JPH0330495A - Electronic component protective wrapping bag material and manufacture thereof - Google Patents
Electronic component protective wrapping bag material and manufacture thereofInfo
- Publication number
- JPH0330495A JPH0330495A JP1166294A JP16629489A JPH0330495A JP H0330495 A JPH0330495 A JP H0330495A JP 1166294 A JP1166294 A JP 1166294A JP 16629489 A JP16629489 A JP 16629489A JP H0330495 A JPH0330495 A JP H0330495A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- surface resistance
- conductive
- resistance value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000463 material Substances 0.000 title abstract description 25
- 230000001681 protective effect Effects 0.000 title description 5
- 239000010410 layer Substances 0.000 claims abstract description 120
- 239000000835 fiber Substances 0.000 claims abstract description 48
- 230000003068 static effect Effects 0.000 claims abstract description 37
- 230000005611 electricity Effects 0.000 claims abstract description 26
- 239000002344 surface layer Substances 0.000 claims abstract description 17
- 239000002131 composite material Substances 0.000 claims abstract description 14
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 238000002844 melting Methods 0.000 claims description 30
- 230000008018 melting Effects 0.000 claims description 30
- 239000005022 packaging material Substances 0.000 claims description 18
- 239000011347 resin Substances 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 238000002834 transmittance Methods 0.000 claims description 9
- 239000010408 film Substances 0.000 abstract description 83
- 238000000034 method Methods 0.000 abstract description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 8
- 229920002972 Acrylic fiber Polymers 0.000 abstract description 5
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- 239000010409 thin film Substances 0.000 abstract description 2
- 239000006185 dispersion Substances 0.000 abstract 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000004806 packaging method and process Methods 0.000 description 30
- -1 polypropylene Polymers 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 238000009960 carding Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical class OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009820 dry lamination Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Landscapes
- Wrappers (AREA)
- Laminated Bodies (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
(従来の技術)
電子部品の静電気からの保護手段の一つに電子部品を保
護用包袋に包み込む方法がある。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) (Prior Art) One method for protecting electronic components from static electricity is a method of wrapping electronic components in a protective envelope.
従来の保護用包袋にはその材料により種々のタイプがあ
る。1つのタイプは抵抗値が約106〜10I4Ω/□
の制電フィルムのみの材料からなるものがある。このタ
イプはある程度(例えば5 KV程度)に帯電した物あ
る込は人体が包袋内部での電子部品の摩擦帯電を防止す
る効果を有し、更にこのタイプのある槌のものは透明性
があるため包袋の外部から内部の電子部品を判別し得る
利点がある。しかしながらこのタイプのものは高度に帯
N、(例えば15KV以上)した物が包袋に触れた場合
.包袋の拡散能力に限界があるため静電気放電を惹起し
たり、あるいは高帯電物が包袋に接近する場合、静電誘
導によって電子部品が損傷する。There are various types of conventional protective bags depending on the material they are made of. One type has a resistance value of approximately 106 to 10I4Ω/□
There are some that are made of only antistatic film material. This type is electrically charged to a certain extent (for example, about 5 KV) and has the effect of preventing the human body from frictionally charging the electronic components inside the packaging, and some of this type of hammers are transparent. Therefore, there is an advantage that the electronic components inside the packaging bag can be identified from the outside. However, with this type of product, if a highly charged object (for example, 15KV or more) comes into contact with the package. The limited diffusion capacity of the packaging bag can cause electrostatic discharge, or if a highly charged object approaches the packaging bag, electrostatic induction can damage electronic components.
保護用包袋の2つめのタイプは、導電性炭素が練り込ま
れたフィルム又は金属箔を材料としたものがある。これ
らの材料から作った包袋は不透明であり、従って視覚検
査や包袋内の電子部品の確認が出来ない。更に収納部品
と包袋の内表面との間の接触は、その部品を汚染する金
属又は部品との摩擦ぐずを生じさせる。またこのタイプ
の材料は包袋内の電子部品に静電気を導通させてしまう
。The second type of protective packaging is made from a film or metal foil in which conductive carbon is kneaded. Bags made from these materials are opaque and therefore do not permit visual inspection or identification of electronic components within the bag. Furthermore, contact between the contained part and the inner surface of the packaging bag creates friction debris with metal or parts that contaminates the part. This type of material also conducts static electricity to the electronic components within the package.
保護用包袋の3つめのタイプは、上記2つのタイプを組
合わせた如き構造を有した材料からなるものである。す
なわち特公昭60−18294号公報に示される如き.
包袋の外表面層を実質的に導電層となし内表面層を制W
、層となし、中間層を絶縁層となしたものである。ここ
で言う実質的に導電層とは、本来の導M、層の上に薄膜
層(例えば0.15μm以下)を設けて−ても、本来の
導電層と同等の表面抵抗値を有するものをいう。A third type of protective envelope is made of a material with a structure that is a combination of the above two types. That is, as shown in Japanese Patent Publication No. 60-18294.
The outer surface layer of the wrapping bag is substantially a conductive layer and the inner surface layer is controlled.
, and the intermediate layer is an insulating layer. The substantially conductive layer referred to here refers to a layer that has the same surface resistance as the original conductive layer even if a thin film layer (for example, 0.15 μm or less) is provided on top of the original conductive layer. say.
この3つめのタイプは.包袋の外表面だ1を実質的に導
′Wt層とすることにより高帯電物が接近したり接触し
ても、ファラデーケージの原理に基づき包袋内の電子部
品への影響を防止し、中間層の絶縁層により外表面に於
ける電荷の移動を防ぎ、更に内表面層を制御!層とする
ことにより包袋内の電子部品を摩擦帯電から防ぐもので
ある。しかしこのタイプは、実質的に導°1「層を包袋
外表面にあるため.包袋内の電子部品を保護するものの
.包袋と高帯電物との間で静電気放電を生じ.包袋外に
存在する電子部品、機器の誤動作、破損を生ずる原因と
なる。This third type is. By making the outer surface 1 of the wrapping bag substantially a conductive Wt layer, even if a highly charged object approaches or comes into contact with it, it prevents the electronic components inside the wrapping bag from being affected based on the Faraday cage principle. The intermediate insulating layer prevents charge movement on the outer surface and further controls the inner surface layer! The layer protects the electronic components inside the package from frictional electrification. However, this type actually has a conductive layer on the outer surface of the bag.Although it protects the electronic components inside the bag, electrostatic discharge occurs between the bag and the highly charged object. It may cause malfunction or damage to external electronic parts and equipment.
