JPH0329817A - Wireless manual encoder - Google Patents

Wireless manual encoder

Info

Publication number
JPH0329817A
JPH0329817A JP16404989A JP16404989A JPH0329817A JP H0329817 A JPH0329817 A JP H0329817A JP 16404989 A JP16404989 A JP 16404989A JP 16404989 A JP16404989 A JP 16404989A JP H0329817 A JPH0329817 A JP H0329817A
Authority
JP
Japan
Prior art keywords
wave
phase
waves
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16404989A
Other languages
Japanese (ja)
Inventor
Kunio Kanda
神田 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP16404989A priority Critical patent/JPH0329817A/en
Publication of JPH0329817A publication Critical patent/JPH0329817A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a construction without using a cable, by preparing pulse trains different in a time of continuation and by modulating a carrier wave of single frequency by these pulse trains. CONSTITUTION:Based on waves of phase A and phase B outputted by a manual encoder 1, a waveform detecting circuit 2 identifies whether the direction of rotation thereof is forward or reverse, and based on the result of discrimination, outputs two kinds of rectangular waves, an alpha wave and a beta wave, which have two kinds of pulse widths set beforehand. A modulation circuit 3 modulates a normal rotation signal wave (the alpha wave) and a reverse rotation signal wave (the beta wave) outputted by the circuit 2. Subsequently, these signals are amplified 5 and sent to an antenna 5 for transmission. Since the alpha wave and the beta wave are not transmitted simultaneously, a line connecting the circuit 2 with the circuit 3 is constructed of one circuit without any hindrance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は数値制御装置への制御信号を発信する手動エン
コーダの改良に関する。特に、工作機械等における加工
時に工具及び/またはテーブル・サドル等が移動する方
向・移動する距離等を代表するパルス指令をワイヤレス
方式をもって数値制御装置に印加するようにする手動エ
ンコーダの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a manual encoder that transmits a control signal to a numerical control device. In particular, the present invention relates to improvements in manual encoders that wirelessly apply pulse commands representative of the direction and distance in which tools and/or tables, saddles, etc. are to be moved during machining in machine tools and the like.

〔従来の技術〕[Conventional technology]

本明細書において、エンコーダとは、回転体の外周上に
特定された点と上記の回転体を回転可能に支持する円筒
状固定体の内周上に特定された点との角度差をもって表
される上記回転体の角位置を検出する角位置検出手段を
云い、角位置検出原理としては、光学系を使用する例・
磁気系を使用する例等が実用されており、検出信号とし
てはパルス性信号を使用することが多く、また、回転体
の駆動手段としては、サーポモータ等をもって駆動し、
このサーポモークの回転角を検出する場合や、手動をも
って駆動し、手動をもって回転した回転角を検出する場
合等がある。本発明は、手動をもって駆動されるエンコ
ーダの改良である。
In this specification, an encoder is expressed as an angular difference between a point specified on the outer periphery of a rotating body and a point specified on the inner periphery of a cylindrical fixed body that rotatably supports the rotating body. The angular position detection means detects the angular position of the above-mentioned rotating body.The angular position detection principle includes an example using an optical system.
Examples of using a magnetic system are in practice, and pulse signals are often used as the detection signal, and as a means of driving the rotating body, a servo motor or the like is used to drive it.
There are cases in which the rotation angle of this serpo moke is detected, and cases in which the rotation angle of the servo motor is detected by manually driving it and manually rotating it. The present invention is an improvement to manually driven encoders.

従来技術に係る手動エンコーダの1例を、図を参照して
説明する。
An example of a manual encoder according to the prior art will be explained with reference to the drawings.

第2図参照 図は手動エンコーダの斜視図である。図において、6は
、保護外筒9と固着されている目盛板であり、発生パル
ス数を表示する機能を有する。7はハンドルであり、回
転部材8を回転する。回転部材8には、第3a図・第3
b図に示すように、その全円周にわたってスリットが断
続的に設けられている回転円板10が連結されている。
Reference figure 2 is a perspective view of the manual encoder. In the figure, 6 is a scale plate fixed to the protective outer cylinder 9, and has a function of displaying the number of generated pulses. Reference numeral 7 denotes a handle, which rotates the rotating member 8. The rotating member 8 is shown in Fig. 3a.
As shown in Figure b, a rotating disk 10 having slits intermittently provided over its entire circumference is connected.

また、第3b図に示すように、この回転円板10のスリ
ットを挟んで、1個の発光源12と4個の受光素子13
とが固定的に配置される(保護外筒9によって支持され
る。)。そして、上記の4個の受光素子に入力された光
信号は比較器19・20(第3b図参照)に入力され、
こ覧で、A相・B相の互いに90゜Cの位相差を持つ2
組のパルス列が出力される。
Further, as shown in FIG. 3b, one light emitting source 12 and four light receiving elements 13 are arranged across the slit of the rotating disk 10.
are fixedly arranged (supported by the protective outer cylinder 9). The optical signals input to the above four light receiving elements are input to comparators 19 and 20 (see Figure 3b),
As you can see, the A phase and B phase have a phase difference of 90°C from each other.
A set of pulse trains is output.

