重合槽から得られる重合体の密度(dz)の差
(da−dz)は通常−0.15ないし+0.15g/cm3、好ま
しくは−0.05ないし+0.15g/cm3となるまで重合
が行なわれる。第1段目の重合体槽で重合する重
合量と、第2段目以降の重合槽の重合割合は、任
意に調節可能である。
In the method of the present invention, monomers, catalysts, and media are supplied individually or as a mixture of two or more to the polymerization tank constituting the above-mentioned polymerization process, and polymerized under the conditions described below. In this case, in the method of the present invention, the intrinsic viscosity of the polymer produced in the first stage polymerization tank [η a ] is compared to the intrinsic viscosity [η z ] of the polymer obtained from the last stage polymerization tank.
The ratio [η a ]/[η z ] is between 1.1 and 4, preferably
It is polymerized until it becomes 1.2 to 2.5. Also,
At this time, regarding the density of the produced polymer, the difference (d a - Polymerization is carried out until d z ) is generally -0.15 to +0.15 g/cm 3 , preferably -0.05 to +0.15 g/cm 3 . The amount of polymerization in the first-stage polymer tank and the polymerization ratio in the second-stage and subsequent polymerization tanks can be arbitrarily adjusted.

本発明の方法において、重合プロセス及び重合
反応の条件の詳細は次のとおりである。
In the method of the present invention, details of the polymerization process and conditions for the polymerization reaction are as follows.

重合の温度はて上部曇り点以上の相分離が認め
られるような領域で選択される。上部曇り点は、
重合系における液相成分の種類及び相互割合など
によつて異なるが、実験的には透過光を測定し、
透過光強度が急激に減衰する温度として容易に求
めうる。下部曇り点と上部曇り点の間の温度にお
いては、重合体は均一液相をなすように溶解する
が、上部曇り点を越える温度になると、重合体の
濃厚な溶液相と重合体の稀薄な溶液相に相分離す
る。そして一般にはより高温になるほど濃厚な溶
液相中の重合体の濃度はより高くなり、逆に重合
体の稀薄な溶液相中の重合体濃度はより低くなる
傾向になる。二相分離領域は、温度のほかに単量
体や形成される重合体の種類、量割合、溶媒の種
類、反応系圧力、その他の条件によつても変動し
得るので、これら実施条件に応じて、上記透過光
測定手法によつて上部曇り点以上の二相分離領域
条件を実験的に予め容易に決定することができ
る。
The polymerization temperature is selected in such a range that phase separation above the upper cloud point is observed. The upper cloud point is
Although it depends on the type and mutual ratio of liquid phase components in the polymerization system, experimentally, the transmitted light is measured,
It can be easily determined as the temperature at which the transmitted light intensity rapidly attenuates. At temperatures between the lower and upper cloud points, the polymer dissolves in a homogeneous liquid phase; however, at temperatures above the upper cloud point, a concentrated solution phase of the polymer and a dilute polymer phase occur. Phase separates into solution phase. In general, the higher the temperature, the higher the concentration of the polymer in the concentrated solution phase, and conversely, the lower the concentration of the polymer in the dilute solution phase. The two-phase separation region can vary depending on not only the temperature but also the type and proportion of monomers and polymers formed, the type of solvent, the pressure of the reaction system, and other conditions. Therefore, by using the above-mentioned transmitted light measurement method, the conditions of the two-phase separation region above the upper cloud point can be easily determined in advance experimentally.

重合操作の点から見れば濃厚溶液相の重合体濃
度が高いほどまた重合体の平均分子量が大きくな
るほど粘稠になるので、稀薄溶液相に濃厚溶液相
を均一に分散させるに要する撹拌動力も大きくな
り、また撹拌羽根や重合壁に付着し易くなるが、
撹拌羽根の形状などを工夫することによつてトラ
ブル発生を防止することができる。一方、分離操
作の点から見れば、2相間の密度差が大きい程分
離効率が良く、後処理操作に要する操作を容易に
し、且つコストを低減させることができる。
From the point of view of polymerization operations, the higher the polymer concentration in the concentrated solution phase and the higher the average molecular weight of the polymer, the more viscous it becomes, so the stirring power required to uniformly disperse the concentrated solution phase in the dilute solution phase also increases. However, it also tends to adhere to the stirring blades and polymerization walls.
Trouble can be prevented by modifying the shape of the stirring blade. On the other hand, from the viewpoint of separation operations, the larger the density difference between the two phases, the better the separation efficiency, which facilitates the operations required for post-processing operations and reduces costs.