4つめのタイプは、導電層を中間部忙配した材料からな
るものであり、例えば特開昭60−127143号公報
や特開昭58−165649号公報に示される如く、導
電層の両側を絶縁層としたものがある。これは包袋内表
面も絶縁層のため、電子部品の摩擦帯電に対し何らの効
力もない。また実開昭62−156325号公報に示さ
れる如く導電層の画側を制電層としたものもあるが、層
間の電荷移動に対しては効果が乏しい。The fourth type is made of a material in which a conductive layer is arranged in the middle.For example, as shown in JP-A-60-127143 and JP-A-58-165649, both sides of the conductive layer are insulated. There are layers. Since the inner surface of the envelope is also an insulating layer, it has no effect on frictional electrification of electronic components. Furthermore, as shown in Japanese Utility Model Application Publication No. 62-156325, there is a structure in which an antistatic layer is provided on the image side of a conductive layer, but this is not effective against charge transfer between layers.
また特開昭62−182062号公報に示されるり[]
く、3つめのタイプの全く逆の構成、すなわち包袋の内
表面を導電層としたタイプも提案されている。このタイ
プは、前述した2つめのタイプと同様の欠点を有してい
る。It is also shown in Japanese Patent Application Laid-Open No. 62-182062 []
A completely opposite configuration of the third type, that is, a type in which the inner surface of the wrapping bag is a conductive layer, has also been proposed. This type has the same drawbacks as the second type mentioned above.
上述した如く、電子部品保護用の包袋材料として種々の
提案がなされてはいるものの.包袋内外の電子部品保護
用包縁材1として十分満足すべきものがないのが実状で
ある。As mentioned above, various proposals have been made as packaging materials for protecting electronic components. The reality is that there is no material that is fully satisfactory as a wrapping material 1 for protecting electronic components inside and outside the packaging bag.
(発明が解決しようとする課題)
本発明の目的は、
1)包袋が外部静電場からの電子部品に対する保護を与
え、
2)包袋の外側の静電気が包袋内の電子部品に達するの
を防ぎ、
3)包袋内表面の静″rtg!cの拡散を可能にし、電
子部品と包袋内表面との摩擦による静電気の発生を制限
し、
4)電子部品に対し汚染物となる表面粒子の脱落するこ
となく、
5)色装外側から包袋内の電子部品を視認でき、6)必
要ならば、電磁波のシールド性をも有する包袋等を形成
するととができ、更に本発明は、
7)工業的に容易に製造することのできる材料電子部品
保護用の包袋材料及びその製造法を提供するものである
。(Problem to be Solved by the Invention) The purpose of the present invention is to: 1) provide protection for electronic components from external electrostatic fields; and 2) prevent static electricity on the outside of the packaging from reaching electronic components inside the packaging. 3) Enables the diffusion of static "rtg!c" on the inner surface of the packaging bag and limits the generation of static electricity due to friction between electronic components and the inner surface of the packaging bag. 4) Prevents the surface from becoming a contaminant for electronic components. It is possible to form a packaging bag that does not cause particles to fall off, 5) allows the electronic components inside the bag to be visually recognized from the outside of the colored packaging, and 6) has electromagnetic shielding properties if necessary. , 7) The present invention provides a packaging material for protecting electronic components that can be easily manufactured industrially, and a method for manufacturing the same.
(課題を解決するための手段)
本発明は.包袋内面となるべき内表面層Iが表面抵抗値
109〜1013Ω/□の非帯電性フィルム層、中間層
nが導電性繊維を含む表面抵抗値104Ω/□以下の導
電層(1)及び表面抵抗値1014Ω/□以上の絶縁フ
ィルム層(2)、及び外表面層■が表面抵抗値10@〜
1011Ω/□の静電気消散剤届からなり、各層が順次
積層一体化されたシート状物であって、全光線透過率が
604以上であることを特徴とする電子部分保護用包袋
材料、及び融点差のある2種のフィルム層からなり高融
点フィルム層が表面抵抗値1014Ω/□以上の絶縁フ
ィルム層である複合フィルムの低融点フィルムNJVC
目付3〜7 t/−の導電性繊維のカードウェブを熱圧
着により埋入させて表面抵抗値104Ω/□以下の導電
層を形成し、そのカードウエブ埋入面に制電樹脂をコー
トして表面抵抗値109〜101!Ω/□の非帯電性フ
ィルム層を形成すると共に絶縁フィルム面に静電気消散
剤をコートして表面抵抗[106〜1011Ω/□の静
電気消散性層を形成することを特徴とする電子部品保護
用包袋材料の製造法にある。(Means for solving the problems) The present invention is as follows. The inner surface layer I, which is to become the inner surface of the packaging bag, is a non-static film layer with a surface resistance value of 109 to 1013 Ω/□, and the intermediate layer n is a conductive layer (1) containing conductive fibers and has a surface resistance value of 104 Ω/□ or less, and the surface The insulating film layer (2) has a resistance value of 1014Ω/□ or more, and the outer surface layer ■ has a surface resistance value of 10@~
A packaging material for protecting electronic parts, comprising a static electricity dissipating material of 1011 Ω/□, which is a sheet-like material in which each layer is sequentially laminated and integrated, and has a total light transmittance of 604 or more, and a melting point. Low melting point film NJVC of a composite film consisting of two different film layers, the high melting point film layer being an insulating film layer with a surface resistance value of 1014Ω/□ or more
A conductive fiber card web with a basis weight of 3 to 7 t/- is embedded by thermocompression bonding to form a conductive layer with a surface resistance value of 104Ω/□ or less, and the embedded surface of the card web is coated with an antistatic resin. Surface resistance value 109-101! A package for protecting electronic components, characterized in that a non-static film layer with a resistance of Ω/□ is formed, and a static electricity dissipative layer is formed with a surface resistance of 10 6 to 10 11 Ω/□ by coating a static electricity dissipating agent on the insulating film surface. It is in the manufacturing method of the bag material.
