JPH03297555A - Method for joining refractory metals - Google Patents

Method for joining refractory metals

Info

Publication number
JPH03297555A
JPH03297555A JP10401490A JP10401490A JPH03297555A JP H03297555 A JPH03297555 A JP H03297555A JP 10401490 A JP10401490 A JP 10401490A JP 10401490 A JP10401490 A JP 10401490A JP H03297555 A JPH03297555 A JP H03297555A
Authority
JP
Japan
Prior art keywords
temperature
joining
cobalt
melting point
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10401490A
Other languages
Japanese (ja)
Inventor
Koji Fujii
浩二 藤井
Hiroshi Yamamoto
弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP10401490A priority Critical patent/JPH03297555A/en
Publication of JPH03297555A publication Critical patent/JPH03297555A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To join the refractory metals at not so high temperature by heating cobalt interposed in joining parts of the refractory metals at the temperature above the eutectic temperature of both alloys in a nonoxidizing atmosphere. CONSTITUTION:In joining the refractory metals such as tungsten and molybdenum, the cobalt is interposed in the joining parts of the refractory metals and subjected to heat treatment at the temperature above the eutectic temperature of the refractory metal alloys in the nonoxidizing atmosphere or in a vacuum. Consequently, the refractory metals are joined comparatively easily without raising the temperature so high and besides, joining is carried out firmly without causing abnormality on a structure of the joining part and further, an effect without decrease of joining strength is obtained even in the temperature area higher than the joining temperature.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はタングステンあるいはモリブデン等の高融点金
属の接合方法に関するものであり、これら高融点金属は
、ターゲット、電極1反応容器あるいは炉材などの各種
耐熱部品として多用されている。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for joining high melting point metals such as tungsten or molybdenum. It is widely used as a variety of heat-resistant parts.

〈従来の技術〉 従来これら高融点金属を接合する方法としては、第1に
ろう付は法がある。例えば金、銀あるいはパラジウムの
合金をろう材として接合する方法がそれである。又第2
にモリブデンとしレニウムあるいはモリブデンとルテニ
ウムの合金を用いる同相接合法も知られ、又第3にはT
IGあるいは電子ビーム等の溶接法も知られている。
<Prior Art> As a conventional method for joining these high melting point metals, brazing is the first method. For example, there is a method of joining an alloy of gold, silver, or palladium using a brazing material. Also second
An in-phase bonding method using molybdenum and rhenium or an alloy of molybdenum and ruthenium is also known.
Welding methods such as IG or electron beam are also known.

〈発明が解決しようとする課題〉 上記従来技術の中で第1のろう付は法は、ろう材の融点
により材料の使用温度が制限され、通常1000’ C
以上の高温域では接合部の強度が低下して使用できない
という問題点があった。又第2の固相接合法は拡散処理
の為1800’ C以上の高温での熱処理が必要で実用
上困難な上、これら合金が高価であるという問題点があ
り、更に第3の溶接法に於いては接合部材を一度溶融す
る為溶接部の組織か粗大化して脆くなったり、溶接部に
金属又は酸化物の蒸気による空孔等の欠陥が発生し易い
等の問題点があり、又品物の形状によっては溶接法が適
用出来ない場合もあった。
<Problems to be Solved by the Invention> Among the above-mentioned conventional techniques, the first brazing method is one in which the use temperature of the material is limited by the melting point of the brazing material, and is usually 1000'C.
There was a problem that the strength of the joint decreased in the above high temperature range, making it unusable. In addition, the second solid phase welding method requires heat treatment at a high temperature of 1800'C or higher due to diffusion treatment, which is difficult in practice, and these alloys are expensive. Since the joining parts are melted once, there are problems such as the structure of the welded part becoming coarse and brittle, and defects such as pores easily occurring in the welded part due to metal or oxide vapor. Welding methods may not be applicable depending on the shape of the material.