つぎに、パルスの発生機構について、第3a図・第3b
図・第3c図を参照して説明する。
Next, regarding the pulse generation mechanism, see Figures 3a and 3b.
This will be explained with reference to FIG. 3c.

第3a図・第3b図・第3C図参照 第3a図は上記の全円周にわたってスリット1lが設け
られている回転円板10を示す図である。この回転円板
10を挟んで、一方の側に発光源12が、他方の側に受
光素子13が、それぞれ固定的に設けられている(第3
b図参照)。スリット11の幅は、隣接する2個の受光
素子に対接するように設定されている。受光素子l3の
数は上記のとおり4個であり、第3C図に示すように配
列されている。受光素子八の出力と受光素子A′の出力
とが第1の比較器19に入力され、受光素子Aの出力が
受光素子A′の出力より大きいときに比較器19の出力
が1となり、逆に小さいときに比較器19の出力がO(
零)となるように設定されている。また、受光素子Bの
出力と受光素子B′の出力とが第2の比較器20に人力
され、受光素子Bの出力が受光素子B′の出力より大き
いときに比較器20の出力が1となり、逆に小さいとき
に比較器20の出力がO(零)となるように設定されて
いる。
See Figures 3a, 3b, and 3C. Figure 3a shows the rotary disk 10 in which the slits 1l are provided over the entire circumference. A light emitting source 12 is fixedly provided on one side of the rotating disk 10, and a light receiving element 13 is fixedly provided on the other side (a third
(see figure b). The width of the slit 11 is set so that it faces two adjacent light receiving elements. The number of light receiving elements l3 is four as described above, and they are arranged as shown in FIG. 3C. The output of light-receiving element 8 and the output of light-receiving element A' are input to the first comparator 19, and when the output of light-receiving element A is larger than the output of light-receiving element A', the output of comparator 19 becomes 1, and vice versa. When the output of the comparator 19 is O(
It is set to be zero). Further, the output of the light receiving element B and the output of the light receiving element B' are input to the second comparator 20, and when the output of the light receiving element B is larger than the output of the light receiving element B', the output of the comparator 20 becomes 1. , conversely, the output of the comparator 20 is set to O (zero) when it is small.

こ覧で、第3c図に示すようなスリット11の位置にお
いては、第1の比較器19の出力と第2の比較器20の
出力とは、いづれもO(零)である。スリット11のこ
の位置から出発してハンドル7の操作によって、回転円
板10を右回転または左回転させスリッ1・11が受光
素子13に対して順次右または左へ移動した場合の第1
の比較器19の出力と第2の比較器20の出力とを、以
下、図を参照して説明する。
As can be seen, at the position of the slit 11 as shown in FIG. 3c, the output of the first comparator 19 and the output of the second comparator 20 are both O (zero). Starting from this position of the slit 11, the rotating disk 10 is rotated clockwise or counterclockwise by operating the handle 7, and the slits 1 and 11 are sequentially moved to the right or left with respect to the light receiving element 13.
The output of the comparator 19 and the output of the second comparator 20 will be explained below with reference to the drawings.

第4a図・第4b図参照 第4b図は回転円板10を右回転させた場合のスリッl
−11と4個の受光素子l3の一部との相対的位置関係
を時系列的に示したものである。また、第4a図は第1
の比較器19の出力と第2の比較器20の出力とを示す
図である。
See Figures 4a and 4b. Figure 4b shows the slit when the rotating disk 10 is rotated clockwise.
-11 and a portion of the four light-receiving elements 13 are shown in chronological order. Also, Figure 4a shows the first
3 is a diagram showing the output of the comparator 19 and the output of the second comparator 20. FIG.

1個のスリット11が受光素子4個分を移動したときに
、第1の比較器19の出力と第2の比較器20の出力と
は、いづれも1パルスを発生する。この移動距離に対応
する回転角度当りに1目盛が相当するように、目盛板1
に目盛が表示されている。
When one slit 11 moves by four light receiving elements, the output of the first comparator 19 and the output of the second comparator 20 both generate one pulse. The scale plate 1
A scale is displayed.

第1の比較器19の出力をA相とし、第2の比較器20
の出力をB相と定めると、回転円板10を右回転させた
場合、A相波がB相波より90゜遅れること覧なり、こ
の位相関係を負方向への移動指令と定める。
The output of the first comparator 19 is the A phase, and the second comparator 20
When the output of is defined as the B phase, it can be seen that when the rotary disk 10 is rotated clockwise, the A phase wave lags the B phase wave by 90 degrees, and this phase relationship is determined as a movement command in the negative direction.