本発明でいう包袋とはシート状物によって作られそのシ
ート端部の恒久的にあるbは一時的に結合されてbる包
囲体を意味する。この包袋は電子部品を収納しうるもの
であれば、いかなる形状のものであってもよ−。The wrapping bag as used in the present invention refers to an enclosing body made of a sheet-like material, with b permanently attached to the end of the sheet and b temporarily joined. This envelope may be of any shape as long as it can accommodate electronic components.
本発明の材料は第1図に示す如き断面構造を有するもの
であり、以下材料の各店の機能につき説明する。The material of the present invention has a cross-sectional structure as shown in FIG. 1, and the functions of each part of the material will be explained below.
本発明の材料を用いて包袋となしたときに包袋の内面と
なるべき内表面層!の非帯電性フィルム層は.包袋に収
納された電子部品と接する面を形成し、表面抵抗値が1
09〜101!Ω/□、好ましくは10會〜101!Ω
/ロチある。1oISnJ′t3を超える高抵抗値では
実質的に絶縁性となり摩擦により帯電した電荷の拡散作
用が無く、電子部品の摩擦帯電からの保護効果はない。The inner surface layer that should become the inner surface of the packaging bag when it is made using the material of the present invention! The non-static film layer is . Forms the surface that comes into contact with the electronic components stored in the packaging bag, and has a surface resistance value of 1.
09-101! Ω/□, preferably 10 to 101! Ω
/ There is Rochi. At a high resistance value exceeding 1oISnJ't3, the material becomes substantially insulative and does not have the effect of diffusing the charges generated by friction, and has no effect of protecting electronic components from frictional charging.
この非帯電性フィルム層は帯電防止剤を樹脂と混合しT
ダイ等により押し出すことにより得られるが、こうして
得られたフィルムは電子部品との摩擦によシ汚染原因と
なる金属あるいは摩耗くずを生じさせることはない。更
に樹脂を例えば低密度ポリエチレンの如き熱融着性樹脂
とするととにより.包袋作成時のヒートシールが容易と
なる。この非帯電性フィルム層は例えば低密度ポリエチ
レンとポリプロピレンの4口き複合フィルムとなし、低
融点を樹脂側を包袋内表面に配してもよい。包袋にした
際、この非帯電性フィルム層は、電子部品はもちろん次
層の導電層を形成して込る導電性繊維の保護機能をも有
してbる。この非帯電性フィルム層は10〜80μm程
度の厚さであれば、導電性繊維の保護機能として充分で
ある。This non-static film layer is made by mixing an anti-static agent with a resin.
Although it is obtained by extruding it through a die or the like, the film thus obtained does not generate metal or wear debris that can cause contamination due to friction with electronic parts. Furthermore, if the resin is a heat-fusible resin such as low-density polyethylene. Heat sealing when making wrapping bags becomes easier. This non-chargeable film layer may be, for example, a four-hole composite film of low density polyethylene and polypropylene, and the low melting point resin side may be placed on the inner surface of the packaging bag. When used as a wrapping bag, this non-static film layer has the function of protecting not only electronic components but also the conductive fibers that form the next conductive layer. This non-chargeable film layer having a thickness of about 10 to 80 μm is sufficient to protect the conductive fibers.
非帯電性フィルム層の次層に中間層■として導電層■(
1)を配す。導電層■(1)は包袋を電場内KWlt、
−,た場合ファラデーケージの原理に基づき包袋内部の
電界を消滅させる。ところが、ここで問題となるのは包
袋を電場内に入れ.包袋内部の電界を消滅させる間の過
渡期において包袋内に電気力線が発生することであり、
この電気力線の生じている過渡期に電子部品が破損する
恐れがある。この問題を解決するためには過渡期の時間
を短縮することであり、そのためには導電層n(1)の
表面抵抗値を低くすることが必要であり、104Ω/□
以下、好ましくは109Ωカ以下の抵抗値とする必要が
ある。The conductive layer ■ (
1). The conductive layer (1) connects the envelope to the electric field KWlt,
−, the electric field inside the envelope is extinguished based on the Faraday cage principle. However, the problem here is that the envelope is placed in an electric field. Electric lines of force are generated inside the bag during the transition period during which the electric field inside the bag disappears.
There is a risk that electronic components may be damaged during the transition period during which these lines of electric force are occurring. To solve this problem, it is necessary to shorten the time of the transition period, and for that purpose, it is necessary to lower the surface resistance value of the conductive layer n(1), which is 104Ω/□
Hereinafter, the resistance value should preferably be 10<9>Ω or less.
かかる表面抵抗値の導電層![(1)は、ニッケル、銀
、金などの細線あるいはこれら金属を表面にメツキした
繊維又は硫化鋼の如く金属化合物を繊維表面に付着、吸
着させた繊維を導電性繊維として含有させた繊維ウェブ
をフィルムJi31に埋入させて形成することができる
。更に静電気放電を考慮するならば導″Nt#■(1)
内の導電性繊維同土間の間隔が重要な点となる。A conductive layer with such a surface resistance value! [(1) refers to a fibrous web containing thin wires of nickel, silver, gold, etc. or fibers plated with these metals on the surface, or fibers with metal compounds such as sulfide steel attached and adsorbed to the fiber surface as conductive fibers. can be formed by embedding it in the film Ji31. Furthermore, if we consider electrostatic discharge, conductivity ″Nt#■ (1)
An important point is the spacing between the conductive fibers within.
本発明に於δて導電層11(1)内の層に平行な導電性
繊維と導電性繊維との間隔は次式を満足することが好ま
しboすなわち第2図に示す如く包袋材料の全厚さをL
とし、導電NIu<1)から外表面に至る厚さをtとし
た位置での導電層■(1)内の導電性繊維と導電性繊維
との間隔dがd(2%下;b−・・・・・・式1
dく几こ7 ・・・・・・式2を満足するこ
とである。In the present invention, it is preferable that the spacing between the conductive fibers parallel to the layers in the conductive layer 11(1) satisfies the following formula. Total thickness is L
The distance d between the conductive fibers in the conductive layer (1) at the position where t is the thickness from the conductive NIu<1) to the outer surface is d (2% below; b-・...Formula 1 d 7...Formula 2 must be satisfied.
