JPH03297377A - Automatic reactor - Google Patents

Automatic reactor

Info

Publication number
JPH03297377A
JPH03297377A JP9831990A JP9831990A JPH03297377A JP H03297377 A JPH03297377 A JP H03297377A JP 9831990 A JP9831990 A JP 9831990A JP 9831990 A JP9831990 A JP 9831990A JP H03297377 A JPH03297377 A JP H03297377A
Authority
JP
Japan
Prior art keywords
heat medium
constant temperature
temperature
heating
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9831990A
Other languages
Japanese (ja)
Inventor
Koichi Tsukitani
築谷 宏一
Munechika Sakabe
坂部 宗親
Toru Okazaki
透 岡崎
Osamu Segawa
修 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP9831990A priority Critical patent/JPH03297377A/en
Publication of JPH03297377A publication Critical patent/JPH03297377A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To provide the title reactor so designed that a thermostatic chamber is divided into two parts, and the current of a heating medium through the channel for each of the resulting thermostatic chambers is controlled using valves, thereby heating and cooling a reaction vessel vertically both from above and below leading to rapid temperature change within the reaction vessel, thus providing the thermostatic chamber with uniform temperature. CONSTITUTION:Heat transfer plates 30, 31 are provided for heating and cooling a reaction vessel 15 vertically both from above and below, and a higher- temperature chamber 28 and lower-temperature chamber 29 are kept at constant temperatures through controllers 32, 33, respectively. During heating, only valves 25, 22, 23, 20, 21, 24 are opened, pumps 16, 17 are driven, and a high-temperature heating medium is injected into the plates 30, 31. During cooling, only valves 27, 22, 23, 20, 21, 26 are opened, and a low-temperature heating medium is injected into the plates 30, 31. To maintain the system at a constant temperature, only valves 18 and 19, and either of the heating media is circulated using the pumps 16 and 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、温度と反応時間をサイクリックに変化させて
、反応容器に充填したサンプルと酵素の反応を繰り返し
進行・停止させることにより、サンプルの量を増幅させ
る自動反応装置の改良に関し、特に自動反応装置に搭載
される恒温槽の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention enables the sample to be prepared by cyclically changing the temperature and reaction time to repeatedly proceed and stop the reaction between the sample and the enzyme filled in the reaction container. This invention relates to an improvement in an automatic reaction device for amplifying the amount of , and in particular, to an improvement in a thermostatic chamber installed in an automatic reaction device.

〔発明の概要〕[Summary of the invention]

本発明は、自動反応装置に搭載の恒温槽を2つに分割し
、恒温槽の各部分に熱媒体を流動するための波路を形成
し、熱媒体を冷却する冷却ユニットと熱媒体を加熱する
加熱ユニットと、恒温槽、冷却ユニットと加熱ユニット
各々を断熱チューブで配管し、且つバルブを有し、熱媒
体の流れを制御する構造とし、反応容器の上下両方向よ
り加熱冷却することにより、反応容器に充填したサンプ
ルと酵素の温度を急速(1℃/sec以上)に変化させ
るようにしたものである。
The present invention divides a constant temperature bath installed in an automatic reaction device into two parts, forms a wave path for flowing a heat medium in each part of the constant temperature bath, and connects a cooling unit that cools the heat medium and a cooling unit that heats the heat medium. The heating unit, constant temperature bath, cooling unit, and heating unit are each piped with insulated tubes, and each has a valve to control the flow of the heat medium.By heating and cooling from both the top and bottom of the reaction vessel, the reaction vessel is heated and cooled. The temperature of the sample and enzyme packed in the chamber is changed rapidly (at least 1° C./sec).

〔従来の技術〕[Conventional technology]

従来より、温度と反応時間をサイクリックに変化させて
、反応容器に充填したサンプルと酵素の反応を繰り返し
進行・停止させることにより、サンプルの量を増幅させ
る反応はDNAのクローニング・増幅に利用されている
。前記反応を自動的に行う自動反応装置の恒温槽の構造
を第2図で説明する。第2図で51はサンプルや酵素が
充填されている反応容器であり、この反応容器はアルミ
ブロック52に形成された複数の凹部52a内に収納さ
れている。アルミブロック52の底面には加熱用シート
状ヒータ53が密着配置されており、さらに前記アルミ
ブロック52を含む外表面は断熱材54で覆われている
。またアルミブロック52には冷却液用の流路52bが
形成され、前記流路52bは管継手55により冷凍機(
図示せず)に配管接続されている。
Traditionally, reactions have been used for DNA cloning and amplification to amplify the amount of sample by cyclically changing the temperature and reaction time to repeatedly proceed and stop the reaction between the sample filled in a reaction container and an enzyme. ing. The structure of a constant temperature bath of an automatic reaction apparatus that automatically carries out the above reaction will be explained with reference to FIG. In FIG. 2, 51 is a reaction container filled with samples and enzymes, and this reaction container is housed in a plurality of recesses 52a formed in the aluminum block 52. A sheet-shaped heater 53 is disposed in close contact with the bottom surface of the aluminum block 52, and the outer surface including the aluminum block 52 is covered with a heat insulating material 54. Further, a flow path 52b for cooling liquid is formed in the aluminum block 52, and the flow path 52b is connected to the refrigerator (
(not shown).