第5a図・第5b図参照 第5b図は回転円板10を左回転させた場合のスリット
11と4個の受光素子13の一部との相対的位置関係を
時系列的に示したものである。また、第5a図はA相と
B相との波形を示す図である。この場合はA相波がB相
波より90゜進むこと\なり、この位相関係を正方向へ
の移動指令と定める。
See Figures 5a and 5b. Figure 5b shows in chronological order the relative positional relationship between the slit 11 and some of the four light receiving elements 13 when the rotating disk 10 is rotated counterclockwise. be. Moreover, FIG. 5a is a diagram showing waveforms of A phase and B phase. In this case, the A-phase wave leads the B-phase wave by 90 degrees, and this phase relationship is determined as a movement command in the positive direction.

ところで、従来技術においては、手動エンコーダのハン
ドル7を操作して、回転円板1oを右または左に回転さ
せ上記のようなA相波・B相波の90″′位相の異なっ
たパルス列を2回線の伝送路を使用して数値制御装置等
に送出していた。数値制御装置等はA相波・B相波のパ
ルスの位相関係から、正方向への移動指令か、負方向へ
の移動指令かを識別すると\もに、1パルス入力される
ごとに、1パルスに対応して定められた角度の変化を認
識する。
By the way, in the prior art, the rotating disk 1o is rotated to the right or left by operating the handle 7 of the manual encoder to generate two pulse trains having different 90'' phases of the A-phase wave and the B-phase wave as described above. It was sent to a numerical control device, etc. using a line transmission path.The numerical control device, etc., determined whether it was a movement command in the positive direction or movement in the negative direction, based on the phase relationship of the pulses of the A-phase wave and B-phase wave. Once a command is identified, each time a pulse is input, a change in the angle determined corresponding to the pulse is recognized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記したとおり、従来技術に係る手動エンコーダにおい
ては、並列回路をもって指令装置である手動エンコーダ
と被制御器である数値制御装置とが連結されるため、複
数回線のケーブルを必要とし、また、このケーブルは数
値制御装置の制御指令者の位置の移動にともなって移動
しなければならなかった。このため、ケーブルの引き回
し作業が必須となり、作業効率を著しく低下せしめてい
た。
As mentioned above, in the manual encoder according to the conventional technology, the manual encoder, which is a command device, and the numerical control device, which is a controlled device, are connected through a parallel circuit, so a cable with multiple lines is required, and this cable had to be moved as the position of the controller of the numerical control device was changed. For this reason, cable routing work is required, which significantly reduces work efficiency.

本発明の目的は、この欠点を解消することにあり、ケー
ブルを使用せず、構威の簡略化されたワイヤレス手動エ
ンコーダを提供することにある。
The purpose of the present invention is to overcome this drawback and provide a wireless manual encoder that does not use cables and has a simplified structure.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、回転方向に対応して、いづれかがT電気
角進相となる二つの独立した矩形交番電圧であるA相電
圧とB相電圧とを発生する手動エンコーダ(1)と、 前記のA相電圧とB相電圧とのいづれが進相かを判断し
て前記手動エンコーダの回転方向が正転か逆転を判定し
、該正・逆転に対応して継続時間を異にする二つの独立
した矩形波α波とβ波とを発生する波形検出回路(2)
と、 前記の二つの独立した矩形波α波とβ波とをもって単一
の搬送波を変調する変調回路(3)と、この変調回路(
3)をもって変調された出力信号を無線送信する送信手
段(5)と、 この無線送信される前記の出力信号を受信する受信手段
(l4)と、 この受信された出力信号を復調する復調回路(16)と
、 前記の復調された前記の二つの独立した矩形波α波とβ
波とにもとづいて、前記の手動エンコーダの回転方向が
正転か逆転かを代表する信号を発生する正・逆転信号発
生手段(17)とを有するワイヤレス手動エンコーダに
よって達威される。
The above purpose is to provide a manual encoder (1) that generates two independent rectangular alternating voltages, A-phase voltage and B-phase voltage, one of which is T electrical angle advanced in accordance with the rotation direction; It is determined whether the rotation direction of the manual encoder is forward or reverse by determining which of the A-phase voltage and the B-phase voltage is leading, and two independent systems having different durations corresponding to the forward or reverse rotation are determined. Waveform detection circuit (2) that generates rectangular alpha waves and beta waves
and a modulation circuit (3) that modulates a single carrier wave with the two independent rectangular waves α and β waves, and this modulation circuit (3).
3), a transmitting means (5) for wirelessly transmitting the output signal modulated by the output signal, a receiving means (14) for receiving the wirelessly transmitted output signal, and a demodulation circuit (14) for demodulating the received output signal. 16) and the demodulated two independent rectangular waves α and β.
This is achieved by a wireless manual encoder having a forward/reverse signal generating means (17) for generating a signal representing whether the rotation direction of the manual encoder is forward or reverse based on the wave.