包袋外表面層mは静電気消散性層であるが、この包袋外
表面から直接高電圧が包袋内部にむけて印加された時.
包袋内の電子部品50の一部、例えばビン51が包袋外
表面から印加される高電圧に最も直線的に近い位置に存
在した場合、導’K M II (1)を形成している
導電性繊維が高電圧印加点Pを中心として乙の半径の円
内に存在する必要がある。との円内に存在することによ
り、避雷針の原理により高電圧は電子部品の一部である
ビン51に到達する前に導電層内の導電性繊維21に到
達することになる。導電性繊維同士の間隔dは前述のt
が大きい程小さくすることが必要となる。従って式1、
好ましくは式2を満足することにより、静電気のシール
ドが可能となる。The outer surface layer m of the wrapping bag is a static electricity dissipative layer, but when a high voltage is applied directly to the inside of the wrapping bag from the outer surface of the wrapping bag.
When a part of the electronic component 50 inside the packaging bag, for example, the bottle 51, is located at the position closest to the high voltage applied from the outer surface of the packaging bag, a conduction 'K M II (1) is formed. The conductive fibers must exist within a circle with the high voltage application point P as the center and the radius B. Due to the lightning rod principle, the high voltage reaches the conductive fibers 21 in the conductive layer before reaching the bottle 51, which is a part of the electronic component. The distance d between the conductive fibers is the same as the above-mentioned t.
The larger the value, the smaller it becomes necessary. Therefore, equation 1,
Preferably, by satisfying Formula 2, shielding of static electricity becomes possible.
導電層!l (1)の表面抵抗値がlX10’Ω/□以
下であれば静電気シールドに対し有効であり、更に10
2Ω/□以下であれば数GHzの周波数帯域に対する電
磁波のシールドにも有効である。Conductive layer! If the surface resistance value of l(1) is less than lX10'Ω/□, it is effective for electrostatic shielding, and
If it is 2Ω/□ or less, it is effective for shielding electromagnetic waves in a frequency band of several GHz.
導電層■(1)の導電性繊維21は互いに接触点を持ち
つつ、電気的に連続であるととは好ましいことである。It is preferable that the conductive fibers 21 of the conductive layer (1) have contact points with each other and are electrically continuous.
導電性*、m21の太さは、特に限定はないが導電層I
I(1)内の導電性繊維の緻密性を向上させるためには
、紬繊度程好ましく、導電性FM、aのカードウェブ形
成性を考慮すれば、5〜2071mが適当である。導電
性繊維のウェブを形成する際、導電性繊維以外に他繊維
と混合したものであっても式1を満足する限り何ら限定
されるものではない。The conductivity *, the thickness of m21 is not particularly limited, but the conductive layer I
In order to improve the density of the conductive fibers in I(1), the pongee fineness is more preferable, and in consideration of the card web forming property of the conductive FM, a, 5 to 2071 m is appropriate. When forming a web of conductive fibers, there is no limitation at all even if other fibers are mixed in addition to conductive fibers as long as Formula 1 is satisfied.
導電層■(1)は電子線法による真空蒸着、スパッタリ
ング等の方法だより金属を付着させ導電性能を更に付与
することはもちろん可能であるが、透明性の低下を考慮
する必要がある。It is of course possible to further impart conductive properties by attaching metal to the conductive layer (1) by vacuum deposition using an electron beam method, sputtering, etc., but it is necessary to consider the reduction in transparency.
中間層nのもう一方の絶縁フィルム層■(2)は導電層
II (1)の外側に位置し1014Ω/□以上の表面
抵抗値を有する。絶縁フィルム層n(2)は包袋外部か
らの電荷の内部への移行を防止するための機能を有して
いる。包袋内部への電荷移動を防ぐためには1014Ω
/□以上の高い表面抵抗値が必要であるが、絶縁フィル
ム層■(2)は樹脂をT−ダイ等により押し出すことK
より得られる。The other insulating film layer (2) of the intermediate layer n is located outside the conductive layer II (1) and has a surface resistance value of 1014 Ω/□ or more. The insulating film layer n(2) has a function of preventing the transfer of electric charge from the outside of the envelope into the inside. 1014Ω to prevent charge transfer into the bag.
A high surface resistance value of /□ or higher is required, but the insulating film layer (2) can be made by extruding the resin using a T-die, etc.
More can be obtained.
また.包袋内の電子部品の内外部からの機械的な力、例
えば突き刺し強力に対して保護することが必要ならば、
樹脂をポリエステル、ポリプロピレン等とすることによ
プ達成可能である。Also. If it is necessary to protect the electronic components inside the package against mechanical forces from inside and outside, such as puncture force,
This can be achieved by using polyester, polypropylene, etc. as the resin.
包袋とした時の包袋の外面となるべき外表面層mは表面
抵抗値が101〜1011Ω/□の静電気消散性能を有
する薄層であることが必要である。The outer surface layer m, which is to become the outer surface of the wrapping bag when it is made into a wrapping bag, needs to be a thin layer having a surface resistance value of 101 to 1011 Ω/□ and having static electricity dissipation performance.
外表面層1は包袋同士.包袋と他の物質との摩擦帯電防
止あるいは包袋外部からの帯′it物が包袋と接触した
際、速かに電荷を消散させること、更には帯電物が包袋
に接近する際、静電気放電による電磁波を発生させない
等の機能を奏する。The outer surface layer 1 is the wrapping bag. To prevent frictional electrification between the packaging bag and other substances, or to quickly dissipate the charge when an object from outside the packaging comes into contact with the packaging, and furthermore, when a charged object approaches the packaging, It performs functions such as preventing the generation of electromagnetic waves due to electrostatic discharge.
1012〜10’Ω/□の表面抵抗値では摩擦帯電防止
には有効であるが、帯電物と包袋との接触時に於ける静
1気消散性は不充分であり1011Ωん以下の表面抵抗
値を有することが必要であり、また10・07口未満の
表面抵抗値では、帯電物が包袋に接近する際、放電1〜
易く放電することにより電磁波を発生させてしまうため
包袋内外での静電気トラブルよりむしろ電磁波によるト
ラブルを誘発させる。A surface resistance value of 1012 to 10'Ω/□ is effective in preventing frictional electrification, but static dissipation during contact between a charged object and the wrapping bag is insufficient, and a surface resistance value of 1011Ω or less is effective. In addition, if the surface resistance value is less than 10.07, when the charged object approaches the packaging bag, the discharge 1~
Because it easily discharges and generates electromagnetic waves, it causes troubles due to electromagnetic waves rather than problems caused by static electricity inside and outside the wrapping bag.
