JPH0330601B2 - - Google Patents

Info

Publication number
JPH0330601B2
JPH0330601B2 JP9242283A JP9242283A JPH0330601B2 JP H0330601 B2 JPH0330601 B2 JP H0330601B2 JP 9242283 A JP9242283 A JP 9242283A JP 9242283 A JP9242283 A JP 9242283A JP H0330601 B2 JPH0330601 B2 JP H0330601B2
Authority
JP
Japan
Prior art keywords
polymerization
polymer
liquid phase
phase
polymerization tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9242283A
Other languages
Japanese (ja)
Other versions
JPS59219309A (en
Inventor
Takehiro Ishimoto
Kenichi Tominari
Masayoshi Yasunaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP9242283A priority Critical patent/JPS59219309A/en
Publication of JPS59219309A publication Critical patent/JPS59219309A/en
Publication of JPH0330601B2 publication Critical patent/JPH0330601B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 本発明は溶解重合、ずくに反応条件䞋に液盞を
なす媒䜓䞭で圢成される重合䜓が該液媒に溶解す
る条件䞋に、各皮の重合性単量䜓たずえばオレフ
むン類を重合するタむプの重合方法の改善に関
し、さらには生成重合䜓の密床及び平均分子量の
調節の容易な重合法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to solution polymerization, in particular, to polymerization of various polymerizable monomers such as olefins under reaction conditions such that the polymer formed in a liquid phase medium is dissolved in the liquid medium. The present invention relates to an improvement in a type of polymerization method for polymerizing polymers, and further relates to a polymerization method that allows easy control of the density and average molecular weight of the resulting polymer.

なお、本発明においお重合ずいう語は共重合を
包含した意味で、たた同様に重合䜓ずいう語は共
重合䜓を包含した意味で甚いるこずがある。
In the present invention, the term "polymerization" may be used to include copolymerization, and similarly, the term "polymer" may be used to include copolymers.

前蚘タむプの重合方法は、各皮の重合性単量䜓
を重合しお重合䜓を補造する䞀぀のタむプずしお
知られおいる。䟋えばオレフむン類の重合を䟋に
䟋瀺するず、䞍掻性炭化氎玠類及び又は重合す
べきオレフむン類を反応条件䞋に液盞をなす媒䜓
ずしお甚い、圢成されるオレフむン重合䜓類が該
液媒に溶解する条件䞋にオレフむン類を重合する
手法が知られおいる。この手法は、ずくにスラリ
ヌ重合を行うのが因難な䞭・䜎密床グレヌドの゚
チレン共重合䜓の補造に奜適な手法である。
The above-mentioned type of polymerization method is known as one type in which a polymer is produced by polymerizing various polymerizable monomers. For example, taking the polymerization of olefins as an example, inert hydrocarbons and/or olefins to be polymerized are used as a medium that forms a liquid phase under reaction conditions, and the olefin polymers formed are dissolved in the liquid medium. A method of polymerizing olefins under such conditions is known. This method is particularly suitable for producing medium- and low-density grade ethylene copolymers for which slurry polymerization is difficult.

このようなタむプの溶解重合の実斜に際しお、
均䞀性の良い重合䜓を埗るためには、䞀般に䞊郚
曇り点ず䞋郚曇り点ずの䞭間の均䞀液盞を呈する
非二盞分離領域条件䞋で重合を行うこずが奜たし
く、そのような条件䞋で重合を行うのが普通であ
る。しかしながら、このようなタむプの溶解重合
手法によ぀お、高分子量の重合䜓を補造しようず
する堎合には、重合系の溶液粘床が䞊昇し、重合
熱の陀去、生成物のポンプ茞送、重合系の撹拌混
合等が円滑に行えなくなる。そのために、重合䜓
濃床が垌薄な状態での運転を䜙儀なくされ、その
結果、重合噚単䜍容積圓りの生産胜力の䜎䞋や重
合䜓分離コストの䞊昇などの䞍利益を䌎うトラブ
ルがある。
When carrying out this type of solution polymerization,
In order to obtain a polymer with good homogeneity, it is generally preferable to carry out the polymerization under conditions in a non-two-phase separation region that exhibits a uniform liquid phase between the upper cloud point and the lower cloud point. It is common to carry out polymerization. However, when attempting to produce high molecular weight polymers by these types of solution polymerization techniques, the solution viscosity of the polymerization system increases, making it difficult to remove the polymerization heat, pump the product, and process the polymerization system. Stirring and mixing cannot be performed smoothly. For this reason, it is necessary to operate in a state where the polymer concentration is diluted, and as a result, there are problems with disadvantages such as a decrease in production capacity per unit volume of the polymerization vessel and an increase in polymer separation cost.

本発明者らは、溶解重合における䞊蚘の劂き䞍
利益を回避する改善方法を開発すべく研究を行぀
た。その結果、䞊述のタむプの溶解重合を、重合
の均䞀性が倱われるであろうこずの予枬される䞊
郚曇り点以䞊の二盞分離領域条件䞋で行い、䜆し
䞡盞が良奜な分散混合状態ずなるような充分な撹
拌条件を採甚しお該重合を行うこずによ぀お、恰
もより垌薄な重合䜓濃床の液盞䞭に、より濃厚な
重合䜓濃床の液滎分散系の劂き分散混合状態の反
応系が圢成できるためず掚枬されるが、重合の均
䞀性を損うこずなしに前蚘トラブルが奜郜合に克
服された改善が達成できるこずを芋出し、特開昭
58−7402号公報にすでに提案した。この方法は、
生成重合液を分離垯域に導いお分盞し、重合䜓濃
床液盞を採取し、重合䜓垌薄液盞を重合槜に埪環
再䜿甚するこずによ぀お、重合系の溶液粘床を著
しく増倧させるこずなく、生成物のポンプ茞送、
重合系の撹拌混合、重合熱の陀去を円滑に行うこ
ずができるので、重合䜓補造のために合理的プロ
セスであ぀た。
The present inventors conducted research in order to develop an improvement method that avoids the above-mentioned disadvantages in solution polymerization. As a result, solution polymerizations of the type described above are carried out under conditions in the two-phase separation region above the upper cloud point, where polymerization uniformity would be expected to be lost, but with the exception that both phases are in a well-dispersed state of mixing. By carrying out the polymerization under sufficient stirring conditions, it is possible to create a dispersion-mixed state such as a droplet dispersion system with a higher concentration of polymer in a liquid phase with a lower concentration of polymer. This is presumed to be due to the formation of a reaction system, but it was discovered that an improvement could be achieved in which the above-mentioned troubles could be conveniently overcome without impairing the uniformity of polymerization, and
It has already been proposed in Publication No. 58-7402. This method is
To significantly increase the solution viscosity of the polymerization system by leading the produced polymerization liquid to a separation zone and separating the phases, collecting the polymer concentration liquid phase, and recycling and reusing the polymer diluted liquid phase to the polymerization tank. without pumping the product,
It was a rational process for producing polymers because the stirring and mixing of the polymerization system and the removal of polymerization heat could be carried out smoothly.