反応容器51を加熱するときはシート状ヒータ53に電
流を流してアルミブロック52を下方から加熱する。冷
却するときには冷凍機のボゾプにより冷却液をアルミブ
ロック52内に循環させることにより行い、このように
アルミブロック52を加熱冷却することにより、アルミ
ブロック52に形成された複数の四部52a内に収納さ
れている反応容器51を加熱冷却している。
When heating the reaction container 51, a current is passed through the sheet-like heater 53 to heat the aluminum block 52 from below. Cooling is carried out by circulating the cooling liquid inside the aluminum block 52 by the boiler of the refrigerator, and by heating and cooling the aluminum block 52 in this way, the aluminum block 52 is housed in the plurality of four parts 52a formed in the aluminum block 52. The reaction vessel 51 containing the liquid is heated and cooled.

〔発明が解決しようとする!II!!!りしかし、従来
の自動反応装置の恒温槽の構造では冷却液用の流路52
bを形成するため、アルミブロック52のサイズが大き
くなり、熱容量も大きくなる。一方、加熱用シート状ヒ
ータ53の発熱量には制限があるために、アルミブロッ
ク52がある程度の温度変化が起きた後でないと反応容
器内の液の温度が変化を始めないと言うタイムラグがあ
った。また構造上、アルミブロック内に冷却液が残って
しまい、加熱を行った時に流路52bの周囲は他の部分
に比べて冷却液を同時に加熱するので本来不必要な熱量
を取られ、加熱するのに時間を要する。従って、結果と
してアルミブロックに温度ムラを生じてしまうという欠
点があった。
[Invention tries to solve! II! ! ! However, in the structure of the constant temperature bath of the conventional automatic reaction device, the flow path 52 for the cooling liquid is
b, the size of the aluminum block 52 increases and its heat capacity also increases. On the other hand, since there is a limit to the amount of heat generated by the heating sheet heater 53, there is a time lag in which the temperature of the liquid in the reaction container does not start to change until after the aluminum block 52 has undergone a certain temperature change. Ta. Also, due to the structure, the cooling liquid remains inside the aluminum block, and when heating is performed, the cooling liquid is heated at the same time in the area around the flow path 52b compared to other parts, so an unnecessary amount of heat is taken and the area is heated. It takes time. Therefore, as a result, there is a drawback that temperature unevenness occurs in the aluminum block.

そこで、本発明の目的は、従来のこのような欠点を解決
するために、自動反応装置に搭載の恒温槽を2つに分割
し、恒温槽の各部分に熱媒体を流動するための波路を形
成し、熱媒体の流れをバルブで制御することにより、反
応容器の上下両方向より加熱冷却する構造として反応容
器内の温度変化を急速(1℃/sec以上)に行えると
共に温度ムラのない恒温槽を得るようにしたものである
Therefore, the purpose of the present invention is to solve these conventional drawbacks by dividing the thermostatic chamber installed in the automatic reaction device into two parts and creating a wave path for flowing a heat medium into each part of the thermostatic chamber. By controlling the flow of heat medium with a valve, the reaction vessel is heated and cooled from both the top and bottom directions, and the temperature inside the reaction vessel can be changed rapidly (at least 1°C/sec), and the temperature is uniform. It was designed to obtain