外表面層■の表面抵抗値を106〜1011Ω/□とす
るためには静電気消散剤を樹脂と混合し、T−ダイ等に
より押し出したり、あるいは静電気消散剤を絶縁フィル
ム層の表面にコートすることだよって得られ、厚さ11
01〜0.5μmの薄層とする。In order to set the surface resistance value of the outer surface layer (■) to 106 to 1011 Ω/□, mix a static electricity dissipating agent with a resin and extrude it using a T-die, etc., or coat the static electricity dissipating agent on the surface of the insulating film layer. Obtained by the method, thickness 11
The thickness is 0.01 to 0.5 μm.
本発明の電子部品保護用包袋材料は前述した如く、各層
各々の機能を満足し、層順列が規定されたものであるが
更に加えて包袋材料の全光線透過率が60憾以上である
ことが必要である。As mentioned above, the packaging material for protecting electronic components of the present invention satisfies the functions of each layer and has a defined layer order, but in addition, the packaging material has a total light transmittance of 60 or more. It is necessary.
全光線透過率が604未満であると包袋内の部品の状態
が視認しにくくなる。材料の全光線透過率を604以上
とする((は導電Nを前述した4口く導電性繊維を低日
付のウェブとすることにより得られる。If the total light transmittance is less than 604, it will be difficult to visually recognize the condition of the components inside the wrapping bag. The total light transmittance of the material is 604 or more.
本発明の電子部品保護用包袋材料を得るためにけ融点差
のある2種のフィルム入1からなり高融点フィルム層が
絶縁性能を有する複合フィルムの低融点フィルム層内に
低融点フィルムの軟化温度以上、高融点フィルムの軟化
湿度以下の温度で熱lf着し導電性繊維のカードウェブ
を低融点フィルム層に埋入させ、しかる後、このカード
ウェブ埋入側の面に制電樹脂をコートし、て非帯電性フ
ィルム層とし、更に絶縁フィルム面に静電気消散剤をコ
ートする方法が有利に用いられる。104Ω/□以上の
表面抵抗値のある絶縁フィルム層含有複合フィルムの融
点差は10℃以上、好ましくは30℃以上が必要である
。In order to obtain the packaging material for protecting electronic components of the present invention, the low melting point film is softened in the low melting point film layer of the composite film, which is composed of two types of films with different melting points, and the high melting point film layer has insulation performance. A card web of conductive fibers is embedded in a low melting point film layer by heat LF bonding at a temperature above the temperature and below the softening humidity of the high melting point film, and then an antistatic resin is coated on the side where the card web is embedded. Advantageously, a method is used in which a non-chargeable film layer is formed, and the surface of the insulating film is further coated with a static electricity dissipating agent. The melting point difference of a composite film containing an insulating film layer having a surface resistance value of 104 Ω/□ or more must be 10°C or more, preferably 30°C or more.
融点差が10℃未満であると高融点フィルム層が熱圧着
操作の際収縮等により形態保持性が損なわれる。この様
な絶縁フィルム層含有複合フィルムは例えばポリプロピ
レンとポリエチレンあるいはポリエステルとポリエチレ
ン等の組合せによるフィルムのT−ダイラミネーション
あるいはドライラミネーションにより得られる。If the melting point difference is less than 10°C, the shape retention of the high melting point film layer will be impaired due to shrinkage during thermocompression bonding. Such a composite film containing an insulating film layer can be obtained, for example, by T-die lamination or dry lamination of a film made of a combination of polypropylene and polyethylene or polyester and polyethylene.
上記複合フィルムにその低融点フィルノ・セの軟化温度
以上IEM点フィルム層の軟化温度以下の温度でカード
ウェブを重ねて加圧し、カードウェブを埋入する。低融
点フィルム層の融化温度以下ではカードウェブの埋入が
不充分となりウェブ面での剥離が生じ易くまた後の工程
で行われる制電樹脂をコートして非帯電性フィルム層を
形成する際、気泡混入より、光線透過率の低下を引き起
してしまう。−刃高融点フィルム層の軟化温度以上の温
度にすると複合フィルムの形態が維持できなくなる。従
って、カードウェブの低融点フィルム層への埋入に当っ
ては、低融点フィルム層の軟化温度以上庫融点フィルム
層の軟化温度以下とする必要がある。上記要件を満足し
ても低融点フィルム層の融点以上に加熱すると、低融点
フィルム層はカードウェブの加圧による埋入の際、例え
ば加圧ローラーへの付着ある込はフィルムの巾方向への
建じみ出し等があり、好ましいことではなり0
複合フィルムへのカードウェブの埋入の熱圧WIKは、
例えばとニーソングプレス機等、加熱ベルトニップ方式
による方法、あるかはカレンダー機等加熱ロールニップ
による方法が好ましく用いられる。A card web is layered on the composite film at a temperature that is higher than the softening temperature of the low melting point film layer and lower than the softening temperature of the IEM point film layer and pressurized to embed the card web. If the temperature is below the melting temperature of the low melting point film layer, the embedding of the card web will be insufficient and peeling will easily occur on the web surface. The inclusion of air bubbles causes a decrease in light transmittance. - If the temperature is higher than the softening temperature of the blade high melting point film layer, the shape of the composite film cannot be maintained. Therefore, when embedding the card web into the low melting point film layer, it is necessary to set the temperature at a temperature higher than the softening temperature of the low melting point film layer and lower than the softening temperature of the storage melting point film layer. Even if the above requirements are met, if the low melting point film layer is heated to a temperature higher than the melting point of the low melting point film layer, the low melting point film layer will not adhere to the pressure roller when embedding the card web under pressure, for example, in the width direction of the film. There is some oozing etc., which is not desirable.Hot pressure WIK for embedding card web in composite film is
For example, a method using a heated belt nip method such as a knee-son press machine, or a method using a heated roll nip method such as a calender machine is preferably used.