本発明では上記従来法の有する欠点を解消し、比較的安
価で簡単に行え、しかも接合部周辺の組織にも異常をき
たさない新規な高融点金属の接合方法を提供することを
目的とするものである。
It is an object of the present invention to provide a new method for joining high-melting point metals that eliminates the drawbacks of the above-mentioned conventional methods, is relatively inexpensive and easy to perform, and does not cause abnormalities in the tissue around the joint. It is.

〈課題を解決する為の手段〉 上記本発明の目的は次の如き手段を採用することにより
達成出来る。即ち、高融点金属同志の接合部に、コバル
トを介在させ、非酸化性雰囲気下に於いて、コバルトと
前記高融点金属の合金の共晶温度以上の温度で加熱処理
する方法である。
<Means for Solving the Problems> The above object of the present invention can be achieved by employing the following means. That is, this is a method in which cobalt is interposed in the joint between high melting point metals and heat treatment is performed in a non-oxidizing atmosphere at a temperature equal to or higher than the eutectic temperature of the alloy of cobalt and the high melting point metal.

本発明に於いて用いられる高融点金属としてはタングス
テンやモリブデンが好例である。
Tungsten and molybdenum are good examples of high melting point metals used in the present invention.

なお上記コバルトには、被接合部材と同一の高融点金属
を添加混合して用いることもある。
Note that the above-mentioned cobalt may be mixed with the same high melting point metal as the member to be joined.

〈作用〉 コバルl〜とタングステンおよびモリブデンの合金は各
々1417’ C及び1335°Cに共晶点がある。
<Function> An alloy of cobal l~, tungsten, and molybdenum has eutectic points at 1417'C and 1335°C, respectively.

本発明方法では接合面にコバル1〜とタングステン又は
モリブデンの合金の液相を生じせしめ接合面全域に均一
な接合層を形成すると共に、コバルトとタングステン又
はモリブデンを相互に拡散させて高融点金属同志を強固
に接合するものである。本発明方法では接合時の熱処理
によりタングステン又はモリブデンが接合層に拡散して
合金化し、接合層の融点が上昇する為、ろうイ]け温度
以下で使用しなければならないろう付は法と異なり、接
合温度以上の高温域での使用が可能である。拡散をより
進行させて接合層が消失するまで熱処理を行うことは、
接合をより確実にするという点で効果があるが本発明の
方法はそれに限定されるものではない。
In the method of the present invention, a liquid phase of an alloy of cobal 1 to tungsten or molybdenum is generated on the bonding surface to form a uniform bonding layer over the entire bonding surface, and cobalt and tungsten or molybdenum are mutually diffused to form a high melting point metal. This is a strong bond between the two. In the method of the present invention, tungsten or molybdenum diffuses into the bonding layer and alloys it during the heat treatment during bonding, raising the melting point of the bonding layer. Can be used at high temperatures above the bonding temperature. Heat treatment is performed until the bonding layer disappears by further promoting diffusion.
Although this method is effective in making the bonding more reliable, the method of the present invention is not limited thereto.

コバルトならびにコバルトにタングステン又はモリブデ
ンを添加した混合物(以下高融点金属添加コバルトと称
す。)は粉末・箔あるいはメツキ等特に形状は問わない
。コバルトならびに高融点金属添加コバルトは接合面に
均一に塗布する必要はなく、接合面の一部に置いても良
く、あるいは接合面に接し接合部の周辺に塗布しても良
い。生じる液相は高融点金属との濡れ性が良く接合面に
自由に流入して広がる。接合時の加圧は特に必要ではな
いが加圧することは本発明の実施を妨げるものではない
Cobalt and a mixture of cobalt with tungsten or molybdenum added thereto (hereinafter referred to as high-melting point metal-added cobalt) can be in any particular form, such as powder, foil, or plating. Cobalt and high melting point metal additive cobalt do not need to be applied uniformly to the joint surface, but may be placed on a part of the joint surface, or may be applied in contact with the joint surface and around the joint portion. The resulting liquid phase has good wettability with the high melting point metal and freely flows and spreads over the bonding surface. Pressure is not particularly necessary during bonding, but pressurization does not impede implementation of the present invention.