c!!!!aを解決するための手段〕 上記問題点を解決するために、本発明は自動反応装置に
搭載の恒温槽を2つに分割し、恒温槽の各部分に複数に
分岐した熱媒体を流動するための流路を形成し、また熱
媒体を冷却する冷却ユニット、熱媒体を加熱する加熱ユ
ニット、恒温槽各々を耐熱チューブで配管し、且つバル
ブにより、熱媒体の流れを制御して恒温槽の隅々に熱媒
体を流動させることにより、反応容器の上下両方向より
加熱冷却する構造とし、また、恒温槽は反応容器に対向
する部分のみを良熱伝導材、それ以外の部分を断熱材料
の2つの部品で構成することにより熱容量を小さくし、
反応容器に充填されたサンプルと酵素の温度を急速(1
’C/see以上)且つ均一に変化させるようにしたも
のである。
c! ! ! ! Means for Solving A] In order to solve the above problems, the present invention divides a constant temperature bath installed in an automatic reaction device into two, and flows a plurality of branched heat carriers into each part of the constant temperature bath. In addition, the cooling unit that cools the heat medium, the heating unit that heats the heat medium, and the constant temperature chamber are each piped with heat-resistant tubes, and the flow of the heat medium is controlled by valves to control the flow of the constant temperature chamber. By flowing a heat medium in every corner, the reaction vessel is heated and cooled from both the top and bottom directions, and the thermostatic chamber is made of a good thermal conductive material only in the part facing the reaction vessel, and a heat insulating material in the other parts. By composing with two parts, the heat capacity is reduced.
The temperature of the sample and enzyme packed in the reaction vessel was increased rapidly (1
'C/see or higher) and uniformly changed.

〔作用〕[Effect]

上記のように構成された自動反応装置に搭載の恒温槽を
用いれば、加熱時は熱媒体が加熱ユニットを流れる位置
に制御バルブを作動させ、又、冷却時は冷却ユニットで
冷却された熱媒体を流動させて、恒温槽を急速に冷却す
る。また、恒温槽内の流路を複数に分岐させることによ
り、熱媒体が恒温槽の隅々にまで流動し、恒温槽内を均
一な温度にできる。さらに、恒温槽を一定温度に保つ場
合は、断熱された系に熱媒体を循環させて温度ムラの無
い恒温状態にすることができる。
If a thermostat installed in the automatic reaction device configured as described above is used, the control valve is operated to the position where the heat medium flows through the heating unit during heating, and the control valve is operated to the position where the heat medium flows through the cooling unit during cooling. The thermostatic bath is rapidly cooled by flowing water. Furthermore, by branching the flow paths in the thermostatic oven into a plurality of branches, the heat medium flows to every corner of the thermostatic oven, thereby making it possible to maintain a uniform temperature inside the thermostatic oven. Furthermore, when maintaining a constant temperature bath at a constant temperature, a heat medium can be circulated through the insulated system to maintain a constant temperature state without temperature unevenness.

〔実施例〕〔Example〕

以下に、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図、第3図、第4図において、1はサンプルや酵素
が充填されている反応容器である。恒温槽はフタ2と本
体3とからなり、フタ2は良熱伝導プレート4と断熱プ
レート51本体3は良熱伝導ブロック6と断熱ブロック
7でそれぞれ構成され、フタ2と本体3が対向する面は
良熱伝導材が露出し、他の面は断熱材で覆われている。
In FIGS. 1, 3, and 4, 1 is a reaction container filled with samples and enzymes. The thermostatic oven consists of a lid 2 and a main body 3, the lid 2 is composed of a good heat conduction plate 4 and a heat insulating plate 51, the main body 3 is composed of a good heat conduction block 6 and a heat insulating block 7, and the face where the cover 2 and the main body 3 face each other is is exposed with good thermal conductivity material, and other surfaces are covered with heat insulating material.

フタ2と本体3は積み重ねられ、良熱伝導ブロック6に
は反応容器lを収納する複数の凹部6aが形成されてい
る。良熱伝導プレート4と良熱伝導ブロック6の断熱プ
レート5と断熱ブロック7に接する面には、収納部6a
の列と同数の溝4aと6bが収納部6aの列に平行に形
成されている。また断熱プレート5と断熱ブロック7に
は、対向する2側面に横穴5aと7aが各々形成され、
前記溝4aと6bに対向する位置に溝4aと横穴5a、
溝6bと横穴7aを接続する穴5bと7bが形成されて
いる。横穴5aと7aは各々はぼ中央に雌ねじ5Cと7
0が形成され、管継手8,9が螺合されている。管継手
8は制御用バルブ10aのアウト側と断熱チューブ1)
で接続され、制御用バルブ10aのイン側は同じく断熱
チューブ1)で加熱ユニット12と冷却ユニット13の
アウト側に接続されている。管継手9は断熱チューブ1
)で熱媒体流動用ポンプ14のイン側と接続されている
。熱媒体流動用ポンプ14のアウト側は制御用バルブ1
0bのイン側と接続され、加熱ユニフ目2と冷却ユニッ
目3のイン側が制御用バルブ10bのアウト側と接続さ
れている。
The lid 2 and the main body 3 are stacked, and the good heat conduction block 6 is formed with a plurality of recesses 6a for accommodating the reaction vessels 1. The surfaces of the good heat conduction plate 4 and the good heat conduction block 6 that are in contact with the heat insulation plate 5 and the heat insulation block 7 are provided with storage portions 6a.
The same number of grooves 4a and 6b as the rows are formed parallel to the rows of storage portions 6a. Further, the heat insulating plate 5 and the insulating block 7 have horizontal holes 5a and 7a formed on two opposing sides, respectively.
A groove 4a and a horizontal hole 5a at positions opposite to the grooves 4a and 6b,
Holes 5b and 7b are formed to connect the groove 6b and the horizontal hole 7a. The horizontal holes 5a and 7a have internal threads 5C and 7 in the center, respectively.
0 is formed, and pipe joints 8 and 9 are screwed together. The pipe joint 8 connects the outside of the control valve 10a and the insulation tube 1)
The inner side of the control valve 10a is also connected to the outer sides of the heating unit 12 and the cooling unit 13 through the heat insulating tube 1). Pipe fitting 9 is insulated tube 1
) is connected to the inside side of the heat medium flow pump 14. The control valve 1 is located on the outside side of the heat medium flow pump 14.
The inner side of the heating unit 2 and the cooling unit 3 are connected to the outside of the control valve 10b.