このような操作の利害得失と共に、温度による
触媒活性の変化や操作圧力の増減に伴う設備費な
ど種々の要因を考慮して実際の重合温度を定めれ
ばよいが、一般には、上部曇り点からそれより約
200℃高い温度の間、とくには上部曇り点より約
10℃高い点から約150℃高い点までの間を選択す
るのが好ましい。また、前記のようなマグネシウ
ム化合物により高活性化されたチタン触媒成分を
用いる場合には、約100ないし約300℃、とくには
約120ないし約250℃の温度範囲で重合を行うのが
好ましい。オレフイン重合体の濃度は、オレフイ
ン重合体の分子量によつても異なるが、両液相を
合わせた状態で約10ないし約1000g/、より好
ましくは約30ないし約200g/となるような範
囲に調節するのが工業上有利である。また、重合
圧力は、例えば大気圧ないし約150Kg/cm2、とく
には約10ないし約70Kg/cm2の範囲が好適である。
重合に際して任意に使用される水素は、例えばオ
レフイン1モルに対し約0.0001ないし約20モル、
とくには約0.001ないし約10モルの範囲で用いる
のが好ましい。
The actual polymerization temperature should be determined by taking into consideration various factors such as the advantages and disadvantages of such operations, changes in catalyst activity due to temperature, and equipment costs associated with increases and decreases in operating pressure, but in general, it is necessary to determine the actual polymerization temperature from the upper cloud point. Approximately more than that
During temperatures 200°C above the upper cloud point, especially about
Preferably, the temperature is selected between 10° C. higher and about 150° C. higher. Further, when using a titanium catalyst component highly activated by a magnesium compound as described above, it is preferable to carry out the polymerization at a temperature range of about 100 to about 300°C, particularly about 120 to about 250°C. The concentration of the olefin polymer varies depending on the molecular weight of the olefin polymer, but is adjusted to a range of about 10 to about 1000 g/, more preferably about 30 to about 200 g/in the combined state of both liquid phases. It is industrially advantageous to do so. The polymerization pressure is preferably in the range of, for example, atmospheric pressure to about 150 kg/cm 2 , particularly about 10 to about 70 kg/cm 2 .
Hydrogen optionally used during polymerization is, for example, about 0.0001 to about 20 mol per mol of olefin,
It is particularly preferable to use it in a range of about 0.001 to about 10 moles.

前記の如き、遷移金属化合物触媒成分、有機金
属化合物触媒成分、電子供与体触媒成分等を用い
る場合には、重合区域の液相1当り、遷移金属
化合物触媒成分が遷移金属原子に換算して 約0.0005ないし約1ミリモル、とくには約
0.001ないし約0.5ミリモル、有機金属化合物触媒
成分を、該金属/遷移金属(原子比)が約1ない
し約2000、とくに約1ないし約500となるような
割合で用いるのが好ましい。また電子供与体触媒
成分は、有機金属化合物触媒成分1モル当り、0
ないし約1モル、とくに0ないし約0.5モル程度
の割合で用いるのが好ましい。
When using a transition metal compound catalyst component, an organometallic compound catalyst component, an electron donor catalyst component, etc. as described above, the transition metal compound catalyst component is approximately 0.0005 to about 1 mmol, especially about
Preferably, 0.001 to about 0.5 mmol of the organometallic compound catalyst component is used in proportions such that the metal/transition metal (atomic ratio) is from about 1 to about 2000, especially from about 1 to about 500. In addition, the electron donor catalyst component is 0 per mole of the organometallic compound catalyst component.
It is preferably used in a proportion of about 1 mol to about 1 mol, particularly about 0 to about 0.5 mol.