本発明における熱処理温度はコバルトとタングステン又
はモリブデン合金の共晶点以上の温度であれば特に限定
はされないが、操作の容易性からモリブデンの場合には
1400〜1600’ Cで、又タングステンにおいて
は1500〜1700°Cで行うのが良い。
The heat treatment temperature in the present invention is not particularly limited as long as it is above the eutectic point of cobalt and tungsten or molybdenum alloy, but for ease of operation, it is 1400 to 1600'C for molybdenum, and 1500'C for tungsten. It is best to carry out at a temperature of ~1700°C.

コバルトを単独に用いる場合にも加熱によりコバルトが
合金化するため、例えばモリブデンの接合の場合、コバ
ルトの融点1493’ Cより低い1400°Cで接合
が可能であった。
Even when cobalt is used alone, cobalt is alloyed by heating, so in the case of joining molybdenum, for example, it was possible to join at 1400°C, which is lower than the melting point of cobalt, 1493'C.

このため本発明の方法においては、ルテニウムあるいは
レニウムを用いる場合のような特別な高温炉を用いる必
要はなく、通常の熱処理炉を用いることができる。
Therefore, in the method of the present invention, there is no need to use a special high-temperature furnace as in the case of using ruthenium or rhenium, and a normal heat treatment furnace can be used.

熱処理時間は接合面の大きさとコバルト等の塗布方法に
よっても異なるが、単なる接合であれば数分で可能であ
り、又例えばモリブデンの場合を例にあげると1600
°C230分間の熱処理で境界の接合層が消えモリブデ
ン同志の組織が完全につながるのが観察された。
The heat treatment time varies depending on the size of the bonding surface and the method of applying cobalt, etc., but simple bonding can be completed in a few minutes, and for example, in the case of molybdenum,
After heat treatment at 230°C for 230 minutes, it was observed that the boundary bonding layer disappeared and the molybdenum structures were completely connected.

熱処理を非酸化性雰囲気又は真空中で行うのは酸化を防
ぐためであり、雰囲気として水素あるいは不活性ガス等
を用いることができる。
The heat treatment is performed in a non-oxidizing atmosphere or in vacuum to prevent oxidation, and hydrogen, an inert gas, or the like can be used as the atmosphere.

コバルトにタングステンまたはモリブデンを添加するの
は、コバルト単独の場合タングステン又はモリブデンが
コバルト液相に拡散する結果接合面の側面が部分的に浸
食される場合があり、それを防ぐためである。高融点金
属の添加量は特に規定するものではないが、高融点金属
の添加量が多くなると合金形成時の融点が上昇するため
通常その添加量は50重量%以下とするのが良い。又高
融点金属添加コバルトは合金である必要はなく単なる混
合物で良い。
The reason why tungsten or molybdenum is added to cobalt is to prevent the side surfaces of the joint surface from being partially eroded as a result of tungsten or molybdenum diffusing into the cobalt liquid phase when cobalt is used alone. The amount of the high melting point metal added is not particularly limited, but as the amount of the high melting point metal added increases, the melting point during alloy formation increases, so the amount added is usually 50% by weight or less. Further, the cobalt added with a high melting point metal does not need to be an alloy, and may be a simple mixture.

本発明の方法においては、後述するように接合部の結晶
の異常成長は見られず組織は正常である。又本発明の方
法においては、溶接の場合のような接合部の空孔の発生
は見られない。
In the method of the present invention, as will be described later, no abnormal growth of crystals is observed at the junction, and the structure is normal. In addition, in the method of the present invention, the formation of voids at the joint, unlike in the case of welding, is not observed.

