JPH0330469B2 - - Google Patents

Info

Publication number
JPH0330469B2
JPH0330469B2 JP14773883A JP14773883A JPH0330469B2 JP H0330469 B2 JPH0330469 B2 JP H0330469B2 JP 14773883 A JP14773883 A JP 14773883A JP 14773883 A JP14773883 A JP 14773883A JP H0330469 B2 JPH0330469 B2 JP H0330469B2
Authority
JP
Japan
Prior art keywords
reactor
unidirectional control
reactors
welding
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14773883A
Other languages
Japanese (ja)
Other versions
JPS6040675A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14773883A priority Critical patent/JPS6040675A/en
Publication of JPS6040675A publication Critical patent/JPS6040675A/en
Publication of JPH0330469B2 publication Critical patent/JPH0330469B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は交流アーク溶接機および交流TIG溶接
機のアークの安定性を向上したアーク溶接機に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an AC arc welder and an AC TIG welder with improved arc stability.

従来例の構成とその問題点 従来の交流TIG溶接機および交流アーク溶接機
の主回路を第1図に示す。1は溶接変圧器、2,
2′はそれぞれ第1、第2の単方向制御整流素子、
3,3′はそれぞれ第1、第2のリアクトル、4
は電極、5はアーク、6は母材、A,Bは前記溶
接変圧器1の2次巻線の端子である。なお前記第
1、第2の単方向制御整流素子2,2′と第1、
第2リアクトル3,3′は入れ代わることもある。
そして端子Aがプラス、端子Bがマイナスの場
合、第1の単方向制御整流素子2が導通し電流i1
が溶接負荷へ流れようとする。その場合第1のリ
アクトル3には第1の単方向制御整流素子2との
接続側にマイナスの電圧が誘起され、一方第2の
リアクトル3′には第2の単方向制御整流素子
2′との接続側にプラスの電圧が誘起されるため
第2の単方向制御整流素子2′には電流が流れに
くい状態にある。つぎに端子Bがプラス、端子A
がマイナスに反転すると電流i1は減少し続けるた
め第1のリアクトル3には第1単方向制御整流素
子2との接続側にプラスの電圧が誘起される。一
方第2のリアクトル3′には第2の単方向制御整
流素子2′との接続側にマイナスの電圧を誘起し
第2の単方向制御整流素子2′がONし易く働く。
第2の単方向制御整流素子2′がON時の出力に
誘起されるキツク電圧Vは V=L・Di2/dt …… (ただしLはリアクトル3′のインダクタンス) で表わされる。このキツク電圧Vが高いほど逆極
性(母材マイナス)から正極性(母材プラス)へ
移行を確実にできる。同様にして再点弧を失敗し
易い正極性から逆極性への移行時も上記キツク電
圧が高ければ高いほど確実なものとなる。しかし
従来例では式より小電流ほど上記再点弧時のキ
ツク電圧が小さい。したがつて小電流においても
再点弧に充分なキツク電圧を得るためには、式
よりきわめて大きなインダクタンスを持つリアク
トルを作る必要があつた。したがつて溶接機も重
量が重く、大形化する欠点を有していた。
Configuration of conventional examples and their problems Figure 1 shows the main circuits of conventional AC TIG welding machines and AC arc welding machines. 1 is a welding transformer, 2,
2' are first and second unidirectional control rectifiers, respectively;
3 and 3' are the first and second reactors, respectively, and 4
5 is an electrode, 5 is an arc, 6 is a base metal, and A and B are terminals of the secondary winding of the welding transformer 1. Note that the first and second unidirectional control rectifying elements 2, 2' and the first,
The second reactors 3, 3' may be replaced.
When terminal A is positive and terminal B is negative, the first unidirectional control rectifier 2 conducts and the current i 1
tends to flow to the welding load. In that case, a negative voltage is induced in the first reactor 3 on the side connected to the first unidirectionally controlled rectifying element 2, while in the second reactor 3', a negative voltage is induced in the side connected to the second unidirectionally controlled rectifying element 2'. Since a positive voltage is induced on the connection side of , it is difficult for current to flow through the second unidirectional control rectifying element 2'. Next, terminal B is positive, terminal A
When the current i 1 is reversed to a negative value, the current i 1 continues to decrease, so that a positive voltage is induced in the first reactor 3 on the side connected to the first unidirectionally controlled rectifying element 2 . On the other hand, a negative voltage is induced in the second reactor 3' on the side connected to the second unidirectionally controlled rectifying element 2', so that the second unidirectionally controlled rectifying element 2' is easily turned on.
The kick voltage V induced in the output when the second unidirectionally controlled rectifying element 2' is ON is expressed as V=L·Di 2 /dt (where L is the inductance of the reactor 3'). The higher the kick voltage V is, the more reliable the transition from the reverse polarity (base material minus) to the positive polarity (base material plus) can be. Similarly, the higher the kick voltage, the more reliable the transition from positive polarity to reverse polarity, where restriking is likely to fail. However, in the conventional example, according to the equation, the smaller the current, the smaller the kick voltage at the time of restriking. Therefore, in order to obtain sufficient kick voltage for restriking even with a small current, it was necessary to create a reactor with an extremely large inductance based on the formula. Therefore, the welding machine also has the disadvantage of being heavy and large.