本発明方法においては、重合を上部曇り点以上
の二相分離領域条件で行うのに加えて、重合体の
両相が分散混合状態となる撹拌条件下に行う。撹
拌が不良であると、上相部に稀薄相が明瞭に現れ
るようになり、重合の均一性が損なわれるので好
ましくない。従つて、このような分離相が現れな
いような撹拌条件が採用される。このように良好
な分散状態で重合させることにより、同一重合体
濃度に於て、均一相溶解重合を行うときよりも、
実質上の粘度が低い状態で重合を行うことが可能
であり、高分子量の重合体を製造する場合でも比
較的高濃度の条件で重合を行うことができる。
In the method of the present invention, polymerization is carried out not only under conditions in the two-phase separation region above the upper cloud point, but also under stirring conditions in which both phases of the polymer are in a dispersed and mixed state. If the stirring is insufficient, a dilute phase clearly appears in the upper phase portion, which impairs the uniformity of polymerization, which is not preferable. Therefore, stirring conditions are adopted such that such a separated phase does not appear. By performing polymerization in a well-dispersed state in this way, the polymerization rate is lower than when performing homogeneous phase solution polymerization at the same polymer concentration.
It is possible to carry out polymerization in a state where the viscosity is actually low, and even when producing a high molecular weight polymer, the polymerization can be carried out under relatively high concentration conditions.

オレフインの重合は、連続的に行うのが有利で
ある。例えば、所要原料が連続的に重合器に供給
する一方、重合器容積が一定となるように重合生
成物液を連続的に抜き出す方法を採用することが
できる。この際、気相部の存在するような運転条
件を採用してもよいし、液充満型となるような運
転を行つてもよい。
The polymerization of the olefins is advantageously carried out continuously. For example, it is possible to adopt a method in which the required raw materials are continuously supplied to the polymerization vessel, while the polymerization product liquid is continuously extracted so that the volume of the polymerization vessel is constant. At this time, operating conditions such that a gas phase portion exists may be adopted, or operation may be performed such that a liquid-filled type is provided.

抜き出された重合液は、分離帯域に導き、下相
部の重合体濃厚液相と上相部の重合体稀薄液相に
分相させる。分相は重合器におけるような撹拌を
省略することにより容易に行うことができるし、
必要ならば加熱してもよい。勿論、分離帯域は、
上部曇り点以上の相分離領域条件下にあることが
必要であり、そのために、例えば、重合器と同じ
ような温度、圧力等の条件を維持するのが有利で
ある。
The extracted polymer solution is introduced into a separation zone and is separated into a polymer-concentrated liquid phase in the lower phase and a dilute polymer liquid phase in the upper phase. Phase separation can be easily performed by omitting stirring as in a polymerization vessel, and
May be heated if necessary. Of course, the separation band is
It is necessary to be under phase separation region conditions above the upper cloud point, and therefore it is advantageous to maintain conditions such as temperature, pressure, etc. similar to those of the polymerization vessel, for example.

分相は完全に行う必要はなく、例えば濃厚相に
稀薄相の一部が混合した状態で両相を分離しても
よい。上相部の重合体稀薄液相の一部又は全部は
重合反応に循環再使用される。この際、重合帯域
へ導入する前に予め冷却を行えば、重合熱を効果
的に除くことができる。すなわち重合生成物液そ
のものを冷却するのに比較して、分相された重合
体稀薄器相は粘度が小さいため冷却器における熱
交換の効果が高いので、熱エネルギー的にも効率
的にも工業的実施に著しく有利である。また、単
に分相するだけの簡単な手段で高濃度の重合体溶
液が得られるので、重合体の分離に要する操作を
容易にし且つ分離コストを低減させることができ
る。
Phase separation does not need to be performed completely; for example, both phases may be separated in a state in which a part of the dilute phase is mixed with the concentrated phase. Part or all of the polymer diluted liquid phase in the upper phase is recycled and reused in the polymerization reaction. At this time, if the material is cooled in advance before being introduced into the polymerization zone, the heat of polymerization can be effectively removed. In other words, compared to cooling the polymerization product liquid itself, the phase-separated polymer thinner phase has a lower viscosity, so the heat exchange effect in the cooler is higher, so it is less efficient in terms of thermal energy and industrial efficiency. This is extremely advantageous for practical implementation. Furthermore, since a highly concentrated polymer solution can be obtained by simply performing phase separation, operations required for polymer separation can be facilitated and separation costs can be reduced.