反応容器1を急速加熱するときは、制御用バルブ10b
が加熱側に切り換わり、熱媒体流動用ポンプ14が作動
開始して、熱媒体が加熱ユニット12に流れ込み、熱媒
体が加熱ユニット12の中を循環する間に加熱されて、
制御バルブ10aを経由して恒温槽に流入する。この時
にフタ2と本体3のどちらを先に加熱を開始するかによ
り制御バルブ10aを切り換える。熱媒体は管継手8を
経由して横穴5a、7aに流入し、接続穴5b、7bで
分岐させられて溝4a、6bに流入する。この時、流入
してきた熱媒体が溝4a、6bに滞留している熱媒体を
排出するので、溝4a、6b内には加熱された熱媒体の
み存在することになる。熱媒体は溝4a、5bを流動す
る間に良熱伝導プレート4と良熱伝導ブロック6に伝熱
を行い、その熱が反応容器1に伝わる。冷却する時も同
様にして熱媒体が冷却ユニット13を流動する間に冷却
され、冷却された熱媒体が良熱伝導プレート4と良熱伝
導ブロック6を流動する間に良熱伝導プレート4と良熱
伝導ブロック6から熱を奪い、反応容器1を冷却する。
When rapidly heating the reaction vessel 1, the control valve 10b
is switched to the heating side, the heat medium flow pump 14 starts operating, the heat medium flows into the heating unit 12, and is heated while circulating in the heating unit 12,
It flows into the constant temperature bath via the control valve 10a. At this time, the control valve 10a is switched depending on which of the lid 2 and the main body 3 is to be heated first. The heat medium flows into the side holes 5a, 7a via the pipe joint 8, is branched at the connection holes 5b, 7b, and flows into the grooves 4a, 6b. At this time, the inflowing heat medium discharges the heat medium staying in the grooves 4a, 6b, so that only the heated heat medium exists in the grooves 4a, 6b. While flowing through the grooves 4a and 5b, the heat medium transfers heat to the good heat conduction plate 4 and the good heat conduction block 6, and the heat is transmitted to the reaction vessel 1. During cooling, the heat medium is similarly cooled while flowing through the cooling unit 13, and while the cooled heat medium flows between the good heat conduction plate 4 and the good heat conduction block 6, the heat transfer medium is cooled while flowing through the good heat conduction plate 4 and the good heat conduction block 6. Heat is removed from the heat conduction block 6 to cool the reaction container 1.