発明の目的 本発明は前記従来例の欠点を除去し、小形軽量
でアークの安定性の優れた交流アーク溶接機およ
び交流TIG溶接機を得ることを目的とするもので
ある。
OBJECTS OF THE INVENTION The object of the present invention is to eliminate the drawbacks of the conventional examples and to provide an AC arc welding machine and an AC TIG welding machine that are small, lightweight, and have excellent arc stability.

発明の構成 この目的を達成するために本発明は一次巻線を
電源に接続した溶接変圧器の二次巻線の一方には
互いに通電方向の異なる第1および第2の単方向
制御整流素子の極性の異なる一方の端子を前記溶
接変圧器の二次巻線の一方および他方の端子をそ
れぞれ接続し、前記各単方向制御整流素子の他方
および一方の端子にはそれぞれ第1および第2の
リアクトルの一端および他端を直列に接続し、前
記第1および第2のリアクトルの他端および一端
を溶接負荷の一端に接続し、前記第1のリアクト
ルと第1の単方向制御整流素子の接続点と前記第
2のリアクトルと第2の単方向制御整流素子の接
続点との間にコンデンサを接続し、かつ前記第1
および第2のリアクトルを同一鉄芯上に巻き各イ
ンダクタンスを略同一に形成しかつ前記第1およ
び第2の単方向制御整流素子の交互の通電時に前
記鉄芯上に発生する磁束を常に同一方向とし、前
記溶接変圧器の二次巻線の他方には溶接負荷の他
端に接続したものである。
Composition of the Invention In order to achieve this object, the present invention includes first and second unidirectionally controlled rectifying elements having different energizing directions in one of the secondary windings of a welding transformer whose primary winding is connected to a power source. One terminal with different polarity is connected to one and the other terminal of the secondary winding of the welding transformer, and the other and one terminal of each of the unidirectional control rectifying elements are connected to a first and a second reactor, respectively. one end and the other end are connected in series, the other end and one end of the first and second reactors are connected to one end of the welding load, and a connection point between the first reactor and the first unidirectional control rectifier element. a capacitor is connected between the second reactor and the second unidirectionally controlled rectifier;
and a second reactor is wound on the same iron core so that each inductance is approximately the same, and the magnetic flux generated on the iron core is always directed in the same direction when the first and second unidirectional control rectifying elements are alternately energized. The other end of the secondary winding of the welding transformer is connected to the other end of the welding load.