〔作用〕[Effect]

本発明に係るワイヤレス手動エンコーダの要旨はつぎの
2点である。
The wireless manual encoder according to the present invention has the following two points.

イ.制御指令の伝達手段として従来技術に係るケーブル
方式に換えて、ワイヤレス方式を使用する。
stomach. As a means of transmitting control commands, a wireless method is used instead of the cable method according to the prior art.

ロ.従来技術に係る上記のA相波・B相波の並列信号方
式に換えて、正方向移動指令または負方向移動指令を単
一信号をもって実行する。
B. Instead of the above-mentioned parallel signal system of A-phase waves and B-phase waves according to the prior art, a positive direction movement command or a negative direction movement command is executed using a single signal.

従来技術における上記の課題の項で述べた欠点を解消す
る目的で、ケーブルを使用しない制御指令の伝達手段と
してワイヤレス方式をまず考えた。
In order to solve the drawbacks of the prior art described in the above section, we first considered a wireless system as a means of transmitting control commands without using cables.

つぎに、ワイヤレス方式に関して従来技術のA相波・B
相波の並列信号方式の適否を検討した。その結果、従来
と同様のA相波・B相波の2種類のパルスを無線伝送す
るとすれば、2種の搬送波を必要とすることが一般であ
り、変調回路は複雑になり、現実的にはあまり意義を有
しない。本発明に係るワイヤレス手動エンコーダにおい
ては、正転・逆転の識別を矩形波の継続時間(パルス幅
)をもって代表すること\し、A相波・B相波にもとづ
いてワイヤレス手動エンコーダの回転方向が判別された
とき、それぞれに応答して、継続時間の異なるパルス列
を作威し、このパルス列をもって単一周波数の搬送波を
変調すること\したものである。そして、この正・逆転
方向を代表する矩形波をもって変調された搬送波を無線
受信して復調すれば、上記の正・逆転方向を代表する矩
形波が得られる。
Next, regarding the wireless system, we will discuss the A phase wave and B phase wave of the conventional technology.
The suitability of the phase wave parallel signal system was investigated. As a result, if two types of pulses, A-phase wave and B-phase wave, are to be wirelessly transmitted as in the past, two types of carrier waves are generally required, and the modulation circuit becomes complex, making it impractical. doesn't have much meaning. In the wireless manual encoder according to the present invention, the discrimination between forward rotation and reverse rotation is represented by the duration (pulse width) of a rectangular wave, and the rotation direction of the wireless manual encoder is determined based on the A-phase wave and B-phase wave. When this is determined, a pulse train of different duration is generated in response to each, and a single frequency carrier wave is modulated with this pulse train. Then, by wirelessly receiving and demodulating a carrier wave modulated with a rectangular wave representing the forward/reverse direction, a rectangular wave representing the above-mentioned forward/reverse direction can be obtained.

〔実施例〕〔Example〕

以下、図面を参照しつ一、本発明の1実施例に係るワイ
ヤレス手動エンコーダについて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A wireless manual encoder according to an embodiment of the present invention will be described below with reference to the drawings.

第1a図参照 図は本発明の1実施例に係るワイヤレス手動エンコーダ
の構威を示すブロック図である。図において、■は従来
技術の項で述べたものと同一の手動エンコーダであり、
2は手動エンコーダ1の出力するA相波・B相波にもと
づいて回転方向の正負を判別し、判別結果にもとづいて
、2種の予め定められたパルス幅(継続時間例えばIm
sと2ms)を有する2種の矩形波(正転に対応するパ
ルス幅(継続時間)の矩形波と逆転に対応するパルス幅
(継続時間)の矩形波)α波・β波を出力する波形検出
回路であり、3は波形検出回路2の出力ずる正転信号波
(α波)と逆転信号波(β波)とを変調(AM変調また
はFM変調)する変調回路であり、4は電力増幅器であ
り、5は送信用アンテナである。
Referring to FIG. 1a, there is shown a block diagram illustrating the structure of a wireless manual encoder according to an embodiment of the present invention. In the figure, ■ is the same manual encoder as described in the prior art section;
2 determines whether the rotation direction is positive or negative based on the A-phase wave and B-phase wave output from the manual encoder 1. Based on the determination result, two types of predetermined pulse widths (duration time, e.g. Im
s and 2ms) (a rectangular wave with a pulse width (duration) corresponding to forward rotation and a rectangular wave with a pulse width (duration) corresponding to reverse rotation) waveform that outputs α waves and β waves. 3 is a detection circuit; 3 is a modulation circuit that modulates (AM modulation or FM modulation) the output of the waveform detection circuit 2 with a forward rotation signal wave (α wave) and a reverse rotation signal wave (β wave); 4 is a power amplifier; and 5 is a transmitting antenna.

なお、正転信号波(α波)と逆転信号波(β波)11 とが同時に発せられることはないから、波形検出回路2
と変調回路3とを接続する線路は1回線でさしつかえな
い。
Note that since the forward rotation signal wave (α wave) and the reverse rotation signal wave (β wave) 11 are not emitted at the same time, the waveform detection circuit 2
A single line is sufficient for connecting the modulation circuit 3 and the modulation circuit 3.