本発明者らは、前述の重合プロセスをさらに改
善し、䞀局合理的なプロセスを開発するこずを目
的ずしお怜蚎した結果、各重合槜内郚の重合系が
䞊郚曇り点以䞊の二盞分離領域にあ぀お、䞡盞が
分散撹拌混合状態にある倚段の重合槜からなる重
合プロセスで重合する際に、第䞀段目の重合槜に
おいお特定の極限粘床〔ηa〕ずなるたで重合を行
うこずにより最初に高分子量化し、埌段の重合槜
によ぀おさらに重合を続ける方法を採甚するこず
により、前蚘公開公報に提案した方法にくらべお
生成重合䜓の密床調節及び分子量分垃調節が著し
く容易にでき、前蚘目的が達成できるこずを芋出
し、本発明に到達した。本発明によれば、埓来の
均䞀溶液系にくらべお系の芋掛粘床がより䜎い状
態で重合を行うこずができ、埓぀お反応容積圓た
りの重合䜓生産量の増倧が達成できるこず、たた
分盞された重合䜓垌薄溶液盞の粘床は極めお䜎粘
床でありしかも冷华効率に優れおいるために重合
反応熱の陀去が容易でしかも効率的であるこず、
媒䜓の重合槜ぞの埪環再䜿甚が容易にか぀効率的
に実斜できるこず、オレフむンの重合の際には第
段目の重合槜においお高分子量重合䜓を生成さ
せるために氎玠の䜿甚が少なく、第段目ず第
段目の重合槜の間の氎玠分離装眮を蚭眮する必芁
がなくなるこず、などの倚くの利点がある。
As a result of studies aimed at further improving the above-mentioned polymerization process and developing a more rational process, the present inventors found that the polymerization system inside each polymerization tank was in the two-phase separation region above the upper cloud point. When polymerizing in a polymerization process consisting of multiple stages of polymerization tanks in which both phases are dispersed and mixed, the initial viscosity is By adopting a method in which the molecular weight is increased to a higher molecular weight and further polymerization is continued in a subsequent polymerization tank, the density and molecular weight distribution of the resulting polymer can be adjusted much more easily than the method proposed in the above-mentioned publication. The inventors have discovered that the object can be achieved and have arrived at the present invention. According to the present invention, polymerization can be carried out in a state where the apparent viscosity of the system is lower than in conventional homogeneous solution systems, and therefore, an increase in the amount of polymer produced per reaction volume can be achieved, and phase separation is also possible. The viscosity of the polymer dilute solution phase obtained is extremely low and has excellent cooling efficiency, so that the heat of polymerization reaction can be easily and efficiently removed;
The medium can be easily and efficiently circulated and reused in the polymerization tank, and in the case of olefin polymerization, less hydrogen is used in the first stage polymerization tank to produce a high molecular weight polymer. 1st and 2nd row
There are many advantages such as eliminating the need to install a hydrogen separation device between the stages of polymerization tanks.

埓来の均䞀溶液系の倚段重合法では前述の欠点
を回避するこずが䞍可胜であるので、通垞第段
目の重合槜では䜎分子量重合䜓を補造し、埌段の
重合槜においお高分子量化させる方法が採甚され
おいたが、この方法では生成重合䜓の分子量分垃
の調節及び密床の調節をするためには、重合槜間
に氎玠分離装眮が必芁ずなり、曎にリサむクル溶
媒䞭の共重合成分の分離のために倧芏暡な蒞留装
眮が必芁であ぀た。これに察しお、本発明の方法
では、埌述の方法を採甚するこずにより、埓来の
倚段重合法の欠点を排陀し、優れた倚段重合プロ
セスずなるずいう特城を有しおいる。
Since it is impossible to avoid the above-mentioned drawbacks in the conventional homogeneous solution-based multi-stage polymerization method, a low molecular weight polymer is usually produced in the first stage polymerization tank, and the molecular weight is increased in the subsequent stage polymerization tank. However, this method requires a hydrogen separation device between the polymerization tanks in order to adjust the molecular weight distribution and density of the produced polymer, and it also requires separation of copolymer components in the recycled solvent. Therefore, large-scale distillation equipment was required. In contrast, the method of the present invention is characterized by eliminating the drawbacks of conventional multistage polymerization methods and providing an excellent multistage polymerization process by employing the method described below.

本発明を抂説すれば、本発明は、反応条件䞋に
液盞をなす媒䜓䞭で、圢成される重合䜓が該媒䜓
䞭に溶解する条件を充たす倚段の重合槜で単量䜓
を重合する際に、 (i) 各重合槜内郚の重合系は、䞊郚曇り点以䞊の
二盞分離領域にありか぀䞡盞が分散撹拌混合状
態にあり、 (ii) 各重合槜内の重合生成液を分離垯域に導いお
重合䜓濃厚液盞ず重合䜓垌薄液盞からなる二液
盞に分盞し、該重合䜓垌薄液盞を該重合槜に埪
環再䜿甚し、該重合䜓濃厚液盞を埌段の重合槜
に䟛絊し、 (iii) 最埌段の重合槜からの重合生成液の二液盞分
離によ぀お埗られる該重合䜓濃厚液盞から重合
䜓を分離する、 こずからなる重合プロセスの各重合槜に単量䜓
を䟛絊し、 (iv) 最埌段の重合槜から埗られる重合䜓の極限粘
床〔ηz〕に察する第段目の重合槜で生成する
重合䜓の極限粘床〔ηa〕の比が1.1ないしの
範囲ずなるたで重合する、 こずを特城ずする重合方法、を発明の芁旚ずする
ものである。
To summarize the present invention, the present invention provides a method for polymerizing monomers in a multi-stage polymerization tank that satisfies the condition that the polymer formed is dissolved in the medium which forms a liquid phase under the reaction conditions. (i) The polymerization system inside each polymerization tank is in a two-phase separation region above the upper cloud point, and both phases are dispersed and mixed, and (ii) The polymerization product liquid in each polymerization tank is separated into a separation zone. The diluted polymer liquid phase is circulated and reused in the polymerization tank, and the polymer concentrated liquid phase is used in the subsequent polymerization. (iii) separating the polymer from the polymer-concentrated liquid phase obtained by two-liquid phase separation of the polymerization product liquid from the final polymerization tank; (iv) The ratio of the intrinsic viscosity of the polymer produced in the first stage polymerization tank [η a ] to the intrinsic viscosity [η z ] of the polymer obtained from the last stage polymerization tank. The gist of the invention is a polymerization method characterized in that the polymerization is carried out until the polymerization ratio is in the range of 1.1 to 4.

本発明の䞊蚘目的及び曎に倚くの他の目的なら
びに利点は以䞋の蚘茉から䞀局明らかになるであ
ろう。
The above objects and many other objects and advantages of the present invention will become more apparent from the following description.

本発明方法は溶解重合が可胜で䞔぀䞊郚曇り点
を瀺す任意の各皮単量䜓の重合に有利に適甚でき
るが、以䞋においおは、オレフむン類の重合を䟋
に本発明重合方法に぀いお曎に詳しく説明する。
Although the method of the present invention can be advantageously applied to the polymerization of any various monomers that can be dissolved in solution and exhibit an upper cloud point, the polymerization method of the present invention will be explained in more detail below using the polymerization of olefins as an example. .

本発明の重合方法の実斜に際しおは、䟋えば埓
来䞭・䜎圧法に提案されおいるような各皮の遷移
金属含有觊媒を甚いるこずができる。このような
觊媒ずしおは、䟋えば遷移金属化合物觊媒成分ず
呚期埋衚第族ないし第族金属の有機金属化合
物觊媒成分ずから圢成された遷移金属含有觊媒を
甚いるこずができる。
When carrying out the polymerization method of the present invention, various transition metal-containing catalysts, such as those conventionally proposed for medium and low pressure methods, can be used. As such a catalyst, for example, a transition metal-containing catalyst formed from a transition metal compound catalyst component and an organometallic compound catalyst component of a metal from Group 1 to Group 3 of the periodic table can be used.