更に本発明の方法においては、タングステン同志あるい
はモリブデン同志の接合のみではなく、タングステンと
モリブデンのような異種金属の接合も可能である。
Furthermore, in the method of the present invention, it is possible not only to join tungsten to each other or molybdenum to each other, but also to join dissimilar metals such as tungsten and molybdenum.

〈実施例〉 以下本発明とその実施例および比較例を示し乍ら詳述す
る。
<Examples> Hereinafter, the present invention, examples thereof, and comparative examples will be described in detail.

一丸I九虹 1.5mm X 15II1m X ]、5mmの通常
のモリブデン材の接合面を研磨しメタノールで洗浄脱脂
してサンプルとした。→フ゛ンプル2個を接合面て重ね
合わせて保持し、サンプルの側面・接合面の周囲に市販
のコバルト粉末を塗布して水素雰囲気中1300〜16
00°Cの各温度で30分間加熱処理して接合を行なっ
た。熱処理温度1300°Cの物ではコバルトの溶融も
見られず接合できなかったが、1400°C以上で熱処
理しノご物はコバルトが接合面に均一に浸透して接合で
きた。
Ichimaru I Kuji 1.5 mm x 15 II 1 m x ], the joint surface of a 5 mm common molybdenum material was polished, washed with methanol, and degreased to prepare a sample. →Hold two samples stacked on top of each other with their joint surfaces, apply commercially available cobalt powder to the sides of the sample and around the joint surfaces, and apply 1,300 to 16
Bonding was performed by heat treatment at each temperature of 00°C for 30 minutes. In the case where the heat treatment temperature was 1300°C, there was no melting of cobalt and it was not possible to bond, but in the case where the material was heat treated at 1400°C or higher, the cobalt penetrated uniformly into the bonding surface and the bonding was possible.

各サンプルから接合面が中央にくるように抗折力試験片
を切り出し3点曲げによる抗折力試験を行った。熱処理
温度と接合面の破壊荷重の関係を第1図に示ず。第1図
から明らかなように1400’ C以上においては破壊
荷重はほぼ一定となった。
A transverse rupture strength test piece was cut out from each sample so that the bonded surface was in the center, and a transverse rupture strength test was conducted by three-point bending. The relationship between heat treatment temperature and fracture load on the joint surface is not shown in Figure 1. As is clear from FIG. 1, the fracture load was almost constant at temperatures above 1400'C.

次に接合部の断面の組織観察を行った。熱処理温度14
00’ Cならびに1500’ Cの物ではコバルト 
モリブデン合金からなる接合層が見られた。1600’
 C以上で接合した物では第2図に示すように接合層が
消えモリブデンの組織がつながっているのが観察された
Next, the structure of the cross section of the joint was observed. Heat treatment temperature 14
Cobalt for 00'C and 1500'C
A bonding layer made of molybdenum alloy was observed. 1600'
As shown in FIG. 2, it was observed that the bonding layer disappeared and the molybdenum structure was connected in the case of the bonded material with a bonding temperature of C or higher.

この第2図から判るように本発明の方法による接合では
接合部の組織の粗大化等の異常が起こらないことが確認
できた。
As can be seen from FIG. 2, it was confirmed that abnormalities such as coarsening of the structure of the bonded portion did not occur in bonding by the method of the present invention.

比較例 比較のためコバル1〜の代わりにニッケルを接合材とし
て用い、熱処理温度1600’ Cで接合した物の接合
部の断面写真を第3図に示す。第3図がら明らかな様に
ニッケルを接合材として用いた時は異常な組織の粗大化
が見られた。
Comparative Example For comparison, nickel was used as a bonding material instead of Kobal 1 and was bonded at a heat treatment temperature of 1600'C. A cross-sectional photograph of a bonded portion is shown in FIG. As is clear from FIG. 3, when nickel was used as a bonding material, abnormal coarsening of the structure was observed.