手動エンコーダ1の操作とそれにもとづく出力波形につ
いては、従来技術の項で纏々説明したので、ここでは簡
単に述べる。
The operation of the manual encoder 1 and the output waveform based thereon have been explained in detail in the prior art section, so they will be briefly described here.

第3a図・第3b図・第3C図再参照 手動エンコーダ1に付属しているハンドル7を操作して
、回転円板10を右または左に回転させる。
Refer again to FIGS. 3a, 3b, and 3C. By operating the handle 7 attached to the manual encoder 1, the rotary disk 10 is rotated to the right or left.

この回転円板10の一方の側は1個の発光源12が設け
られており、他方の側には4個の受光素子13が設けら
れている。この4個の受光素子13のうちの隣接する2
個が、回転円板10の全円周にわたって設けられている
スリット11の幅に対接している。
One light emitting source 12 is provided on one side of the rotating disk 10, and four light receiving elements 13 are provided on the other side. Adjacent two of these four light receiving elements 13
The width of the slit 11 is in contact with the width of the slit 11 provided over the entire circumference of the rotating disk 10.

4個の受光素子13は第3C図の配列になっており、受
光素子Aと受光素子A′とが第1の比較器19に入力さ
れ、受光素子Bと受光素子B′とが第2の比較器20に
人力される。受光素子Aの出力が受光素子A′の出力よ
り大きいときに第1の比較器19の出力が1となり、逆
に小さいときに比較器19の12 出力が0(零)となるように設定されている。また、受
光素子Bの出力が受光素子B′の出力より大きいときに
第2の比較器20の出力が1となり、逆に小さいときに
比較器20の出力が0(零)となるように設定されてい
る。
The four light-receiving elements 13 are arranged in the arrangement shown in FIG. The comparator 20 is manually operated. The output of the first comparator 19 is set to 1 when the output of the light-receiving element A is larger than the output of the light-receiving element A', and conversely, the output of the first comparator 19 is set to 0 (zero) when the output is smaller than the output of the light-receiving element A'. ing. Further, the output of the second comparator 20 is set to 1 when the output of the light receiving element B is larger than the output of the light receiving element B', and conversely, the output of the comparator 20 is set to 0 (zero) when the output is smaller than the output of the light receiving element B'. has been done.

つぎに、回転円板10を右回転した場合について、図を
参照して以下に説明する。
Next, a case where the rotating disk 10 is rotated clockwise will be described below with reference to the drawings.

第4b図参照 図は回転円板10の右回転に伴って回転円板10上に設
けられたスリッ口1の位置とこのスリット11に対接す
る2個の受光素子13との関係の変化を、時系列的に状
態(1)〜状態(IV)をもって示したものである。[
1)〜〔■〕のそれぞれにおいて、スリット11に対接
した2個の受光素子13のみが受光して出力し、他の受
光素子13は受光せず出力は0(零)である。
The diagram shown in FIG. 4b shows the change in the relationship between the position of the slit opening 1 provided on the rotating disk 10 and the two light-receiving elements 13 facing the slit 11 as the rotating disk 10 rotates clockwise. It shows states (1) to (IV) in chronological order. [
In each of 1) to [■], only the two light receiving elements 13 facing the slit 11 receive and output light, and the other light receiving elements 13 do not receive light and output is 0 (zero).

第4a図参照 図は上記の第4b図に示す状態(1)〜状態(TV)に
対応して第1の比較器19の出力(A相)と第2の比較
器20の出力(B相)とを示したちのである。回転円板
10が回転して受光素子の4個分を移動したとき、図に
示すように、A相・B相とも1個の矩形波を発生する。
The diagram shown in FIG. 4a shows the output of the first comparator 19 (A phase) and the output of the second comparator 20 (B phase) corresponding to states (1) to (TV) shown in FIG. ). When the rotating disk 10 rotates and moves by four light receiving elements, one rectangular wave is generated in both the A phase and the B phase, as shown in the figure.

図に示すように、A相波がB相波より90゜遅れる。こ
の位相関係を負方向への移動指令と定める。
As shown in the figure, the A-phase wave lags the B-phase wave by 90°. This phase relationship is defined as a movement command in the negative direction.

つぎに、回転円板10を左回転した場合について、図を
参照して以下に説明する。
Next, a case where the rotary disk 10 is rotated to the left will be described below with reference to the drawings.

第5b図参照 図はスリット11と4個の受光素子13の一部との相対
的位置関係を示したもので、上記の第4b図に対応する
ものである。
5b shows the relative positional relationship between the slit 11 and some of the four light receiving elements 13, and corresponds to the above-mentioned FIG. 4b.