前蚘遷移金属化合物觊媒成分は、チタン、バナ
ゞりム、クロム、ゞルコニりムなどの遷移金属の
化合物であ぀お、䜿甚条件䞋で液状のものであ぀
おも固䜓状のものであ぀おもよい。これらは単䞀
化合物である必芁はなく、他の化合物に担持され
おいたりあるいは混合されおいおもよい。さら
に、他の化合物ずの錯化合物や耇化合物であ぀お
もよい。奜適な䞊蚘成分は、遷移金属ミリモル
圓た5000以䞊、ずくに8000以䞊のオレフむン
重合䜓を補造するこずができる高掻性遷移金属化
合物觊媒成分であ぀お、その代衚的なものずしお
マグネシりム化合物によ぀お高掻性化されたチタ
ン觊媒成分を䟋瀺するこずができる。䟋えば、チ
タン、マグネシりム及びハロゲンを必須成分ずす
る固䜓状のチタン觊媒成分であ぀お、非晶化され
たハロゲン化マグネシりムを含有し、その比衚面
積は、奜たしくは玄40m2以䞊、ずくに奜たし
くは玄80m2の成分を䟋瀺するこずができる。
そしお電子䟛䞎䜓、䟋えば有機酞゚ステル、ケむ
酞゚ステル、酞ハラむド、酞無氎物、ケトン、酞
アミド、第䞉アミン、リン酞゚ステル、亜リン酞
゚ステル、゚ヌテルなどを含有しおいおもよい。
このチタン觊媒成分は、䟋えば、チタンを玄0.5
ないし玄10重量、ずくに玄ないし玄重量
含有し、チタンマグネシりム原子比が玄1/
ないし玄1/100、ずくに玄1/3ないし玄1/50、ハ
ロゲンチタン原子比が玄ないし玄100、
ずくに玄ないし玄80、電子䟛䞎䜓チタンモ
ル比がないし玄10、ずくにないし玄の範
囲にあるものが奜たしい。
The transition metal compound catalyst component is a compound of a transition metal such as titanium, vanadium, chromium, zirconium, etc., and may be liquid or solid under the conditions of use. These do not need to be a single compound, and may be supported on other compounds or mixed. Furthermore, it may be a complex compound or composite compound with other compounds. The above-mentioned preferred component is a highly active transition metal compound catalyst component capable of producing 5000 g or more, particularly 8000 g or more of olefin polymer per 1 mmol of transition metal, and a typical example thereof is a magnesium compound. A highly activated titanium catalyst component can be exemplified. For example, a solid titanium catalyst component containing titanium, magnesium and halogen as essential components, containing amorphous magnesium halide, and having a specific surface area of preferably about 40 m 2 /g or more, particularly preferably can be exemplified by a component of about 80 m 2 /g.
It may also contain electron donors such as organic acid esters, silicate esters, acid halides, acid anhydrides, ketones, acid amides, tertiary amines, phosphoric esters, phosphorous esters, ethers, and the like.
This titanium catalyst component contains, for example, approximately 0.5 titanium.
from about 1 to about 10% by weight, especially from about 1 to about 8% by weight
Contains titanium/magnesium (atomic ratio) of approximately 1/1
2 to about 1/100, especially about 1/3 to about 1/50, halogen/titanium (atomic ratio) about 4 to about 100,
Particularly preferred are those in which the electron donor/titanium (molar ratio) is in the range of about 6 to about 80, and the electron donor/titanium (molar ratio) is in the range of 0 to about 10, especially 0 to about 6.

あるいは、このようなチタン觊媒成分ずしお、
アルコヌルのような電子䟛䞎䜓の共存䞋に炭化氎
玠溶媒に溶解された状態のマグネシりム化合物ず
液状のチタン化合物ずを䜵甚したチタン觊媒成分
を䟋瀺するこずができる。
Alternatively, as such a titanium catalyst component,
An example of a titanium catalyst component is a combination of a magnesium compound dissolved in a hydrocarbon solvent and a liquid titanium compound in the presence of an electron donor such as alcohol.

有機金属化合物觊媒成分は、呚期埋第族ない
し第族の金属ず炭玠の結合を有する有機金属化
合物であ぀お、その䟋ずしおは、アルカリ金属の
有機化合物、アルカリ土類金属の有機金属化合
物、有機アルミニりム化合物などが挙げられる。
䟋えば、アルキルリチりム、アリヌルナトリり
ム、アルキルマグネシりム、アリヌルマグネシり
ム、アルキルマグネシりムハラむド、アリヌルマ
グネシりムハラむド、アルキルマグネシりムヒド
リド、トリアルキルアルミニりム、アルキルアル
ミニりムハラむド、アルキルアルミニりムヒドリ
ド、アルキルアルミニりムアルコキシド、アルキ
ルリチりムアルミニりム、これらの混合物などが
䟋瀺できる。
The organometallic compound catalyst component is an organometallic compound having a bond between a metal of Group 1 to 3 of the periodic law and carbon, and examples thereof include organic compounds of alkali metals and organometallic compounds of alkaline earth metals. , organic aluminum compounds, etc.
For example, alkyl lithium, aryl sodium, alkyl magnesium, aryl magnesium, alkyl magnesium halide, aryl magnesium halide, alkyl magnesium hydride, trialkyl aluminum, alkyl aluminum halide, alkyl aluminum hydride, alkyl aluminum alkoxide, alkyl lithium aluminum, mixtures thereof, etc. can be exemplified.

前蚘成分に加え、立䜓芏則性、分子量、分子
量分垃などを調節する目的で、氎玠、ハロゲン化
炭化氎玠、電子䟛䞎䜓觊媒成分、䟋えば有機酞゚
ステル、ケむ酞゚ステル、カルボン酞ハラむド、
カルボン酞アミド、第䞉アミン、酞無氎物、゚ヌ
テル、ケトン、アルデヒドなどを䜿甚しおもよ
い。この電子䟛䞎䜓成分は、重合に際し、予め有
機金属化合物觊媒成分ず錯化合物又は付加化合
物を圢成した態様で䜿甚しおもよく、たたトリ
ハロゲン化アルミニりムのようなルむス酞の劂き
他の化合物ずの錯化合物又は付加化合物を圢
成した圢で䜿甚しおもよい。觊媒は、段重合䜓
反応噚のみに䟛絊しおもよく、段及びその他の
各々の重合反応噚ぞパラレルに䟛絊しおもよい。
In addition to the above two components, for the purpose of adjusting stereoregularity, molecular weight, molecular weight distribution, etc., hydrogen, halogenated hydrocarbons, electron donor catalyst components such as organic acid esters, silicate esters, carboxylic acid halides,
Carboxylic acid amides, tertiary amines, acid anhydrides, ethers, ketones, aldehydes, etc. may also be used. During polymerization, this electron donor component may be used in the form of forming a complex compound (or addition compound) with the organometallic compound catalyst component in advance, or may be used in the form of a complex compound (or addition compound) with the organometallic compound catalyst component, or may be used in the form of a complex compound (or addition compound) with the organometallic compound catalyst component, or may be used in the form of a complex compound (or addition compound) with the organometallic compound catalyst component, or may be used in the form of a complex compound (or addition compound) with the organometallic compound catalyst component. It may be used in the form of a complex compound (or addition compound) with. The catalyst may be supplied only to the first stage polymerization reactor, or may be supplied to the first stage and each of the other polymerization reactors in parallel.