分離された上相部の重合体稀薄液相を重合反応
に循環再使用するに際して、複数個の重合槽を用
いて実施する場合には、必ずしも重合生成物を取
り出した同一槽へ循環再使用する必要はなく、他
の重合槽へ循環再使用する必要はなく、他の重合
槽へ循環再使用することもできる。
When recycling and reusing the separated upper phase polymer dilute liquid phase in the polymerization reaction, if multiple polymerization tanks are used, it is not necessary to circulate and reuse it in the same tank from which the polymerization product was taken. There is no need to circulate and reuse it to other polymerization tanks, and it can also be recycled to other polymerization tanks.

最終段の重合槽から得られた重合体の濃厚相
は、加熱、フラツシユ、減圧吸引などの諸操作を
適宜採用することによつて、不活性炭水素や溶存
オレフインなどを除いた後、押出機に供給して重
合体ペレツトを製造することができる。
The concentrated phase of the polymer obtained from the final stage polymerization tank is heated, flashed, vacuum suction, etc. to remove inert hydrocarbons, dissolved olefins, etc., and then transferred to an extruder. can be fed to produce polymer pellets.

本発明によれば、重合及び重合体分離の省略さ
れた操作及び装置で、省力的且つ経済的に行うこ
とが可能である。
According to the present invention, polymerization and polymer separation can be carried out labor-savingly and economically by omitting operations and equipment.

次に実施例を示す。 Next, examples will be shown.

実施例 1 〈触媒調製〉 窒素気流中で市販の無水塩化マグネシウム10モ
ルを脱水精製したヘキサン50に懸濁させ、撹拌
しながらエタノール60モルを1時間かけて滴下
後、室温にて1時間反応した。これに28モルのジ
エチルアルミニウムクロリドを室温で滴下し、1
時間撹拌した。続いて四塩化チタン75モルを加え
た後、系を80℃に昇温して3時間撹拌しながら反
応を行つた。生成した固体部は傾瀉によつて分離
し、精製ヘキサンによりくり返し洗浄後、ヘキサ
ンの懸濁液とした。チタンの濃度は滴定によつて
定量した。
Example 1 <Catalyst Preparation> 10 mol of commercially available anhydrous magnesium chloride was suspended in dehydrated and purified hexane 50 in a nitrogen stream, 60 mol of ethanol was added dropwise over 1 hour with stirring, and the mixture was reacted for 1 hour at room temperature. . 28 mol of diethylaluminum chloride was added dropwise to this at room temperature, and 1
Stir for hours. Subsequently, 75 mol of titanium tetrachloride was added, and the system was heated to 80° C. and the reaction was carried out with stirring for 3 hours. The generated solid portion was separated by decantation, washed repeatedly with purified hexane, and then made into a hexane suspension. The concentration of titanium was determined by titration.

〈重合〉 図1に示した直径50cm、容積200の第1段連
続重合反応器Aを用いて、溶媒(メチルシクロペ
ンタン15vol%を含むn−ヘキサン)を管4より
15.2/hrジエチルアルミクロリド10mmol/hr、
前記担体付触媒をTiに換算して、0.8mmol/hr
を管4より連続的に供給し、重合器内において、
同時にエチレン8.0Kg/H、水素10/hr、1−
ブテン2.5Kg/hrの割合で、各々管1,2,3よ
り連続供給し、重合温度170℃、全圧30Kg/cm2
G、滞留時間15分の条件下で重合を行つた。重合
反応器Aで生成したエチレン共重合体は管5を通
して溶媒192/hrの割合で連続的に抜出し、温
度170℃、圧力30Kg/cm2−Gのまま、2相分離器
Bに供給した。
<Polymerization> Using the first stage continuous polymerization reactor A with a diameter of 50 cm and a volume of 200 as shown in Figure 1, a solvent (n-hexane containing 15 vol% of methylcyclopentane) was introduced through tube 4.
15.2/hr diethyl aluminum chloride 10 mmol/hr,
The supported catalyst is converted to Ti, 0.8 mmol/hr
is continuously supplied from tube 4, and in the polymerization vessel,
At the same time, ethylene 8.0Kg/H, hydrogen 10/hr, 1-
Butene was continuously supplied from tubes 1, 2, and 3 at a rate of 2.5 kg/hr, at a polymerization temperature of 170°C and a total pressure of 30 kg/cm 2 -
G. Polymerization was carried out under conditions with a residence time of 15 minutes. The ethylene copolymer produced in polymerization reactor A was continuously extracted through tube 5 at a rate of 192 solvent/hr and fed to two-phase separator B at a temperature of 170°C and a pressure of 30 kg/cm 2 -G.