第5a図参照 図は上記の第5b図に示した時系列的な状態変化(1)
〜(IV)における第lの比較器19の出力(A相)と
第2の比較器20の出力(B相)とを示したものであっ
て、上記の第4a図に対応ずるものである。回転円板1
0が回転して受光素子の4個分を移動したとき、図に示
すように、A相・B相とも1個の矩形波を発生する。回
転円板10を左回転させたときは、図に示すように、A
相波がB相波より90゜進む。この位相関係を正方向へ
の移動指令と定める。
The diagram shown in Figure 5a is the time-series state change (1) shown in Figure 5b above.
This figure shows the output of the l-th comparator 19 (A phase) and the output of the second comparator 20 (B phase) in ~(IV), and corresponds to FIG. 4a above. . Rotating disk 1
When 0 rotates and moves by four light receiving elements, one rectangular wave is generated for both A phase and B phase as shown in the figure. When the rotating disk 10 is rotated to the left, as shown in the figure, A
The phase wave leads the B phase wave by 90°. This phase relationship is defined as a movement command in the positive direction.

また、1個のスリット11が受光素子4個分を移動した
とき、この移動距離に対応する回転角度当りに1目盛が
相当するように、目盛板1に目盛が表示されている。
Further, scales are displayed on the scale plate 1 so that when one slit 11 moves by four light receiving elements, one scale corresponds to each rotation angle corresponding to the moving distance.

つぎに、変調回路3によって変調された波形の1例とし
て、AM変調の場合の波形を図を参照して説明する。
Next, as an example of a waveform modulated by the modulation circuit 3, a waveform in the case of AM modulation will be described with reference to the drawings.

第1b図参照 図は正転信号波(α波)の変調波を示す波形図であり、
1例として矩形波のパルス幅(継続時間)はlmsであ
る。
The diagram shown in FIG. 1b is a waveform diagram showing a modulated wave of a normal rotation signal wave (α wave),
As an example, the pulse width (duration time) of a rectangular wave is lms.

第1c図参照 図は逆転信号波(β波)の変調波を示す波形図であり、
1例として矩形波のパルス幅(継続時間)は2msであ
る。
The diagram shown in FIG. 1c is a waveform diagram showing the modulation wave of the inverted signal wave (β wave),
As an example, the pulse width (duration time) of the rectangular wave is 2 ms.

上記の変調波が電力増幅器4により増幅され、送信用ア
ンテナ5によって送信される。この送信された電波を受
信し、復調して所望の人力信号に15 変換する手段が、数値制御装置側に設けられていること
は当然であり、この受信側の構威を図を参照して説明す
る。
The above modulated wave is amplified by the power amplifier 4 and transmitted by the transmitting antenna 5. It goes without saying that the numerical control device is equipped with a means for receiving the transmitted radio waves, demodulating them, and converting them into desired human input signals. explain.

第1d図参照 図において、14は受信用アンテナであり、15は電力
増幅回路であり、l6は復調回路である。復調回路16
は、第1a図に示す変調回路3とお覧むね同一であるか
ら説明を省略する。また、17は正・逆転信号発生手段
であり、上記の復調回路16の出力波形にもとづいて回
転方向の正負を判別して、数値制御装置l8に、その判
別結果を出力する。
In the diagram shown in FIG. 1d, 14 is a receiving antenna, 15 is a power amplification circuit, and 16 is a demodulation circuit. Demodulation circuit 16
Since it is generally the same as the modulation circuit 3 shown in FIG. 1a, the explanation will be omitted. Reference numeral 17 denotes a positive/reverse signal generating means, which determines whether the rotation direction is positive or negative based on the output waveform of the demodulation circuit 16, and outputs the determination result to the numerical control device l8.