この構成により前記再点弧時のキツク電圧を高
める作用があり、前記第1、第2のリアクトルの
インダクタンスを従来ほど大きくせずとも再点弧
に必要なキツク電圧を小電流域にても得ることが
でき、全領域にてアークの安定化が図れるもので
ある。なお交流TIG溶接機においては前記コンデ
ンサの容量を増すと前記キツク電圧も比例して大
きくなるため従来再点弧を確実とするため常時発
生させている高周波の助成なしでも再点弧に必要
なキツク電圧を得ることができる。したがつて、
低雑音型交流TIG溶接機も実現できるものであ
る。
This configuration has the effect of increasing the kick voltage at the time of restriking, and the kick voltage necessary for restriking can be obtained even in a small current range without increasing the inductance of the first and second reactors as much as before. This makes it possible to stabilize the arc in all areas. In addition, in AC TIG welding machines, when the capacitance of the capacitor is increased, the kick voltage increases proportionally, so the kick voltage necessary for restriking can be increased even without the aid of the high frequency that is always generated to ensure restriking. voltage can be obtained. Therefore,
A low-noise AC TIG welding machine can also be realized.

実施例の説明 以下本発明の一実施例につき図面の第2図〜第
4図に沿つて詳細に説明する。第2図において
1,2,2′,3,3′,4,5,6は従来と同様
の溶接変圧器、第1の単方向制御整流素子、第2
の単方向制御整流素子、第1のリアクトル、第2
のリアクトル、電極、アーク、母材である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to FIGS. 2 to 4 of the drawings. In Fig. 2, 1, 2, 2', 3, 3', 4, 5, and 6 are welding transformers similar to conventional ones, the first unidirectional control rectifier, and the second
a unidirectionally controlled rectifying element, a first reactor, a second
reactor, electrode, arc, and base material.

本実施例では第1図の構成にコンデンサ7を追
加したものである。なおコンデンサ7に限流用抵
抗を直列に接続する場合もある。また第1および
第2のリアクトル3,3′の接続点を前記溶接変
圧器1の端子Bに接続し、第1および第2の単方
向制御素子2,2′の接続点を電極4へ接続して
も第2図と同様の結果を得る。
In this embodiment, a capacitor 7 is added to the configuration shown in FIG. Note that a current limiting resistor may be connected in series to the capacitor 7. Also, the connection point of the first and second reactors 3, 3' is connected to the terminal B of the welding transformer 1, and the connection point of the first and second unidirectional control elements 2, 2' is connected to the electrode 4. However, the same results as in Fig. 2 are obtained.

第3図a,bはそれぞれ従来例、本実施例の出
力波形を示し第4図a,bは第2図中の電流i1
i2,icの波形を示したものである。
Figures 3a and b show the output waveforms of the conventional example and this embodiment, respectively, and Figures 4a and b show the current i 1 ,
This shows the waveforms of i 2 and ic .

つぎに本実施例の動作説明を説明する。 Next, the operation of this embodiment will be explained.

前記溶接変圧器1の2次巻線の端子Aがプラス
端子Bがマイナスの場合、第1の単方向制御整流
素子2が導通し電流i1が溶接負荷へ流れようとす
る。その場合第1のリアクトル3には第1の単方
向制御整流素子2との接続側にマイナスの電圧が
誘起され、一方第2のリアクトル3には第2の単
方向制御整流素子2′との接続側にプラスの電圧
が誘起される。したがつて前記コンデンサ7には
第1のリアクトル3との接続側がマイナスにまた
第2のリアクトル3′との接続側がプラスに充電
される。つぎに端子Bがプラス、端子Aがマイナ
スに反転すると電流i1は減少し続けるため第1の
リアクトル3には第1の単方向制御整流素子2と
の接続側にプラスの電圧が誘起される。一方第2
のリアクトル3′には第2の単方向制御整流素子
2′との接続側にマイナスの電圧を誘起する。し
たがつてこのとき前記コンデンサ7には第2のリ
アクトル3′との接続側がマイナスにまた第1の
リアクトル3との接続側がプラスに充電される。
このときの充電電圧は第1と第2のリアクトル
3,3′の誘起電圧の和となる。つぎに第2の単
方向制御整流子2′がONするとそのときの出力
に誘起されるキツク電圧は式より次のようにな
る。
When the terminal A of the secondary winding of the welding transformer 1 is positive and the terminal B is negative, the first unidirectional control rectifying element 2 is turned on and the current i 1 attempts to flow to the welding load. In that case, a negative voltage is induced in the first reactor 3 on the side connected to the first unidirectionally controlled rectifying element 2, and on the other hand, a negative voltage is induced in the second reactor 3 on the side connected to the second unidirectionally controlled rectifying element 2'. A positive voltage is induced on the connection side. Therefore, the capacitor 7 is charged negatively on the side connected to the first reactor 3 and positively charged on the side connected to the second reactor 3'. Next, when terminal B is reversed to positive and terminal A is reversed to negative, the current i1 continues to decrease, so a positive voltage is induced in the first reactor 3 on the side connected to the first unidirectional control rectifier 2. . On the other hand, the second
A negative voltage is induced in the reactor 3' on the side connected to the second unidirectional control rectifying element 2'. Therefore, at this time, the capacitor 7 is charged negatively on the side connected to the second reactor 3' and positively charged on the side connected to the first reactor 3.
The charging voltage at this time is the sum of the induced voltages of the first and second reactors 3 and 3'. Next, when the second unidirectional control commutator 2' is turned on, the kick voltage induced in the output at that time is calculated from the following equation.