重合に甚いられるオレフむンの䟋ずしおは、゚
チレン、プロピレン、−ブテン、−ペンテ
ン、−ヘキセン、−オクテン、−デセン、
−ドデセン、−テトラデセン、−ヘキサデ
セン、−オクタデセン、−メチル−−ブテ
ン、−メチル−−ペンテン、−メチル−
−ペンテン、−ゞメチル−−ペンテン、
ブタゞ゚ン、−む゜プレン、−ヘキサゞ
゚ン、ゞシクロペンタゞ゚ン、−゚チリデン−
−ノルボルネン、−オクタゞ゚ンなどを
䟋瀺できる。これらは単独で䜿甚しおもよいし、
皮以䞊の混合䜿甚であ぀おもよい。ずくに本発
明は、゚チレンの単独重合䜓又ぱチレンを玄90
モル以䞊含有する暹脂状゚チレン共重合䜓の補
造に奜適である。
Examples of olefins used in polymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene,
1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1
-pentene, 4,4-dimethyl-1-pentene,
Butadiene, 1-isoprene, 1,4-hexadiene, dicyclopentadiene, 5-ethylidene-
Examples include 2-norbornene and 1,7-octadiene. These can be used alone or
A mixture of two or more types may be used. In particular, the present invention provides a homopolymer of ethylene or ethylene containing about 90%
It is suitable for producing resinous ethylene copolymers containing mol% or more.

オレフむン類の重合は、圢成されるオレフむン
重合䜓が反応条件䞋に液盞をなす媒䜓䞭に、溶解
する条件䞋に行われる。重合溶媒ずしお利甚され
る前蚘媒䜓ずしおは、䞍掻性炭化氎玠及び又は
重合に䜿甚するオレフむン類を挙げるこずができ
る。䞍掻性炭化氎玠ずしおは、䟋えば、プロパ
ン、ブタン、ペンタン、ヘキサン、ヘプタン、オ
クタン、ノナン、デカン、ドデカン、灯油のよう
な脂肪族炭化氎玠類䟋えば、シクロペンタン、
メチルシクロペンタン、シクロヘキサン、メチル
シクロヘキサンのような脂環族炭化氎玠類䟋え
ばベンれン、トル゚ン、キシレンのような芳銙族
炭化氎玠類あるいはこれらの任意の成分以䞊
の混合物などを䟋瀺するこずができる。
The polymerization of olefins is carried out under conditions such that the olefin polymer formed is dissolved in a medium that is in a liquid phase under the reaction conditions. Examples of the medium used as a polymerization solvent include inert hydrocarbons and/or olefins used in polymerization. Examples of inert hydrocarbons include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, nonane, decane, dodecane, and kerosene; for example, cyclopentane,
Examples include alicyclic hydrocarbons such as methylcyclopentane, cyclohexane, and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; or a mixture of two or more of these components. .

本発明の方法では、反応条件䞋に液盞をなす媒
䜓䞭で、圢成される重合䜓が該媒䜓䞭に二液盞を
圢成しお溶解分散する条件を充たす倚段の重合槜
で重合が実斜され、その際各重合槜内郚の重合系
は䞊郚曇り点以䞊の二盞分離領域にあり、か぀䞡
盞が分散撹拌混合状態になる。そしお、各重合槜
内で生成した生成重合液は分離垯域に導いお重合
䜓濃厚液盞ず重合䜓垌薄液盞からなる二液盞に分
盞され、該重合䜓垌薄液盞は該重合槜に埪環再䜿
甚され、該重合䜓濃厚液盞は埌段の重合槜に䟛絊
去れ、重合反応が継続される。本発明の方法にお
いお、最埌段の重合槜からの生成重合液は前蚘同
様に分離垯域に導いお重合䜓濃厚液盞ず重合䜓垌
薄液盞からなる二液盞に分盞され、該重合䜓垌薄
液盞は該重合槜に埪環しお再䜿甚され、該重合䜓
濃厚液盞からは垞法に埓぀お重合䜓が分離回収さ
れる。
In the method of the present invention, polymerization is carried out in a multi-stage polymerization tank that satisfies the conditions that the polymer formed forms two liquid phases and is dissolved and dispersed in a medium that forms a liquid phase under reaction conditions. At this time, the polymerization system inside each polymerization tank is in a two-phase separation region above the upper cloud point, and both phases are in a dispersed stirring mixed state. The resulting polymer solution produced in each polymerization tank is then led to a separation zone where it is separated into two liquid phases consisting of a polymer-rich liquid phase and a polymer-dilute liquid phase. The polymer is recycled and reused, and the polymer concentrated liquid phase is supplied to a subsequent polymerization tank to continue the polymerization reaction. In the method of the present invention, the polymerization liquid produced from the last stage polymerization tank is led to the separation zone in the same manner as described above, where it is separated into two liquid phases consisting of a polymer-concentrated liquid phase and a polymer-dilute liquid phase. The liquid phase is circulated to the polymerization tank and reused, and the polymer is separated and recovered from the polymer-concentrated liquid phase according to a conventional method.

本発明の方法においおは、前述の重合プロセス
を構成する重合槜に単量䜓、觊媒及び媒䜓がそれ
ぞれ別個に又は二皮以䞊の混合物ずしお䟛絊さ
れ、埌述の条件においお重合される。その際、本
発明の方法においおは、最埌段の重合槜から埗ら
れる重合䜓の極限粘床〔ηz〕に察する第段目の
重合槜においお生成する重合䜓の極限粘床〔ηa〕
の比〔ηa〕〔ηz〕は1.1ないし、奜たしくは
1.2ないし2.5ずなるたで重合させられる。たた、
その際生成重合䜓の密床に関しおは第段目の重
合槜においお生成する重合䜓の密床daず最埌
段の重合槜から埗られる重合䜓の密床dzの差
da−dzは通垞−0.15ないし0.15cm3、奜た
しくは−0.05ないし0.15cm3ずなるたで重合
が行なわれる。第段目の重合䜓槜で重合する重
合量ず、第段目以降の重合槜の重合割合は、任
意に調節可胜である。
In the method of the present invention, monomers, catalysts, and media are supplied individually or as a mixture of two or more to the polymerization tank constituting the above-mentioned polymerization process, and polymerized under the conditions described below. In this case, in the method of the present invention, the intrinsic viscosity of the polymer produced in the first stage polymerization tank [η a ] is compared to the intrinsic viscosity [η z ] of the polymer obtained from the last stage polymerization tank.
The ratio [η a ]/[η z ] is between 1.1 and 4, preferably
It is polymerized until it becomes 1.2 to 2.5. Also,
At this time, regarding the density of the produced polymer, the difference (d a - Polymerization is carried out until d z ) is generally -0.15 to +0.15 g/cm 3 , preferably -0.05 to +0.15 g/cm 3 . The amount of polymerization in the first-stage polymer tank and the polymerization ratio in the second-stage and subsequent polymerization tanks can be arbitrarily adjusted.