導電性繊維のカードウェブは導電性績維或すは導電性繊
維と他の繊維との混合物をカーデイングにより得られる
が、前述した如くウェブ状態で導電性繊維同士の間隔1
がd<2iの式を満足しなけ、ればならない。式よシ包
袋材料の全厚さ、及び包袋材料に於ける導電層の位置に
より導電性繊維の許容される間隙が異なるが、基本的に
は導電性繊維が均一に開繊される必要がある。開繊性を
向上させるためにはカード機の能力にも依存するが、導
電性繊維は太さが5〜20μmで、かつ繊維長が30〜
70■であればほば良好な開繊性を与える。もちろん例
えば金属メツキしてなる導電性繊維を用める場合は平滑
性油剤を用いる、導電性繊維に他の繊維を混入させる等
により開繊維を向上することも可能である。他の繊維を
用する場合、前記複合フィルムの低融点フィルムに近い
屈折率を有する繊維を用いることが光線透過率の面から
好まし込。A carded web of conductive fibers is obtained by carding conductive fibers or a mixture of conductive fibers and other fibers, but as described above, the distance between conductive fibers in the web state is 1.
must satisfy the expression d<2i. The allowable gaps between the conductive fibers vary depending on the total thickness of the packaging material and the position of the conductive layer in the packaging material, but basically the conductive fibers must be opened uniformly. There is. In order to improve the spreadability, it depends on the capacity of the carding machine, but the conductive fiber should have a thickness of 5 to 20 μm and a fiber length of 30 to 20 μm.
A value of 70■ gives better opening properties. Of course, when metal-plated conductive fibers are used, it is also possible to improve fiber opening by using a smoothing oil or by mixing other fibers into the conductive fibers. When using other fibers, it is preferable to use fibers having a refractive index close to that of the low melting point film of the composite film from the viewpoint of light transmittance.
絶縁フィルム層含有複合フィルムの低融点フィルム層に
導電性繊維のカードウェブを埋入した後、導電層のカー
ドウェブ埋入面に訓電樹脂をコーティングして非帯電フ
ィルム層を形成する。制電樹脂としては例えば低密度ポ
リエチレンにポリエチレングリコール類を添加混合した
ものがある。ここで非帯電とは摩擦帯電を起こさない程
度のものでion〜101sΩ/□の表面抵抗値があれ
ば良く、また包袋材料を用い包袋にする際工業的にヒー
トシール可能な熱融着性能を有するものが好まし−。な
お、予め作成した非帯電フィルムをラミネートする方法
はウェブ面とフィルム面との界面に於ける気泡混入剥離
強力の点で好ましめ結果を与えない。また工業的見地か
ら見ても溶融状態でコートすることは経済的利点は大き
いものである。After embedding a card web of conductive fibers in the low melting point film layer of the composite film containing an insulating film layer, the card web embedding surface of the conductive layer is coated with a charging resin to form an uncharged film layer. As the antistatic resin, there is, for example, a mixture of low-density polyethylene and polyethylene glycols. Here, "non-electrostatic" means that it does not cause frictional electrification, and only needs to have a surface resistance value of ions to 101sΩ/□, and is heat-sealable so that it can be industrially heat-sealed when the packaging material is used to make the packaging. Preferably one with good performance. Note that the method of laminating a previously prepared non-charged film does not give favorable results in terms of peel strength due to the inclusion of air bubbles at the interface between the web surface and the film surface. Also, from an industrial standpoint, coating in a molten state has great economic advantages.
次に絶縁フィルム層含有複合フィルムの高融点フィルム
の絶縁フィルム層に静電気消散剤をコートする。静電気
消散剤としては、@4級アンモニウム4、ボ!Jエチレ
ングリコール類、エタノールアミン類、アミン塩類、プ
ロケン類がある。コート方法はグラビアコーター等が用
いられる。コート憧は、特に規定するものではないが前
述した如く106〜1011Ω/□の表面抵抗値を示す
静電気消散性の薄層を形成することが重要である。Next, the insulating film layer of the high melting point film of the composite film containing the insulating film layer is coated with a static electricity dissipating agent. As a static electricity dissipator, @quaternary ammonium 4, Bo! These include J ethylene glycols, ethanolamines, amine salts, and prokenes. As the coating method, a gravure coater or the like is used. Although the coating is not particularly specified, it is important to form a thin electrostatic dissipative layer exhibiting a surface resistance value of 10 6 to 10 11 Ω/□ as described above.
以上記載した方法により得られる電子部品保護用包袋材
料は内表面層を内側にしてヒートシール忙より容易に製
袋加工しうる。The packaging material for protecting electronic components obtained by the method described above can be easily processed into bags by heat sealing with the inner surface layer facing inside.
(発明の効果)
本発明による包袋材料は工0.LSI等をはじめとする
半導体製品、その他の電子部品の静電気からの保護を目
的とした包袋材料としてだけでなく、導電層の材質やw
t気低抵抗値選択、4″m性繊維の存在間隙の設定によ
プ電磁波シールド性能を付与することも可能であり、本
発明の材料を用いて電気機器の障害となるノイズ防止に
も応用可能である。(Effects of the Invention) The packaging material according to the present invention has a manufacturing cost of 0. It is used not only as a packaging material for the purpose of protecting semiconductor products such as LSIs and other electronic components from static electricity, but also as a packaging material for conductive layer materials and other electronic components.
It is also possible to provide electromagnetic wave shielding performance by selecting a low resistance value and setting the gap between 4" fibers, and the material of the present invention can also be applied to prevent noise that interferes with electrical equipment. It is possible.
更に本発明の材料は極めて合理的に製造しうるものであ
る。Furthermore, the material of the present invention can be manufactured very rationally.
(実施例) 以下本発明を実施例により炉団する。(Example) The present invention will be explained below with reference to Examples.