2相分離器Bに供給したエチレン共重合体を含
む生成液は分相され、大部分のエチレン共重合体
を含む濃厚液相を溶媒17.6/hrの割合で下部よ
り管7を通して排出させ、第2段連続重合反応器
へ移送した。2相分離器Bで得られた希薄液相
は、分離器Bの上部より管6を通して、溶媒
174.2/hrの割合で抜き出し、エチレン共重合
体が析出しない程度に冷却後、重合体反応器Aに
リサイクルさせた。第2段連続重合反応器におい
て、溶媒を管11より52.2/hrで連続的に供給
して、同時にエチレン6.5Kg/hr、水素20/hr、
1−ブテン0.3Kg/hrの割合で、各々管8,9,
10より連続供給し、重合体温度180℃、 全圧30Kg/cm2−G、滞留時間30分の条件下で重
合を行つた。
The product liquid containing the ethylene copolymer supplied to the two-phase separator B is phase-separated, and the concentrated liquid phase containing most of the ethylene copolymer is discharged from the bottom through the pipe 7 at a rate of 17.6 solvent/hr. The mixture was transferred to a two-stage continuous polymerization reactor. The dilute liquid phase obtained in the two-phase separator B is passed through the tube 6 from the upper part of the separator B to the solvent.
It was extracted at a rate of 174.2/hr, cooled to an extent that the ethylene copolymer did not precipitate, and then recycled to polymer reactor A. In the second stage continuous polymerization reactor, the solvent was continuously supplied from tube 11 at a rate of 52.2/hr, and at the same time ethylene 6.5 Kg/hr, hydrogen 20/hr,
1-butene at a rate of 0.3Kg/hr, tubes 8, 9, and 1, respectively.
Polymerization was carried out under conditions of a polymer temperature of 180°C, a total pressure of 30 Kg/cm 2 -G, and a residence time of 30 minutes.

管7から第1段目重合反応器で重合されたサン
プルを取り出し測定したところ、極限粘度〔η1
は3.04、で密度は0.919であつた。
When the sample polymerized in the first stage polymerization reactor was taken out from tube 7 and measured, it was found that the intrinsic viscosity was [η 1 ]
was 3.04, and the density was 0.919.

第2段目重合反応器で継続して重合されたサン
プルを管14から取り出し測定したところ、極限
粘度〔η2〕は1.89で密度は0.920であつた。この時
〔η1〕/〔η2〕は1.6となる。
When the sample that was continuously polymerized in the second stage polymerization reactor was taken out from the tube 14 and measured, the intrinsic viscosity [η 2 ] was 1.89 and the density was 0.920. At this time, [η 1 ]/[η 2 ] is 1.6.

管5、管6、管7及び管12、管13、管14
より、エチレン共重合体を含む溶液をサンプリン
グとし、各々のエチレン共重合体濃度を測定した
ところ、管5は50gポリマー/−溶媒、管6は
5gポリマー/−溶媒、管7は500gポリマ
ー/−溶媒であつた。又、管12は80gポリマ
ー/−溶媒、管13は9gポリマー/−溶
媒、管14は250g/−溶媒であつた。反応器
から2相分離器における濃縮度については、第1
段目の2相分離器では、約10倍、第2段目の2相
分離器では約3.2倍に濃縮されている事が確認さ
れた。
Pipe 5, Pipe 6, Pipe 7 and Pipe 12, Pipe 13, Pipe 14
Therefore, when we sampled solutions containing ethylene copolymer and measured the concentration of each ethylene copolymer, we found that tube 5 had 50g polymer/-solvent, tube 6 had 5g polymer/-solvent, and tube 7 had 500g polymer/-solvent. It was a solvent. Also, tube 12 contained 80 g polymer/-solvent, tube 13 contained 9 g polymer/-solvent, and tube 14 contained 250 g/-solvent. Regarding the concentration from the reactor to the two-phase separator, the first
It was confirmed that the concentration was approximately 10 times in the two-phase separator in the second stage, and approximately 3.2 times in the second stage two-phase separator.