〔発明の効果〕〔Effect of the invention〕

以上説明せるとおり、本発明に係るワイヤレス手動エン
コーダはワイヤレス方式であるので、指令装置である手
動エンコーダと被制御装置である数値制御装置との間に
はケーブルが不要となるのでケーブルの引き回し作業が
不要となり、また、指令者の位置の移動に伴って発生し
たケーブル移動作業が不要となるので、作業効率を著し
く高め16 ることかできる。また、ワイヤレス方式を実行するに際
し、正負の移動方向指令を従来のA相波・B相波の並列
信号方式から単一信号方式に変更することにより、変調
回路・復調回路が簡略化できる。
As explained above, since the wireless manual encoder according to the present invention is of a wireless type, there is no need for a cable between the manual encoder, which is a command device, and the numerical control device, which is a controlled device. Moreover, since the cable movement work that occurs due to the movement of the dispatcher's position is no longer necessary, work efficiency can be significantly improved. Furthermore, when implementing the wireless system, the modulation circuit and demodulation circuit can be simplified by changing the positive and negative moving direction commands from the conventional parallel signal system of A-phase waves and B-phase waves to a single signal system.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図は、本発明の1実施例に係るワイヤレス手動エ
ンコーダの送信側装置の構威を示すブロック図である。 第1b図は、本発明の1実施例に係るワイヤレス手動エ
ンコーダのAM変調された正転信号波(α波)の波形図
である。 第IC図は、本発明の1実施例に係るワイヤレス手動エ
ンコーダのAM変調された逆転信号波(β波)の波形図
である。 第1d図は、本発明の1実施例に係るワイヤレス手動エ
ンコーダの受信側装置の構威を示すプロ・冫ク図である
。 第2図は、従来技術に係る手動エンコーダの斜視図であ
る。 第3a図は、従来技術に係る手動エンコーダの回転円板
の平面図である。 第3b図は、従来技術に係る手動エンコーダの概念的断
面図である。 第3c図は、従来技術に係る手動エンコーダの受光素子
の配列図である。 第4a図は、負の移動方向を指示するA相波・B相波の
パルス波形図である。 第4b図は、回転円板の右回転に伴うスリットの位置と
それに対応する受光素子の関係を示す図である。 第5a図は、正の移動方向を指示するA相波・B相波の
パルス波形図である。 第5b図は、回転円板の左回転に伴うスリットの位置と
それに対応する受光素子の関係を示す図である。 1・・・手動エンコーダ、 2・・・波形検出回路、 3・・・変調回路、 ・電力増幅回路、 ・送信用アンテナ、 ・目盛板、 ・ハンドル、 ・回転部材、 ・保護外筒、 ・回転円板、 ・スリット、 ・発光源、 ・受光素子、 ・受信用アンテナ、 ・電力増幅回路、 ・復調回路、 ・正・逆転信号発生手段、 ・数値制御装置、 ・第1の比較器、 ・第2の比較器。
FIG. 1a is a block diagram showing the configuration of a transmitting side device of a wireless manual encoder according to an embodiment of the present invention. FIG. 1b is a waveform diagram of an AM-modulated normal rotation signal wave (α wave) of a wireless manual encoder according to an embodiment of the present invention. FIG. IC is a waveform diagram of an AM-modulated inverted signal wave (β wave) of a wireless manual encoder according to an embodiment of the present invention. FIG. 1d is a schematic diagram showing the configuration of a receiving side device of a wireless manual encoder according to an embodiment of the present invention. FIG. 2 is a perspective view of a manual encoder according to the prior art. FIG. 3a is a plan view of a rotating disk of a manual encoder according to the prior art. FIG. 3b is a conceptual cross-sectional view of a manual encoder according to the prior art. FIG. 3c is an arrangement diagram of light receiving elements of a manual encoder according to the prior art. FIG. 4a is a pulse waveform diagram of A-phase waves and B-phase waves that indicate a negative movement direction. FIG. 4b is a diagram showing the relationship between the positions of the slits and the corresponding light receiving elements as the rotating disk rotates clockwise. FIG. 5a is a pulse waveform diagram of A-phase waves and B-phase waves that indicate a positive movement direction. FIG. 5b is a diagram showing the relationship between the positions of the slits and the corresponding light receiving elements as the rotary disk rotates to the left. 1...Manual encoder, 2...Waveform detection circuit, 3...Modulation circuit, ・Power amplification circuit, ・Transmission antenna, ・Scale plate, ・Handle, ・Rotating member, ・Protective outer cylinder, ・Rotation Disc, ・Slit, ・Light emitting source, ・Photodetector, ・Receiving antenna, ・Power amplifier circuit, ・Demodulation circuit, ・Forward/reverse signal generation means, ・Numerical controller, ・First comparator, ・First 2 comparator.

Claims (1)

【特許請求の範囲】 回転方向に対応して、いづれかがπ/2電気角進相とな
る二つの独立した矩形交番電圧であるA相電圧とB相電
圧とを発生する手動エンコーダ(1)と、 前記A相電圧とB相電圧とのいづれが進相かを判断して
前記手動エンコーダの回転方向が正転か逆転を判定し、
該正・逆転に対応して継続時間を異にする二つの独立し
た矩形波α波とβ波とを発生する波形検出回路(2)と
、 前記二つの独立した矩形波α波とβ波とをもって単一の
搬送波を変調する変調回路(3)と、該変調回路(3)
をもって変調された出力信号を無線送信する送信手段(
5)と、 該無線送信される前記出力信号を受信する受信手段(1
4)と、 該受信された出力信号を復調する復調回路(16)と、 前記復調された前記二つの独立した矩形波α波とβ波と
にもとづいて、前記手動エンコーダの回転方向が正転か
逆転かを代表する信号を発生する正・逆転信号発生手段
(17)とを有することを特徴とするワイヤレス手動エ
ンコーダ。
[Scope of Claims] A manual encoder (1) that generates two independent rectangular alternating voltages, A-phase voltage and B-phase voltage, one of which is phase-advanced in electrical angle by π/2 in accordance with the rotation direction; , determining whether the rotation direction of the manual encoder is forward or reverse by determining which of the A-phase voltage and B-phase voltage is leading;
a waveform detection circuit (2) that generates two independent rectangular waves α and β waves having different durations corresponding to the forward and reverse directions; and the two independent rectangular waves α and β waves. a modulation circuit (3) that modulates a single carrier wave with a
a transmitting means for wirelessly transmitting an output signal modulated with
5), and receiving means (1) for receiving the wirelessly transmitted output signal.
4), a demodulation circuit (16) that demodulates the received output signal, and a rotation direction of the manual encoder is set to normal rotation based on the demodulated two independent rectangular waves α and β waves. A wireless manual encoder characterized in that it has a forward/reverse signal generating means (17) for generating a signal representative of whether the encoder is forward or reverse.
JP16404989A 1989-06-28 1989-06-28 Wireless manual encoder Pending JPH0329817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16404989A JPH0329817A (en) 1989-06-28 1989-06-28 Wireless manual encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16404989A JPH0329817A (en) 1989-06-28 1989-06-28 Wireless manual encoder