実施例1
試料1;
表面抵抗値5.4 X 1014Q/口の絶縁ポリプロ
ピレン(PP)フィルムにポリエチ1/ンCPg)がラ
ミネートしてなる複合フィルムのPFeフィルム面に、
アクリル繊維(2デニールX 51 m )にニッケル
を20重量係メツキした導1ビ性繊維60fi世繋とア
クリル繊維40重苛憾が混在する目付697m” 導
電性′fB、m平均間隔平均間隔14力
温度140℃、田力五5 ’に9/I7/l”で埋入固
定し導電層を形成した。次いでその埋入面KTーダイに
より制電剤混入のPffiをラミネートして非帯電フィ
ルム層を形成し、更に絶縁PPフィルム面に第4級アン
モニウム塩からなる静電気消散剤をコートして静電気消
散薄層を形成し.包袋材料を作成し試料1とした。Example 1 Sample 1: On the PFe film surface of a composite film formed by laminating polyethylene (CPg) on an insulating polypropylene (PP) film with a surface resistance value of 5.4 x 1014Q/hole,
Acrylic fiber (2 denier x 51 m) is plated with nickel at a weight of 20%, making it a conductive vinyl fiber with a mix of 60fi grade bonding and acrylic fibers with a 40% weight resistance.Basic weight: 697m'' Conductivity 'fB, m average spacing 14 force At a temperature of 140° C., the conductive layer was formed by embedding and fixing the conductive layer in a 9/I7/l” plate. Next, Pffi containing an antistatic agent is laminated using a KT-die on the embedded surface to form an antistatic film layer, and a static electricity dissipating agent made of a quaternary ammonium salt is further coated on the insulating PP film surface to form a static electricity dissipating thin layer. form. A wrapping bag material was prepared and designated as Sample 1.
試料2;
試料1の作成において、導電層の形成時にポリエステル
繊維(1.4デニールX 5 1 wm ) K硫化鋼
を2.8重f鴫付着させた導電性繊!100iit*の
目付5− 5 t/gs” 繊維平均間隔140μm
のカードウェブを用いた以外は、試料1の作成条件を同
一にして包袋材料を作成し試料2とした。Sample 2; In the preparation of Sample 1, conductive fibers were made by adhering polyester fibers (1.4 denier x 5 1 wm) K sulfide steel with 2.8 layers of f-sulfur when forming the conductive layer! 100iit* fabric weight 5-5 t/gs” average fiber spacing 140μm
A packaging material was prepared as Sample 2 under the same conditions as Sample 1 except that the card web of 1 was used.
試料1及び試料2の構成を第1表に示した。The compositions of Sample 1 and Sample 2 are shown in Table 1.
試料3(比較);
厚さ80μm表面抵表面抵抗値lX1011Ω/電剤練
り込みタイプのフィルムからなる包袋。Sample 3 (comparison): A packaging bag made of a film with a thickness of 80 μm and a surface resistance value of 1×10 11 Ω/with an electric agent mixed therein.
試料4(比較)1
内表面層を厚さ38μm、表面抵抗値lX1011Ω/
□の制電pgフィルム、中間の絶縁層を厚さ25μmの
ポリエステルフィルム、外表面層をニッケルスパッタリ
ング薄層(厚さ100A)の積層フィルムからなる包袋
。Sample 4 (comparison) 1 The inner surface layer has a thickness of 38 μm and a surface resistance value of 1×1011Ω/
A packaging bag made of a laminated film consisting of an antistatic PG film (□), a 25 μm thick polyester film as the middle insulating layer, and a nickel sputtered thin layer (100A thick) as the outer surface layer.
試料の評価
試料1及び2をそれぞれpgフィルム層を内側となるよ
5KL、てヒートシールしてたて、よこ105Iの大き
さの包袋を作成し、試料3及び4と共に工C破壊テスト
時に於ける包袋外部への電磁波発生状況の結果を第2表
に示した。破壊テストの実験は0−M084069 5
個をそれぞれ包袋内に収納し、静電気放電発生器(三基
電子工業社製BIT−30B)にて15KVの電圧10
繰り返し包袋外より印加し、このテストを5回行なった
。Evaluation of Samples Samples 1 and 2 were heat-sealed with the pg film layer on the inside with a length of 5KL, and a packaging bag with a width of 105I was made. Table 2 shows the results of the electromagnetic waves generated outside the packaging. Destructive test experiment is 0-M084069 5
Each piece was stored in a wrapping bag, and an electrostatic discharge generator (BIT-30B manufactured by Sanki Denshi Kogyo Co., Ltd.) was used to generate a voltage of 10 KV.
This test was repeated 5 times by repeatedly applying the voltage from outside the bag.
実験の後.包袋より部品を取り出し、XCの破壊状況を
電気回路だより発光ダイオードの点燈の有無から判定し
た。また電磁波発生状況は破壊テスト時包袋外にKMエ
ロケーター(三基電子工業社製)を配しロケータ−音に
よ抄判定した。After the experiment. The parts were removed from the packaging, and the state of damage to the XC was determined from the presence or absence of light-emitting diodes from the electrical circuit. Further, the electromagnetic wave generation status was determined by placing a KM locator (manufactured by Sanki Denshi Kogyo Co., Ltd.) outside the package during a destructive test based on the locator sound.
第 2 表
試料1 試料2 試料3 試料4[破壊率(愉
0 0 36 0電磁波誘発
微弱 微弱 微弱 激しい*
光線透過率<@ 75 73 89
38本光線透過率:J工EI K−6714に準拠実
施例2
実施例1における試料1の作成において、導電層の形成
時にアクリル繊維(2デニール×51闇)に銀を20重
量憾メツキ1−た導電性繊維100重′J11:+1の
日付69/m” it&維平均間隔140μmのカー
ドウェブを用いた以外は、試料1と同様にして包袋材料
を作成1−1電磁波シ−ルド性を測定したところ周波数
500 MHzで504Bの値を得た。Table 2 Sample 1 Sample 2 Sample 3 Sample 4 [Destruction rate (fun)
0 0 36 0 electromagnetic wave induction
Weak Weak Weak Intense * Light transmittance <@ 75 73 89
38 lines Light transmittance: Compliant with J Engineering EI K-6714 Example 2 In the preparation of sample 1 in Example 1, 20 weights of silver was applied to acrylic fiber (2 denier x 51 mm) at the time of forming the conductive layer. A wrapping material was prepared in the same manner as Sample 1 except that a card web with a fiber average spacing of 140 μm was used. 1-1 Electromagnetic shielding property When measured, a value of 504B was obtained at a frequency of 500 MHz.