本発明の方法においお、重合プロセス及び重合
反応の条件の詳现は次のずおりである。
In the method of the present invention, details of the polymerization process and conditions for the polymerization reaction are as follows.

重合の枩床はお䞊郚曇り点以䞊の盞分離が認め
られるような領域で遞択される。䞊郚曇り点は、
重合系における液盞成分の皮類及び盞互割合など
によ぀お異なるが、実隓的には透過光を枬定し、
透過光匷床が急激に枛衰する枩床ずしお容易に求
めうる。䞋郚曇り点ず䞊郚曇り点の間の枩床にお
いおは、重合䜓は均䞀液盞をなすように溶解する
が、䞊郚曇り点を越える枩床になるず、重合䜓の
濃厚な溶液盞ず重合䜓の皀薄な溶液盞に盞分離す
る。そしお䞀般にはより高枩になるほど濃厚な溶
液盞䞭の重合䜓の濃床はより高くなり、逆に重合
䜓の皀薄な溶液盞䞭の重合䜓濃床はより䜎くなる
傟向になる。二盞分離領域は、枩床のほかに単量
䜓や圢成される重合䜓の皮類、量割合、溶媒の皮
類、反応系圧力、その他の条件によ぀おも倉動し
埗るので、これら実斜条件に応じお、䞊蚘透過光
枬定手法によ぀お䞊郚曇り点以䞊の二盞分離領域
条件を実隓的に予め容易に決定するこずができ
る。
The polymerization temperature is selected in such a range that phase separation above the upper cloud point is observed. The upper cloud point is
Although it depends on the type and mutual ratio of liquid phase components in the polymerization system, experimentally, the transmitted light is measured,
It can be easily determined as the temperature at which the transmitted light intensity rapidly attenuates. At temperatures between the lower and upper cloud points, the polymer dissolves in a homogeneous liquid phase; however, at temperatures above the upper cloud point, a concentrated solution phase of the polymer and a dilute polymer phase occur. Phase separates into solution phase. In general, the higher the temperature, the higher the concentration of the polymer in the concentrated solution phase, and conversely, the lower the concentration of the polymer in the dilute solution phase. The two-phase separation region can vary depending on not only the temperature but also the type and proportion of monomers and polymers formed, the type of solvent, the pressure of the reaction system, and other conditions. Therefore, by using the above-mentioned transmitted light measurement method, the conditions of the two-phase separation region above the upper cloud point can be easily determined in advance experimentally.

重合操䜜の点から芋れば濃厚溶液盞の重合䜓濃
床が高いほどたた重合䜓の平均分子量が倧きくな
るほど粘皠になるので、皀薄溶液盞に濃厚溶液盞
を均䞀に分散させるに芁する撹拌動力も倧きくな
り、たた撹拌矜根や重合壁に付着し易くなるが、
撹拌矜根の圢状などを工倫するこずによ぀おトラ
ブル発生を防止するこずができる。䞀方、分離操
䜜の点から芋れば、盞間の密床差が倧きい皋分
離効率が良く、埌凊理操䜜に芁する操䜜を容易に
し、䞔぀コストを䜎枛させるこずができる。
From the point of view of polymerization operations, the higher the polymer concentration in the concentrated solution phase and the higher the average molecular weight of the polymer, the more viscous it becomes, so the stirring power required to uniformly disperse the concentrated solution phase in the dilute solution phase also increases. However, it also tends to adhere to the stirring blades and polymerization walls.
Trouble can be prevented by modifying the shape of the stirring blade. On the other hand, from the viewpoint of separation operations, the larger the density difference between the two phases, the better the separation efficiency, which facilitates the operations required for post-processing operations and reduces costs.

このような操䜜の利害埗倱ず共に、枩床による
觊媒掻性の倉化や操䜜圧力の増枛に䌎う蚭備費な
ど皮々の芁因を考慮しお実際の重合枩床を定めれ
ばよいが、䞀般には、䞊郚曇り点からそれより玄
200℃高い枩床の間、ずくには䞊郚曇り点より玄
10℃高い点から玄150℃高い点たでの間を遞択す
るのが奜たしい。たた、前蚘のようなマグネシり
ム化合物により高掻性化されたチタン觊媒成分を
甚いる堎合には、玄100ないし玄300℃、ずくには
箄120ないし玄250℃の枩床範囲で重合を行うのが
奜たしい。オレフむン重合䜓の濃床は、オレフむ
ン重合䜓の分子量によ぀おも異なるが、䞡液盞を
合わせた状態で玄10ないし玄1000、より奜
たしくは玄30ないし玄200ずなるような範
囲に調節するのが工業䞊有利である。たた、重合
圧力は、䟋えば倧気圧ないし玄150Kgcm2、ずく
には玄10ないし玄70Kgcm2の範囲が奜適である。
重合に際しお任意に䜿甚される氎玠は、䟋えばオ
レフむンモルに察し玄0.0001ないし玄20モル、
ずくには玄0.001ないし玄10モルの範囲で甚いる
のが奜たしい。
The actual polymerization temperature should be determined by taking into consideration various factors such as the advantages and disadvantages of such operations, changes in catalyst activity due to temperature, and equipment costs associated with increases and decreases in operating pressure, but in general, it is necessary to determine the actual polymerization temperature from the upper cloud point. Approximately more than that
During temperatures 200°C above the upper cloud point, especially about
Preferably, the temperature is selected between 10° C. higher and about 150° C. higher. Further, when using a titanium catalyst component highly activated by a magnesium compound as described above, it is preferable to carry out the polymerization at a temperature range of about 100 to about 300°C, particularly about 120 to about 250°C. The concentration of the olefin polymer varies depending on the molecular weight of the olefin polymer, but is adjusted to a range of about 10 to about 1000 g/, more preferably about 30 to about 200 g/in the combined state of both liquid phases. It is industrially advantageous to do so. The polymerization pressure is preferably in the range of, for example, atmospheric pressure to about 150 kg/cm 2 , particularly about 10 to about 70 kg/cm 2 .
Hydrogen optionally used during polymerization is, for example, about 0.0001 to about 20 mol per mol of olefin,
It is particularly preferable to use it in a range of about 0.001 to about 10 moles.

前蚘の劂き、遷移金属化合物觊媒成分、有機金
属化合物觊媒成分、電子䟛䞎䜓觊媒成分等を甚い
る堎合には、重合区域の液盞圓り、遷移金属
化合物觊媒成分が遷移金属原子に換算しお 箄0.0005ないし玄ミリモル、ずくには玄
0.001ないし玄0.5ミリモル、有機金属化合物觊媒
成分を、該金属遷移金属原子比が玄ない
し玄2000、ずくに玄ないし玄500ずなるような
割合で甚いるのが奜たしい。たた電子䟛䞎䜓觊媒
成分は、有機金属化合物觊媒成分モル圓り、
ないし玄モル、ずくにないし玄0.5モル皋床
の割合で甚いるのが奜たしい。
When using a transition metal compound catalyst component, an organometallic compound catalyst component, an electron donor catalyst component, etc. as described above, the transition metal compound catalyst component is approximately 0.0005 to about 1 mmol, especially about
Preferably, 0.001 to about 0.5 mmol of the organometallic compound catalyst component is used in proportions such that the metal/transition metal (atomic ratio) is from about 1 to about 2000, especially from about 1 to about 500. In addition, the electron donor catalyst component is 0 per mole of the organometallic compound catalyst component.
It is preferably used in a proportion of about 1 mol to about 1 mol, particularly about 0 to about 0.5 mol.