V=Ld(i2+ic)/dt …… (ただしLはインダクタンン、i1は前記コンデン
サ7の放電電流である。) 前記式より出力に誘起されたキツク電圧はL
dic/dtだけ式より高いことがわかる。以上逆極性 から正極性への移行について動作説明をしたが正
極性から逆極性への移行時についても同様なこと
がいえる。
V=Ld( i2 + ic )/dt... (L is the inductance, and i1 is the discharge current of the capacitor 7.) From the above formula, the kick voltage induced in the output is L.
It can be seen that di c /dt is higher than the formula. Although the operation has been explained above regarding the transition from reverse polarity to positive polarity, the same can be said about the transition from positive polarity to reverse polarity.

このときの電流i1,i2,icの波形を第4図a,
bに示し、第3図a,bに従来と本実施例による
出力波形を示すが、本実施例によるキツク電圧は
電流icに大きく依存していることがわかる。した
がつて本実施例によればコンデンサ容量を変える
ことにより手軽にアークが安定するレベルに前記
キツク電圧を設定できる。本実施例と従来とで2
0Aにおけるアーク切れ回数を比較すると従来は
8回/秒に対し、本実施例では0回/秒と飛躍的
にアークの安定性が向上した。
The waveforms of currents i 1 , i 2 , and i c at this time are shown in Figure 4a,
3b, and FIGS. 3a and 3b show output waveforms according to the conventional method and the present embodiment. It can be seen that the kick voltage according to the present embodiment is largely dependent on the current ic . Therefore, according to this embodiment, the kick voltage can be easily set to a level at which the arc is stabilized by changing the capacitance of the capacitor. The difference between this embodiment and the conventional method is 2.
Comparing the number of arc breaks at 0 A, the stability of the arc was dramatically improved to 0 times/second in this example, compared to 8 times/second in the conventional case.