第1図は本発明の包袋材料のモデル断面図、@2図は本
発明の包袋材料の厚さと導電層中の導電性繊維同士の間
隔との位置関係を示すモデル図である。
■(1)・・・導電層
■(2)・・・絶縁フィルム層
■・・・・・・静電気消散性層からなる外表面層21・
・・導電性繊維、 50・・・IQ。FIG. 1 is a cross-sectional view of a model of the packaging material of the present invention, and Figure 2 is a model diagram showing the positional relationship between the thickness of the packaging material of the present invention and the spacing between conductive fibers in the conductive layer. ■(1)... Conductive layer ■(2)... Insulating film layer ■... Outer surface layer 21 consisting of a static electricity dissipative layer.
...Conductive fiber, 50...IQ.
Claims (2)
^9〜10^1^3Ω/□の非帯電性フイルム層、中間
層IIが導電性繊維を含む表面抵抗値10^4Ω/□以下
の導電層(1)及び表面抵抗値10^1^4Ω/□以上
の絶縁フイルム層(2)、及び外表面層IIIが表面抵抗
値10^6〜10^1^1Ω/□の静電気消散性層から
なり、各層が順次積層一体化されたシート状物であつて
、全光線透過率が60%以上であることを特徴とする電
子部品保護用包袋材料。1. The inner surface layer I, which should become the inner surface of the wrapping bag, has a surface resistance value of 10.
Conductive layer (1) with a surface resistance of 10^4Ω/□ or less and a surface resistance of 10^1^4Ω, in which the intermediate layer II contains conductive fibers and a non-electrostatic film layer with a resistance of ^9 to 10^1^3Ω/□. /□ or more insulating film layer (2) and outer surface layer III consisting of a static electricity dissipative layer with a surface resistance value of 10^6 to 10^1^1 Ω/□, and each layer is sequentially laminated and integrated. A packaging material for protecting electronic components, which has a total light transmittance of 60% or more.
ルム層が表面抵抗値10^1^4Ω/□以上の絶縁フイ
ルム層である複合フイルムの低融点フイルム層に目付3
〜7g/m^2の導電性繊維のカードウエブを熱圧着に
より埋入させて表面抵抗値10^4Ω/□以下の導電層
を形成し、そのカードウエブ埋入面に制電樹脂をコート
して表面抵抗値10^9〜10^1^3Ω/□の非帯電
性フイルム層を形成すると共に絶縁フイルム面に静電気
消散剤をコートして表面抵抗値10^6〜10^1^1
Ω/□の静電気消散性層を形成することを特徴とする電
子部品保護用包袋材料の製造法。2. The composite film is composed of two types of film layers with different melting points, and the high melting point film layer is an insulating film layer with a surface resistance value of 10^1^4Ω/□ or more.The low melting point film layer has a basis weight of 3.
A conductive fiber card web of ~7 g/m^2 is embedded by thermocompression bonding to form a conductive layer with a surface resistance value of 10^4 Ω/□ or less, and the embedded surface of the card web is coated with antistatic resin. A non-static film layer with a surface resistance value of 10^9 to 10^1^3 Ω/□ is formed, and a static electricity dissipating agent is coated on the insulating film surface to give a surface resistance value of 10^6 to 10^1^1.
A method for producing a packaging material for protecting electronic components, characterized by forming a static electricity dissipative layer of Ω/□.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1166294A JPH0330495A (en) | 1989-06-28 | 1989-06-28 | Electronic component protective wrapping bag material and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1166294A JPH0330495A (en) | 1989-06-28 | 1989-06-28 | Electronic component protective wrapping bag material and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0330495A true JPH0330495A (en) | 1991-02-08 |
Family
ID=15828678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1166294A Pending JPH0330495A (en) | 1989-06-28 | 1989-06-28 | Electronic component protective wrapping bag material and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0330495A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112018001154T5 (en) | 2017-04-13 | 2019-12-05 | Mitsubishi Electric Corporation | Energy conversion device, energy conversion device control system, electronic device, machine learning device, and method of controlling a cooling fan |
-
1989
- 1989-06-28 JP JP1166294A patent/JPH0330495A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112018001154T5 (en) | 2017-04-13 | 2019-12-05 | Mitsubishi Electric Corporation | Energy conversion device, energy conversion device control system, electronic device, machine learning device, and method of controlling a cooling fan |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Asmatulu et al. | Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding | |
US4906494A (en) | Antistatic sheet material, package and method of making | |
US5314732A (en) | Flexible, transparent film for electrostatic shielding | |
US5091229A (en) | Electronics protective packaging film | |
US5165985A (en) | Method of making a flexible, transparent film for electrostatic shielding | |
AU588397B2 (en) | Antistatic sheet material | |
WO1993006701A1 (en) | Suspension packaging for static-sensitive products | |
JPS62502329A (en) | Antistatic sheet material, package and manufacturing method thereof | |
JP4001468B2 (en) | Carrier tape body | |
CN100499986C (en) | Structure having a characteristic of conducting or absorbing electromagnetic waves | |
JPH04137399A (en) | Antistatic metalized bag for electronic component | |
EP0508044B1 (en) | Container for protecting electronic components from static charges | |
US4554210A (en) | Laminated anti-static skin-packaging material | |
US5354950A (en) | Electrostatic shielding sheet for making a box used for shipping and storing electronic components and a shipping box made thereof | |
JPS58155917A (en) | Manufacture of electro-conductive sheet or film | |
JPH0330495A (en) | Electronic component protective wrapping bag material and manufacture thereof | |
JP3035405B2 (en) | Manufacturing method of expanded graphite composite sheet | |
EP0591317B1 (en) | A flexible, transparent film for electrostatic shielding | |
JP2019094127A (en) | Cover tape for packaging electronic components | |
JPS6117281A (en) | Magnetic recording use magnetic disk jacket having electromagnetic wave noise shielding property | |
JP4376349B2 (en) | Cover tape for carrier tape and tape carrier | |
JP2000281983A (en) | Cover tape for carrier tape and tape-like carrier body | |
JPS60140698A (en) | Charging preventive woven cloth and nonwoven cloth | |
JPS6239102Y2 (en) | ||
JPS6010848Y2 (en) | Packaging material with conductivity |