 − −」U1忽じし 通常のタングステン材を実施例1と同様な前処理を行い
、接合面を重ね合わせて保持し、サンプルの側面及び接
合面の周囲に市販のコバルト粉末を塗布して水素雰囲気
中1600’ Cで150分間加熱処理して接合を行っ
た。コバルトは接合面に均一に浸透し強固な接合がおこ
なわれていることが確認できた。接合部の断面写真を第
4図に示す。第4図から明らかなように接合面には均一
なコバルト・タングステン合金層が形成され、空孔等の
欠陥も無く又組織の異常成長も見られながった。
- - Similar to U1, a normal tungsten material was pretreated in the same manner as in Example 1, the bonding surfaces were overlapped and held, and commercially available cobalt powder was applied to the sides of the sample and around the bonding surface, and hydrogen Bonding was performed by heat treatment at 1600'C in an atmosphere for 150 minutes. It was confirmed that cobalt permeated the joint surface uniformly and a strong joint was achieved. A cross-sectional photograph of the joint is shown in Figure 4. As is clear from FIG. 4, a uniform cobalt-tungsten alloy layer was formed on the joint surface, with no defects such as pores, and no abnormal growth of structure was observed.

−1創」1 実施例1と同様なモリブデン材を接合面を重ね合わせて
保持し、サンプルの側面及び接合面の周囲にコバルト粉
末にモリブデン粉末を重量%で25%ならびに50%混
ぜ合わせた混合粉を塗布して水素雰囲気中1600’ 
Cで150°分間加熱処理して接合をおこなった。接合
状況はいずれも良好であったが接合部側面外観を比較す
ると、コバルトを単独で用いたものはコバルトによる浸
食の為表面に薄くあばた模様ができていたのに対し、コ
バル1〜にモリブデンを25%ならびに50%混合した
ものでは表面は平滑でコバルI〜による浸食は観察され
なかった。
-1 wound'' 1 The same molybdenum materials as in Example 1 were held with their joint surfaces overlapped, and a mixture of 25% and 50% by weight of cobalt powder and molybdenum powder was mixed on the sides of the sample and around the joint surfaces. Apply powder and heat in hydrogen atmosphere for 1600'
Bonding was performed by heat treatment at C for 150° minutes. The joint conditions were good in all cases, but when comparing the side appearance of the joints, the joints using cobalt alone had a thin pock pattern on the surface due to erosion by the cobalt, whereas the joints using cobalt 1~ and molybdenum had a thin pock pattern on the surface. The surfaces of the 25% and 50% mixtures were smooth and no erosion by Kobal I was observed.

〈発明の効果〉 以上述べて来た如く本発明方法によれば、さほど高温と
することなく比較的容易に高融点金属の接合が行え、し
かも接合部の組織にも異常はなく強固に接合され、又接
合温度よりも高温域に於いても接合力の低下はなく十分
に使用可能であるという効果がある。
<Effects of the Invention> As described above, according to the method of the present invention, high-melting point metals can be joined relatively easily without raising the temperature to a high temperature, and moreover, the weld can be firmly joined without any abnormality in the structure of the joint. Also, there is an effect that the bonding force does not decrease even in a higher temperature range than the bonding temperature, and it can be used satisfactorily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例1に於いて行った熱処理温度と破
壊荷重の関係を示すグラフ、第2図は同実施例2の16
00’ C以上で接合した場合の金属MR鏡組織写真、
第3図は同比較例の1600’Cで接合した場合の金属
顕微鏡組織写真、第4図は同実施例2の1600°Cで
接合した場合の金属顕微鏡組織写真。 ブ・イ5− /了J 図 第 図
Fig. 1 is a graph showing the relationship between heat treatment temperature and fracture load in Example 1 of the present invention, and Fig. 2 is a graph showing the relationship between heat treatment temperature and fracture load in Example 1 of the present invention.
Metal MR microstructure photograph when bonded at 00'C or higher,
FIG. 3 is a photo of the metallographic microstructure of the same comparative example when bonded at 1600°C, and FIG. 4 is a photo of the metallographic microstructure of Example 2 when bonded at 1600°C. Bu I 5-/Ryo J Figure Figure