本発明方法においおは、重合を䞊郚曇り点以䞊
の二盞分離領域条件で行うのに加えお、重合䜓の
䞡盞が分散混合状態ずなる撹拌条件䞋に行う。撹
拌が䞍良であるず、䞊盞郚に皀薄盞が明瞭に珟れ
るようになり、重合の均䞀性が損なわれるので奜
たしくない。埓぀お、このような分離盞が珟れな
いような撹拌条件が採甚される。このように良奜
な分散状態で重合させるこずにより、同䞀重合䜓
濃床に斌お、均䞀盞溶解重合を行うずきよりも、
実質䞊の粘床が䜎い状態で重合を行うこずが可胜
であり、高分子量の重合䜓を補造する堎合でも比
范的高濃床の条件で重合を行うこずができる。
In the method of the present invention, polymerization is carried out not only under conditions in the two-phase separation region above the upper cloud point, but also under stirring conditions in which both phases of the polymer are in a dispersed and mixed state. If the stirring is insufficient, a dilute phase clearly appears in the upper phase portion, which impairs the uniformity of polymerization, which is not preferable. Therefore, stirring conditions are adopted such that such a separated phase does not appear. By performing polymerization in a well-dispersed state in this way, the polymerization rate is lower than when performing homogeneous phase solution polymerization at the same polymer concentration.
It is possible to carry out polymerization in a state where the viscosity is actually low, and even when producing a high molecular weight polymer, the polymerization can be carried out under relatively high concentration conditions.

オレフむンの重合は、連続的に行うのが有利で
ある。䟋えば、所芁原料が連続的に重合噚に䟛絊
する䞀方、重合噚容積が䞀定ずなるように重合生
成物液を連続的に抜き出す方法を採甚するこずが
できる。この際、気盞郚の存圚するような運転条
件を採甚しおもよいし、液充満型ずなるような運
転を行぀おもよい。
The polymerization of the olefins is advantageously carried out continuously. For example, it is possible to adopt a method in which the required raw materials are continuously supplied to the polymerization vessel, while the polymerization product liquid is continuously extracted so that the volume of the polymerization vessel is constant. At this time, operating conditions such that a gas phase portion exists may be adopted, or operation may be performed such that a liquid-filled type is provided.

抜き出された重合液は、分離垯域に導き、䞋盞
郚の重合䜓濃厚液盞ず䞊盞郚の重合䜓皀薄液盞に
分盞させる。分盞は重合噚におけるような撹拌を
省略するこずにより容易に行うこずができるし、
必芁ならば加熱しおもよい。勿論、分離垯域は、
䞊郚曇り点以䞊の盞分離領域条件䞋にあるこずが
必芁であり、そのために、䟋えば、重合噚ず同じ
ような枩床、圧力等の条件を維持するのが有利で
ある。
The extracted polymer solution is introduced into a separation zone and is separated into a polymer-concentrated liquid phase in the lower phase and a dilute polymer liquid phase in the upper phase. Phase separation can be easily performed by omitting stirring as in a polymerization vessel, and
May be heated if necessary. Of course, the separation band is
It is necessary to be under phase separation region conditions above the upper cloud point, and therefore it is advantageous to maintain conditions such as temperature, pressure, etc. similar to those of the polymerization vessel, for example.

分盞は完党に行う必芁はなく、䟋えば濃厚盞に
皀薄盞の䞀郚が混合した状態で䞡盞を分離しおも
よい。䞊盞郚の重合䜓皀薄液盞の䞀郚又は党郚は
重合反応に埪環再䜿甚される。この際、重合垯域
ぞ導入する前に予め冷华を行えば、重合熱を効果
的に陀くこずができる。すなわち重合生成物液そ
のものを冷华するのに比范しお、分盞された重合
䜓皀薄噚盞は粘床が小さいため冷华噚における熱
亀換の効果が高いので、熱゚ネルギヌ的にも効率
的にも工業的実斜に著しく有利である。たた、単
に分盞するだけの簡単な手段で高濃床の重合䜓溶
液が埗られるので、重合䜓の分離に芁する操䜜を
容易にし䞔぀分離コストを䜎枛させるこずができ
る。
Phase separation does not need to be performed completely; for example, both phases may be separated in a state in which a part of the dilute phase is mixed with the concentrated phase. Part or all of the polymer diluted liquid phase in the upper phase is recycled and reused in the polymerization reaction. At this time, if the material is cooled in advance before being introduced into the polymerization zone, the heat of polymerization can be effectively removed. In other words, compared to cooling the polymerization product liquid itself, the phase-separated polymer thinner phase has a lower viscosity, so the heat exchange effect in the cooler is higher, so it is less efficient in terms of thermal energy and industrial efficiency. This is extremely advantageous for practical implementation. Furthermore, since a highly concentrated polymer solution can be obtained by simply performing phase separation, operations required for polymer separation can be facilitated and separation costs can be reduced.

分離された䞊盞郚の重合䜓皀薄液盞を重合反応
に埪環再䜿甚するに際しお、耇数個の重合槜を甚
いお実斜する堎合には、必ずしも重合生成物を取
り出した同䞀槜ぞ埪環再䜿甚する必芁はなく、他
の重合槜ぞ埪環再䜿甚する必芁はなく、他の重合
槜ぞ埪環再䜿甚するこずもできる。
When recycling and reusing the separated upper phase polymer dilute liquid phase in the polymerization reaction, if multiple polymerization tanks are used, it is not necessary to circulate and reuse it in the same tank from which the polymerization product was taken. There is no need to circulate and reuse it to other polymerization tanks, and it can also be recycled to other polymerization tanks.

最終段の重合槜から埗られた重合䜓の濃厚盞
は、加熱、フラツシナ、枛圧吞匕などの諞操䜜を
適宜採甚するこずによ぀お、䞍掻性炭氎玠や溶存
オレフむンなどを陀いた埌、抌出機に䟛絊しお重
合䜓ペレツトを補造するこずができる。
The concentrated phase of the polymer obtained from the final stage polymerization tank is heated, flashed, vacuum suction, etc. to remove inert hydrocarbons, dissolved olefins, etc., and then transferred to an extruder. can be fed to produce polymer pellets.

本発明によれば、重合及び重合䜓分離の省略さ
れた操䜜及び装眮で、省力的䞔぀経枈的に行うこ
ずが可胜である。
According to the present invention, polymerization and polymer separation can be carried out labor-savingly and economically by omitting operations and equipment.

次に実斜䟋を瀺す。 Next, examples will be shown.