実施例 2 〈触媒調製〉 実施例1と同様 〈重合〉 実施例1と同様の装置で、コモノマーとして4
−メチル−1−ペンテンを使用して重合を行なつ
た。第1段目重合反応器の重合温度は170℃、圧
力は30Kg/cm2−G、第2段目重合反応器の重合温
度は、180℃、圧力は30Kg/cm2−Gであつた。第
1段目重合反応器で重合したサンブルを管7から
取り出し、測定したところ極限粘度〔η1〕は
4.78、で密度は0.935であつた。第2段目重合反
応器で継続して重合したサンプルを管14から取
り出し測定したところ極限粘度〔η2〕は2.59、で
密度は0.942であつた。この時〔η1〕/〔η2〕は
1.84倍となる。管5、管6、管7、及び管12、
管13、管14よりエチレン共重合体を含む溶液
をサンプリングして、各々のエチレン重合体を測
定したところ、管5は50gポリマー/−溶媒、
管12は100gポリマー/溶媒、管13は10g
ポリマー/−溶媒、管14は250gポリマー/
−溶媒であつた。反応器から2相分離器におけ
る濃縮度については第1段目の2相分離器Bでは
約10倍、第2段目の2相分離器では約2.7倍のエ
チレン共重合体濃度に濃縮されている事が確認さ
れた。
Example 2 <Catalyst Preparation> Same as Example 1 <Polymerization> In the same apparatus as Example 1, 4 was used as a comonomer.
-Methyl-1-pentene was used to carry out the polymerization. The polymerization temperature in the first stage polymerization reactor was 170°C and the pressure was 30Kg/cm 2 -G, and the polymerization temperature in the second stage polymerization reactor was 180°C and the pressure 30Kg/cm 2 -G. The sample polymerized in the first stage polymerization reactor was taken out from tube 7 and measured, and the intrinsic viscosity [η 1 ] was
4.78, and the density was 0.935. The sample that was continuously polymerized in the second stage polymerization reactor was taken out from the tube 14 and measured, and the intrinsic viscosity [η 2 ] was 2.59 and the density was 0.942. At this time, [η 1 ]/[η 2 ] is
It becomes 1.84 times. tube 5, tube 6, tube 7, and tube 12,
When a solution containing an ethylene copolymer was sampled from tubes 13 and 14 and the amount of ethylene copolymer in each was measured, tube 5 contained 50 g of polymer/-solvent;
Tube 12 is 100g polymer/solvent, tube 13 is 10g
Polymer/-solvent, tube 14 contains 250g polymer/
-It was a solvent. Regarding the concentration from the reactor to the two-phase separator, the ethylene copolymer concentration is approximately 10 times higher in the first stage two-phase separator B, and approximately 2.7 times higher in the second stage two-phase separator. It has been confirmed that there is.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の重合方法を実施するための装置
の1例を示す。A:1段重合反応槽、B:1段相
分離器、C:2段重合反応器、D:2段相分離
器、E:ホツパー、F:移送ポンプ、G:加熱
器、H:クーラー、I:クーラー。
FIG. 1 shows an example of an apparatus for carrying out the polymerization method of the present invention. A: 1-stage polymerization reaction tank, B: 1-stage phase separator, C: 2-stage polymerization reactor, D: 2-stage phase separator, E: hopper, F: transfer pump, G: heater, H: cooler, I: Cooler.