Claims (1)

【特許請求の範囲】 1、高融点金属同志の接合に際し、該高融点金属同志の
接合部に、コバルトを介在させ、非酸化性雰囲気又は真
空中においてコバルトと前記高融点金属の合金の共晶温
度以上の温度で加熱処理することを特徴とする高融点金
属の接合方法。 2、高融点金属が、タングステンあるいはモリブデンで
あることを特徴とする請求項1に記載の高融点金属の接
合方法。 3、コバルトに被接合部材と同一の高融点金属を添加混
合することを特徴とする請求項1若しくは2記載の高融
点金属の接合方法。
[Claims] 1. When joining high melting point metals together, cobalt is interposed in the joint between the high melting point metals, and an eutectic alloy of cobalt and the above high melting point metal is formed in a non-oxidizing atmosphere or in a vacuum. A method for joining high-melting point metals, which is characterized by heat treatment at a temperature higher than that temperature. 2. The method for joining high-melting point metals according to claim 1, wherein the high-melting point metal is tungsten or molybdenum. 3. The method of joining high melting point metals according to claim 1 or 2, characterized in that the same high melting point metal as the members to be joined is added and mixed with cobalt.
JP10401490A 1990-04-18 1990-04-18 Method for joining refractory metals Pending JPH03297555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10401490A JPH03297555A (en) 1990-04-18 1990-04-18 Method for joining refractory metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10401490A JPH03297555A (en) 1990-04-18 1990-04-18 Method for joining refractory metals

Publications (1)

Publication Number Publication Date
JPH03297555A true JPH03297555A (en) 1991-12-27

Family

ID=14369414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10401490A Pending JPH03297555A (en) 1990-04-18 1990-04-18 Method for joining refractory metals

Country Status (1)

Country Link
JP (1) JPH03297555A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11654504B1 (en) 2021-07-14 2023-05-23 Peregrine Falcon Corporation Solid state diffusion bonding of refractory metals and their alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11654504B1 (en) 2021-07-14 2023-05-23 Peregrine Falcon Corporation Solid state diffusion bonding of refractory metals and their alloys

Similar Documents

Publication Publication Date Title
Wu et al. Wide gap brazing of stainless steel to nickel-based superalloy
JPH0217509B2 (en)
JP2011502786A (en) Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy
JP5138879B2 (en) Material composite
JPS582276A (en) Metal-ceramic joint body and manufacture
Chen et al. Interfacial microstructure and strength of partial transient liquid-phase bonding of silicon nitride with Ti/Ni multi-interlayer
US7658315B2 (en) Process of brazing superalloy components
KR100787929B1 (en) Method of low temperature joining between ti-cu dissimilar metals using amorphous filler material
JPH03297555A (en) Method for joining refractory metals
US4078713A (en) Brazing sintered ferrous powder metal articles
US3617396A (en) Brazing mixture for joining parts
JPS60191679A (en) Liquid phase diffusion joining method of heat resistant superalloy
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
KR100954097B1 (en) Method of joining of pure Ti/Ti-base alloy and Fe-base steel alloy using Ag-based inserted material and Ag diffusion control layer
JPS61103685A (en) Method for diffused junction
JPH04294884A (en) Method of liquid phase diffusion joining of stainless steel
JPH0337165A (en) Adhesion between ceramics and metal
JP3232896B2 (en) Brazing method between members
JPH044972A (en) Void sealing method for high m.p. metallic member
JP2955622B2 (en) Ceramic brazing method
JP2742595B2 (en) Manufacturing method of plating electrode
JP2000119072A (en) Joining of silicon nitride to carbon steel
JPH0147279B2 (en)
JPH07498B2 (en) Diamond joining method for cutting tools
JPH02121782A (en) Liquid phase diffusion joining method