実斜䟋  〈觊媒調補〉 窒玠気流䞭で垂販の無氎塩化マグネシりム10モ
ルを脱氎粟補したヘキサン50に懞濁させ、撹拌
しながら゚タノヌル60モルを時間かけお滎䞋
埌、宀枩にお時間反応した。これに28モルのゞ
゚チルアルミニりムクロリドを宀枩で滎䞋し、
時間撹拌した。続いお四塩化チタン75モルを加え
た埌、系を80℃に昇枩しお時間撹拌しながら反
応を行぀た。生成した固䜓郚は傟瀉によ぀お分離
し、粟補ヘキサンによりくり返し掗浄埌、ヘキサ
ンの懞濁液ずした。チタンの濃床は滎定によ぀お
定量した。
Example 1 <Catalyst Preparation> 10 mol of commercially available anhydrous magnesium chloride was suspended in dehydrated and purified hexane 50 in a nitrogen stream, 60 mol of ethanol was added dropwise over 1 hour with stirring, and the mixture was reacted for 1 hour at room temperature. . 28 mol of diethylaluminum chloride was added dropwise to this at room temperature, and 1
Stir for hours. Subsequently, 75 mol of titanium tetrachloride was added, and the system was heated to 80° C. and the reaction was carried out with stirring for 3 hours. The generated solid portion was separated by decantation, washed repeatedly with purified hexane, and then made into a hexane suspension. The concentration of titanium was determined by titration.

〈重合〉 図に瀺した盎埄50cm、容積200の第段連
続重合反応噚を甚いお、溶媒メチルシクロペ
ンタン15volを含む−ヘキサンを管より
15.2hrゞ゚チルアルミクロリド10mmolhr、
前蚘担䜓付觊媒をTiに換算しお、0.8mmolhr
を管より連続的に䟛絊し、重合噚内においお、
同時に゚チレン8.0Kg、氎玠10hr、−
ブテン2.5Kghrの割合で、各々管よ
り連続䟛絊し、重合枩床170℃、党圧30Kgcm2−
、滞留時間15分の条件䞋で重合を行぀た。重合
反応噚で生成した゚チレン共重合䜓は管を通
しお溶媒192hrの割合で連続的に抜出し、枩
床170℃、圧力30Kgcm2−のたた、盞分離噚
に䟛絊した。
<Polymerization> Using the first stage continuous polymerization reactor A with a diameter of 50 cm and a volume of 200 as shown in Figure 1, a solvent (n-hexane containing 15 vol% of methylcyclopentane) was introduced through tube 4.
15.2/hr diethyl aluminum chloride 10 mmol/hr,
The supported catalyst is converted to Ti, 0.8 mmol/hr
is continuously supplied from tube 4, and in the polymerization vessel,
At the same time, ethylene 8.0Kg/H, hydrogen 10/hr, 1-
Butene was continuously supplied from tubes 1, 2, and 3 at a rate of 2.5 kg/hr, at a polymerization temperature of 170°C and a total pressure of 30 kg/cm 2 -
G. Polymerization was carried out under conditions with a residence time of 15 minutes. The ethylene copolymer produced in polymerization reactor A was continuously extracted through tube 5 at a rate of 192 solvent/hr and fed to two-phase separator B at a temperature of 170°C and a pressure of 30 kg/cm 2 -G.

盞分離噚に䟛絊した゚チレン共重合䜓を含
む生成液は分盞され、倧郚分の゚チレン共重合䜓
を含む濃厚液盞を溶媒17.6hrの割合で䞋郚よ
り管を通しお排出させ、第段連続重合反応噚
ぞ移送した。盞分離噚で埗られた垌薄液盞
は、分離噚の䞊郚より管を通しお、溶媒
174.2hrの割合で抜き出し、゚チレン共重合
䜓が析出しない皋床に冷华埌、重合䜓反応噚に
リサむクルさせた。第段連続重合反応噚におい
お、溶媒を管より52.2hrで連続的に䟛絊
しお、同時に゚チレン6.5Kghr、氎玠20hr、
−ブテン0.3Kghrの割合で、各々管
より連続䟛絊し、重合䜓枩床180℃、 党圧30Kgcm2−、滞留時間30分の条件䞋で重
合を行぀た。
The product liquid containing the ethylene copolymer supplied to the two-phase separator B is phase-separated, and the concentrated liquid phase containing most of the ethylene copolymer is discharged from the bottom through the pipe 7 at a rate of 17.6 solvent/hr. The mixture was transferred to a two-stage continuous polymerization reactor. The dilute liquid phase obtained in the two-phase separator B is passed through the tube 6 from the upper part of the separator B to the solvent.
It was extracted at a rate of 174.2/hr, cooled to an extent that the ethylene copolymer did not precipitate, and then recycled to polymer reactor A. In the second stage continuous polymerization reactor, the solvent was continuously supplied from tube 11 at a rate of 52.2/hr, and at the same time ethylene 6.5 Kg/hr, hydrogen 20/hr,
1-butene at a rate of 0.3Kg/hr, tubes 8, 9, and 1, respectively.
Polymerization was carried out under conditions of a polymer temperature of 180°C, a total pressure of 30 Kg/cm 2 -G, and a residence time of 30 minutes.

管から第段目重合反応噚で重合されたサン
プルを取り出し枬定したずころ、極限粘床〔η1〕
は3.04、で密床は0.919であ぀た。
When the sample polymerized in the first stage polymerization reactor was taken out from tube 7 and measured, it was found that the intrinsic viscosity was [η 1 ]
was 3.04, and the density was 0.919.

第段目重合反応噚で継続しお重合されたサン
プルを管から取り出し枬定したずころ、極限
粘床〔η2〕は1.89で密床は0.920であ぀た。この時
〔η1〕〔η2〕は1.6ずなる。
When the sample that was continuously polymerized in the second stage polymerization reactor was taken out from the tube 14 and measured, the intrinsic viscosity [η 2 ] was 1.89 and the density was 0.920. At this time, [η 1 ]/[η 2 ] is 1.6.

管、管、管及び管、管、管
より、゚チレン共重合䜓を含む溶液をサンプリン
グずし、各々の゚チレン共重合䜓濃床を枬定した
ずころ、管は50ポリマヌ−溶媒、管は
ポリマヌ−溶媒、管は500ポリマ
ヌ−溶媒であ぀た。又、管は80ポリマ
ヌ−溶媒、管はポリマヌ−溶
媒、管は250−溶媒であ぀た。反応噚
から盞分離噚における濃瞮床に぀いおは、第
段目の盞分離噚では、玄10倍、第段目の盞
分離噚では玄3.2倍に濃瞮されおいる事が確認さ
れた。
Pipe 5, Pipe 6, Pipe 7 and Pipe 12, Pipe 13, Pipe 14
Therefore, when we sampled solutions containing ethylene copolymer and measured the concentration of each ethylene copolymer, we found that tube 5 had 50g polymer/-solvent, tube 6 had 5g polymer/-solvent, and tube 7 had 500g polymer/-solvent. It was a solvent. Also, tube 12 contained 80 g polymer/-solvent, tube 13 contained 9 g polymer/-solvent, and tube 14 contained 250 g/-solvent. Regarding the concentration from the reactor to the two-phase separator, the first
It was confirmed that the concentration was approximately 10 times in the two-phase separator in the second stage, and approximately 3.2 times in the second stage two-phase separator.