Publications (1)

Publication Number Publication Date
JPH0329817A true JPH0329817A (en) 1991-02-07

Family

ID=15785826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16404989A Pending JPH0329817A (en) 1989-06-28 1989-06-28 Wireless manual encoder

Country Status (1)

Country Link
JP (1) JPH0329817A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164324B2 (en) 2008-07-18 2012-04-24 Aisin Seiki Kabushiki Kaisha Rotation sensor
US8624588B2 (en) 2008-07-31 2014-01-07 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation as a ferromagnetic object
US8754640B2 (en) 2012-06-18 2014-06-17 Allegro Microsystems, Llc Magnetic field sensors and related techniques that can provide self-test information in a formatted output signal
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10495485B2 (en) 2016-05-17 2019-12-03 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10495700B2 (en) 2016-01-29 2019-12-03 Allegro Microsystems, Llc Method and system for providing information about a target object in a formatted output signal
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10656170B2 (en) 2018-05-17 2020-05-19 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164324B2 (en) 2008-07-18 2012-04-24 Aisin Seiki Kabushiki Kaisha Rotation sensor
US8624588B2 (en) 2008-07-31 2014-01-07 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation as a ferromagnetic object
US8994369B2 (en) 2008-07-31 2015-03-31 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object
US9151771B2 (en) 2008-07-31 2015-10-06 Allegro Microsystems, Llc Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
US8754640B2 (en) 2012-06-18 2014-06-17 Allegro Microsystems, Llc Magnetic field sensors and related techniques that can provide self-test information in a formatted output signal
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10254103B2 (en) 2013-07-19 2019-04-09 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10753768B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10495700B2 (en) 2016-01-29 2019-12-03 Allegro Microsystems, Llc Method and system for providing information about a target object in a formatted output signal
US10495485B2 (en) 2016-05-17 2019-12-03 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10837800B2 (en) 2016-06-08 2020-11-17 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11320496B2 (en) 2017-05-26 2022-05-03 Allegro Microsystems, Llc Targets for coil actuated position sensors
US11073573B2 (en) 2017-05-26 2021-07-27 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10649042B2 (en) 2017-05-26 2020-05-12 Allegro Microsystems, Llc Packages for coil actuated position sensors
US11313700B2 (en) 2018-03-01 2022-04-26 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10656170B2 (en) 2018-05-17 2020-05-19 Allegro Microsystems, Llc Magnetic field sensors and output signal formats for a magnetic field sensor
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11686599B2 (en) 2018-08-06 2023-06-27 Allegro Microsystems, Llc Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor

Similar Documents

Publication Publication Date Title
JPH0329817A (en) Wireless manual encoder
US4228396A (en) Electronic tachometer and combined brushless motor commutation and tachometer system
US4780703A (en) Rotary encoder apparatus
US4748387A (en) DC brushless motor driving method and apparatus for accurately controlling starting position of rotor
JPH0216824A (en) Signal transmission system
US4855734A (en) Relative position indication system
EP0012619B1 (en) Machine tool drive motor control system
JPH06261003A (en) Data transmission equipment
JPH01182721A (en) Incremental type encoder
JPS63289417A (en) Pulse encoder
JPH06235646A (en) Rotary angle detector
JPH0421098A (en) Encoder signal detection circuit
JPH08166255A (en) Multirotary absolute encoder
SU1218419A1 (en) Device for applying equidistant marks on magnetic drum
EP0263685A2 (en) Extra magnetic field positioning apparatus
JPS61265520A (en) Apparatus for detecting position
JP2597771Y2 (en) Servo motor control circuit for radio control
JPS60164212A (en) Rotary encoder
JPH06147920A (en) Magnetic encoder
JPH02118803A (en) Numerical controller
JPS6321418Y2 (en)
JPS63262088A (en) Brushless motor
JPH0447841B2 (en)
JPH0439603B2 (en)
JPH04310821A (en) Encoder