発明の効果 本発明によれば、交流アーク溶接機および交流
TIG溶接機を小形軽量でしかもアークの安定性が
向上する効果を奏するとともに、前記キツク電圧
を大きくすることにより高周波の助成がほとんど
なくてもアークが安定するため低雑音型のアーク
溶接機を得ることができる優れた効果を奏するも
のである。
Effects of the Invention According to the present invention, an AC arc welding machine and an AC
A TIG welding machine is made smaller and lighter, and has the effect of improving arc stability, and by increasing the kick voltage, the arc is stabilized even with almost no assistance from high frequency, thereby providing a low-noise arc welding machine. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の交流アーク溶接機回路図、第2
図は本発明の一実施例によるアーク溶接機の回路
図、第3図a,bは従来例と本実施例の出力波形
図、第4図a,bは第2図の各部電流の波形図で
ある。 1……溶接変圧器、2……第1の単方向制御整
流素子、2′……第2の単方向制御整流素子、3
……第1のリアクトル、3′……第2のリアクト
ル、4……電極、5……アーク、6……母材、7
……コンデンサ。
Figure 1 is a circuit diagram of a conventional AC arc welding machine, Figure 2 is a circuit diagram of a conventional AC arc welding machine.
The figure is a circuit diagram of an arc welding machine according to an embodiment of the present invention, Figures 3a and b are output waveform diagrams of the conventional example and this embodiment, and Figures 4a and b are waveform diagrams of currents at various parts of Figure 2. It is. DESCRIPTION OF SYMBOLS 1... Welding transformer, 2... First unidirectional control rectifier, 2'... Second unidirectional control rectifier, 3
...First reactor, 3'... Second reactor, 4... Electrode, 5... Arc, 6... Base material, 7
...Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 一次巻線を電源に接続した溶接変圧器の二次
巻線の一方には互いに通電方向の異なる第1およ
び第2の単方向制御整流素子の極性の異なる一方
および他方の端子をそれぞれ接続し、前記各単方
向制御整流素子の他方および一方の端子にはそれ
ぞれ第1および第2のリアクトルの一端および他
端を直列に接続し、前記第1および第2のリアク
トルの他端および一端を溶接負荷の一端に接続
し、前記第1のリアクトルと第1の単方向制御整
流素子の接続点と前記第2のリアクトルと第2の
単方向制御整流素子の接続点との間にコンデンサ
を接続し、かつ前記第1および第2のリアクトル
を同一鉄芯上に巻き各インダクタンスを略同一に
形成しかつ前記第1および第2の単方向制御整流
素子の交互の通電時に前記鉄芯上に発生する磁束
を常に同一方向とし、前記溶接変圧器の二次巻線
の他方には前記溶接負荷の他端に接続したアーク
溶接機。
1. One and the other terminals of different polarities of the first and second unidirectional control rectifying elements having different energization directions are connected to one side of the secondary winding of the welding transformer whose primary winding is connected to the power source. , one end and the other end of the first and second reactors are connected in series to the other and one terminal of each of the unidirectional control rectifying elements, respectively, and the other end and the one end of the first and second reactors are welded. A capacitor is connected to one end of the load, and is connected between a connection point between the first reactor and the first unidirectional control rectifier and a connection point between the second reactor and the second unidirectional control rectification element. , and the first and second reactors are wound on the same iron core to form substantially the same inductance, and the inductance is generated on the iron core when the first and second unidirectional control rectifying elements are alternately energized. An arc welding machine in which the magnetic flux is always in the same direction, and the other end of the secondary winding of the welding transformer is connected to the other end of the welding load.
JP14773883A 1983-08-11 1983-08-11 Arc welding machine Granted JPS6040675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14773883A JPS6040675A (en) 1983-08-11 1983-08-11 Arc welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14773883A JPS6040675A (en) 1983-08-11 1983-08-11 Arc welding machine

Publications (2)

Publication Number Publication Date
JPS6040675A JPS6040675A (en) 1985-03-04
JPH0330469B2 true JPH0330469B2 (en) 1991-04-30

Family

ID=15437023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14773883A Granted JPS6040675A (en) 1983-08-11 1983-08-11 Arc welding machine

Country Status (1)

Country Link
JP (1) JPS6040675A (en)

Also Published As

Publication number Publication date
JPS6040675A (en) 1985-03-04

Similar Documents

Publication Publication Date Title
JPS6036710B2 (en) power supply
US4737974A (en) Inverter type switching power supply with transformer and short circuit arrangement therefor
JPH0330469B2 (en)
JPH0363460B2 (en)
JP4234691B2 (en) Switching power supply
JP3100526B2 (en) Switching power supply
JP3238266B2 (en) Switching power supply
JP2867069B2 (en) Switching power supply
JPH0919139A (en) Switching power supply
JPS6135348Y2 (en)
JP3102985B2 (en) Switching power supply
JPS6344223Y2 (en)
JPS6227030Y2 (en)
JPS61249672A (en) Power unit for dc arc welding
JPH0635670Y2 (en) Rectifier circuit including saturable reactor
JPS6128432B2 (en)
JP2652251B2 (en) AC arc welding power supply
JPS63286275A (en) Power unit for ac arc welding machine
JPH0246236Y2 (en)
JPH0635661Y2 (en) Switching regulator
JPS6124913B2 (en)
JPH0219849Y2 (en)
KR820001261Y1 (en) Power supply for arc welding
JPH0459189A (en) Capacitor type spot welding machine
JPS61249673A (en) Power unit for dc arc welding