実斜䟋  〈觊媒調補〉 実斜䟋ず同様 〈重合〉 実斜䟋ず同様の装眮で、コモノマヌずしお
−メチル−−ペンテンを䜿甚しお重合を行な぀
た。第段目重合反応噚の重合枩床は170℃、圧
力は30Kgcm2−、第段目重合反応噚の重合枩
床は、180℃、圧力は30Kgcm2−であ぀た。第
段目重合反応噚で重合したサンブルを管から
取り出し、枬定したずころ極限粘床〔η1〕は
4.78、で密床は0.935であ぀た。第段目重合反
応噚で継続しお重合したサンプルを管から取
り出し枬定したずころ極限粘床〔η2〕は2.59、で
密床は0.942であ぀た。この時〔η1〕〔η2〕は
1.84倍ずなる。管、管、管、及び管、
管、管より゚チレン共重合䜓を含む溶液
をサンプリングしお、各々の゚チレン重合䜓を枬
定したずころ、管は50ポリマヌ−溶媒、
管は100ポリマヌ溶媒、管は10
ポリマヌ−溶媒、管は250ポリマヌ
−溶媒であ぀た。反応噚から盞分離噚におけ
る濃瞮床に぀いおは第段目の盞分離噚では
箄10倍、第段目の盞分離噚では玄2.7倍の゚
チレン共重合䜓濃床に濃瞮されおいる事が確認さ
れた。
Example 2 <Catalyst Preparation> Same as Example 1 <Polymerization> In the same apparatus as Example 1, 4 was used as a comonomer.
-Methyl-1-pentene was used to carry out the polymerization. The polymerization temperature in the first stage polymerization reactor was 170°C and the pressure was 30Kg/cm 2 -G, and the polymerization temperature in the second stage polymerization reactor was 180°C and the pressure 30Kg/cm 2 -G. The sample polymerized in the first stage polymerization reactor was taken out from tube 7 and measured, and the intrinsic viscosity [η 1 ] was
4.78, and the density was 0.935. The sample that was continuously polymerized in the second stage polymerization reactor was taken out from the tube 14 and measured, and the intrinsic viscosity [η 2 ] was 2.59 and the density was 0.942. At this time, [η 1 ]/[η 2 ] is
It becomes 1.84 times. tube 5, tube 6, tube 7, and tube 12,
When a solution containing an ethylene copolymer was sampled from tubes 13 and 14 and the amount of ethylene copolymer in each was measured, tube 5 contained 50 g of polymer/-solvent;
Tube 12 is 100g polymer/solvent, tube 13 is 10g
Polymer/-solvent, tube 14 contains 250g polymer/
-It was a solvent. Regarding the concentration from the reactor to the two-phase separator, the ethylene copolymer concentration is approximately 10 times higher in the first stage two-phase separator B, and approximately 2.7 times higher in the second stage two-phase separator. It has been confirmed that there is.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の重合方法を実斜するための装眮
の䟋を瀺す。段重合反応槜、段盞
分離噚、段重合反応噚、段盞分離
噚、ホツパヌ、移送ポンプ、加熱
噚、クヌラヌ、クヌラヌ。
FIG. 1 shows an example of an apparatus for carrying out the polymerization method of the present invention. A: 1-stage polymerization reaction tank, B: 1-stage phase separator, C: 2-stage polymerization reactor, D: 2-stage phase separator, E: hopper, F: transfer pump, G: heater, H: cooler, I: Cooler.

Claims (1)

【特蚱請求の範囲】  反応条件䞋に液盞をなす媒䜓䞭で、圢成され
る重合䜓が該媒䜓䞭に溶解する条件を充たす倚段
の重合槜で単量䜓を重合する際に、 (i) 各重合槜内郚の重合系は、䞊郚曇り点以䞊の
二盞分離領域にありか぀䞡盞が分散撹拌混合状
態にあり、 (ii) 各重合槜内の重合生成液を分離垯域に導いお
重合䜓濃厚液盞ず重合䜓垌薄液盞からなる二液
盞に分盞し、該重合䜓垌薄液盞を該重合槜に埪
環再䜿甚し、該重合䜓濃厚液盞を埌段の重合槜
に䟛絊し、 (iii) 最埌段の重合槜からの重合生成液の二液盞分
離によ぀お埗られる該重合䜓濃厚液盞から重合
䜓を分離する、 こずからなる重合プロセスの各重合槜に単量䜓
を䟛絊し、 (iv) 最埌段の重合槜から埗られる重合䜓の極限粘
床〔ηz〕に察する第段目の重合槜においお生
成する重合䜓の極限粘床〔ηa〕の比が1.1ない
しの範囲ずなるたで重合する、 こずを特城ずする重合方法。
[Claims] 1. When monomers are polymerized in a multi-stage polymerization tank that satisfies the condition that the formed polymer dissolves in a medium that forms a liquid phase under reaction conditions, (i ) The polymerization system inside each polymerization tank is in a two-phase separation region above the upper cloud point, and both phases are dispersed and mixed, (ii) The polymerization product liquid in each polymerization tank is led to the separation zone and polymerized. The polymer is separated into two liquid phases consisting of a combined concentrated liquid phase and a polymer diluted liquid phase, the polymer diluted liquid phase is circulated and reused in the polymerization tank, and the polymer concentrated liquid phase is supplied to the subsequent polymerization tank. (iii) separating the polymer from the polymer-concentrated liquid phase obtained by two-liquid phase separation of the polymerization product liquid from the final polymerization tank; (iv) the ratio of the limiting viscosity [η a ] of the polymer produced in the first stage polymerization tank to the intrinsic viscosity [η z ] of the polymer obtained from the last stage polymerization tank is 1.1 to 4. A polymerization method characterized by polymerizing until the range of .
JP9242283A 1983-05-27 1983-05-27 Polymerization Granted JPS59219309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9242283A JPS59219309A (en) 1983-05-27 1983-05-27 Polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9242283A JPS59219309A (en) 1983-05-27 1983-05-27 Polymerization

Publications (2)

Publication Number Publication Date
JPS59219309A JPS59219309A (en) 1984-12-10
JPH0330601B2 true JPH0330601B2 (en) 1991-05-01

Family

ID=14053980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9242283A Granted JPS59219309A (en) 1983-05-27 1983-05-27 Polymerization

Country Status (1)

Country Link
JP (1) JPS59219309A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710203B2 (en) * 2001-08-31 2011-06-29 旭硝子株匏䌚瀟 Fluoropolymer recovery device and recovery method

Also Published As

Publication number Publication date
JPS59219309A (en) 1984-12-10

Similar Documents

Publication Publication Date Title
EP0040992B1 (en) Process for multi-step gas-phase polymerization of olefins
JP2905185B2 (en) Olefin polymerization method
EP0050477B1 (en) Process for producing ethylene copolymer by gaseous phase polymerization
US4433121A (en) Polymerization process
HU210423B (en) Process and device for gas phase polymerization of alpha-olefins
EP0576411B1 (en) An improved catalyst system for the polymerization of olefins
JPS637563B2 (en)
EP0951487B1 (en) Multistage method for manufacturing polyolefins
EP0938508A1 (en) Process for making propylene homo or copolymers
WO1998029464A9 (en) Multistage method for manufacturing polyolefins
JPH0330601B2 (en)
CA1119349A (en) Polymerization process
JPS6326761B2 (en)
JPH0348213B2 (en)
JPS62172004A (en) Method for polymerization
CN115210268B (en) Suspension process for the preparation of ethylene polymers comprising the work-up of the suspension medium
JPS60166304A (en) Polymerization process
SU859379A1 (en) Method of producing polypropylene
JPH0329801B2 (en)
JPS6039082B2 (en) Continuous production method of polyolefin with wide molecular weight distribution
JPS63225613A (en) Manufacture of propylene block copolymer
JP4460187B2 (en) Olefin polymerization method and polymerization apparatus
EP1059309A2 (en) Multistage method for preparing polyolefins
JPS58187409A (en) Production of rubber-like copolymer
JPS6338366B2 (en)