Claims (1)

【特許請求の範囲】 1 反応条件下に液相をなす媒体中で、形成され
る重合体が該媒体中に溶解する条件を充たす多段
の重合槽で単量体を重合する際に、 (i) 各重合槽内部の重合系は、上部曇り点以上の
二相分離領域にありかつ両相が分散撹拌混合状
態にあり、 (ii) 各重合槽内の重合生成液を分離帯域に導いて
重合体濃厚液相と重合体希薄液相からなる二液
相に分相し、該重合体希薄液相を該重合槽に循
環再使用し、該重合体濃厚液相を後段の重合槽
に供給し、 (iii) 最後段の重合槽からの重合生成液の二液相分
離によつて得られる該重合体濃厚液相から重合
体を分離する、 ことからなる重合プロセスの各重合槽に単量体
を供給し、 (iv) 最後段の重合槽から得られる重合体の極限粘
度〔ηz〕に対する第1段目の重合槽において生
成する重合体の極限粘度〔ηa〕の比が1.1ない
し4の範囲となるまで重合する、 ことを特徴とする重合方法。
[Claims] 1. When monomers are polymerized in a multi-stage polymerization tank that satisfies the condition that the formed polymer dissolves in a medium that forms a liquid phase under reaction conditions, (i ) The polymerization system inside each polymerization tank is in a two-phase separation region above the upper cloud point, and both phases are dispersed and mixed, (ii) The polymerization product liquid in each polymerization tank is led to the separation zone and polymerized. The polymer is separated into two liquid phases consisting of a combined concentrated liquid phase and a polymer diluted liquid phase, the polymer diluted liquid phase is circulated and reused in the polymerization tank, and the polymer concentrated liquid phase is supplied to the subsequent polymerization tank. (iii) separating the polymer from the polymer-concentrated liquid phase obtained by two-liquid phase separation of the polymerization product liquid from the final polymerization tank; (iv) the ratio of the limiting viscosity [η a ] of the polymer produced in the first stage polymerization tank to the intrinsic viscosity [η z ] of the polymer obtained from the last stage polymerization tank is 1.1 to 4. A polymerization method characterized by polymerizing until the range of .
JP9242283A 1983-05-27 1983-05-27 Polymerization Granted JPS59219309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9242283A JPS59219309A (en) 1983-05-27 1983-05-27 Polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9242283A JPS59219309A (en) 1983-05-27 1983-05-27 Polymerization

Publications (2)

Publication Number Publication Date
JPS59219309A JPS59219309A (en) 1984-12-10
JPH0330601B2 true JPH0330601B2 (en) 1991-05-01

Family

ID=14053980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9242283A Granted JPS59219309A (en) 1983-05-27 1983-05-27 Polymerization

Country Status (1)

Country Link
JP (1) JPS59219309A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710203B2 (en) * 2001-08-31 2011-06-29 旭硝子株式会社 Fluoropolymer recovery device and recovery method

Also Published As

Publication number Publication date
JPS59219309A (en) 1984-12-10

Similar Documents

Publication Publication Date Title
EP0040992B1 (en) Process for multi-step gas-phase polymerization of olefins
JP2905185B2 (en) Olefin polymerization method
EP0050477B1 (en) Process for producing ethylene copolymer by gaseous phase polymerization
US4433121A (en) Polymerization process
HU210423B (en) Process and device for gas phase polymerization of alpha-olefins
EP0576411B1 (en) An improved catalyst system for the polymerization of olefins
EP0951487B1 (en) Multistage method for manufacturing polyolefins
WO1998022514A1 (en) Process for making propylene homo or copolymers
WO1998029464A9 (en) Multistage method for manufacturing polyolefins
JPH0330601B2 (en)
CA1119349A (en) Polymerization process
JPS6326761B2 (en)
JPH0348213B2 (en)
JPS62172004A (en) Method for polymerization
JPS60166304A (en) Polymerization process
CN115210268B (en) Suspension process for the preparation of ethylene polymers comprising the work-up of the suspension medium
JPH0329801B2 (en)
SU859379A1 (en) Method of producing polypropylene
JPS6039082B2 (en) Continuous production method of polyolefin with wide molecular weight distribution
JPS63225613A (en) Manufacture of propylene block copolymer
JP4460187B2 (en) Olefin polymerization method and polymerization apparatus
EP1059309A2 (en) Multistage method for preparing polyolefins
JPS58187409A (en) Production of rubber-like copolymer
JPS6338366B2 (en)
JPH0790011A (en) Production of polyethylene