加熱冷却する時に、反応容器1の上側が下側より温度が
低いと蒸発した液が反応容器1の上側に結露してしまい
、反応が十分に進まないと言う問題が発生するので、フ
タ2が本体3よりもわずかに温度が高くなるように、制
御バルブ10aを制御する。通常良熱伝導体としてアル
ミ材や鋼材を、断熱材としてテフロンやポリ力の耐熱性
の良い樹脂を用い、全体でフェルト等で覆う構造にする
。また、本実施例では熱媒体の流入口と流出口をフタ2
と本体3共に1カ所ずつ、溝6bを4カ所にしであるが
、これは−度に収納できる反応容器1の数によって変わ
る。反応容器1の収納数が50個や100個になると、
恒温槽が大きくなり、熱媒体の流入口と流出口が1カ所
だと温度ムラが生しる危険があるので、このような場合
には熱媒体の流入口と流出口を複数にして、熱媒体が恒
温槽内に均一に流れるようにする。
When heating and cooling, if the upper side of the reaction vessel 1 is lower in temperature than the lower side, the evaporated liquid will condense on the upper side of the reaction vessel 1, causing a problem that the reaction will not proceed sufficiently. The control valve 10a is controlled so that the temperature is slightly higher than that of the main body 3. Usually, aluminum or steel is used as a good heat conductor, Teflon or polyester resin with good heat resistance is used as a heat insulator, and the entire structure is covered with felt or the like. In addition, in this embodiment, the inlet and outlet of the heat medium are covered with a lid 2.
There are one groove each on the main body 3 and four grooves 6b, but this varies depending on the number of reaction vessels 1 that can be accommodated at one time. When the number of containers stored in reaction container 1 becomes 50 or 100,
If the constant temperature chamber becomes large and the heat medium has only one inlet and outlet, there is a risk of temperature unevenness. Ensure that the medium flows uniformly into the thermostatic chamber.

また、第5図は第4図を具体化した一例である。Further, FIG. 5 is an example that embodies FIG. 4.

高温槽28および低温槽29は、常時一定の温度にコン
トローラ32および33により保持されている。加熱時
には、バルブ25.22.23.20.21.24のみ
を開きポンプ16.17を駆動させることにより高温熱
媒体が上部熱伝導プレート30.下部熱伝導プレート3
1を通過し加熱する。冷却時には、バルブ2722、2
3.20.26のみを開き低温熱媒体が上部熱伝導プレ
ート30.下部熱伝導プレート31を通過し冷却する。
The high temperature tank 28 and the low temperature tank 29 are always maintained at a constant temperature by controllers 32 and 33. During heating, only the valves 25, 22, 23, 20, 21, 24 are opened and the pumps 16, 17 are driven so that the high temperature heat medium is transferred to the upper heat conducting plate 30. Lower heat conduction plate 3
Pass through step 1 and heat. During cooling, valves 2722, 2
3. Open only 20.26 and the low-temperature heat medium flows through the upper heat conduction plate 30. It passes through the lower heat conduction plate 31 and is cooled.

また、一定温度に維持するには、バルブ18、19のみ
を開きポンプ16.17で液を循環することにより熱媒
体を撹拌し、上部熱伝導プレート30下部熱伝導プレー
ト31を熱のムラなく一定の温度に保持する。
In addition, in order to maintain a constant temperature, the heat medium is stirred by opening only the valves 18 and 19 and circulating the liquid with the pumps 16 and 17, and the upper heat conduction plate 30 and the lower heat conduction plate 31 are heated at a constant temperature without unevenness. temperature.

〔発明の効果〕〔Effect of the invention〕

以上述べた通り本発明によれば、自動反応装置の恒温槽
の熱容量を小さくすることにより、温度を急速に変化さ
せることができ、且つ熱媒体の流路を複数に分岐する形
状にすることにより、熱媒体が恒温槽の隅々まで流動し
、恒温槽内を均一な温度にできる。従って、反応容器に
充填されたサンプルと酵素の温度を急速(1℃/sec
以上)に且つ均一に変化させることができる自動反応装
置を提供することができる。
As described above, according to the present invention, the temperature can be changed rapidly by reducing the heat capacity of the constant temperature bath of the automatic reaction device, and by forming the flow path of the heat medium into a shape that branches into multiple parts. , the heating medium flows to every corner of the thermostatic oven, making it possible to maintain a uniform temperature inside the thermostatic oven. Therefore, the temperature of the sample and enzyme filled in the reaction vessel can be adjusted rapidly (1°C/sec).
It is possible to provide an automatic reaction device that can uniformly change the above).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の正断面図、第2図は従来例の断
面図、第3図は本発明実施例の恒温槽本体部の平面図、
第4図、第5図は本発明実施例の配管図である。 1・・・反応容器 3・・・本体 4・・・良熱伝導プレート 5・・・断熱プレート 6・・・良熱伝導ブロック 7・・・断熱ブロック 8.9・・・管継手 1)・・・断熱チューブ 12・・・加熱ユニット 13・・・冷却ユニット 2・・・フタ 10・・・制御バルブ 14・ 15・ 6 28・ 0 31・ 32・ 33・ ・・熱媒体流動用ポンプ ・・反応容器 17・・・ポンプ18〜25・・・バルブ・・高温槽 
   29・・・低温槽 ・・上部伝熱プレート ・・下部伝熱プレート ・・高温槽コントローラ ・・低温槽コントローラ 以上
FIG. 1 is a front sectional view of the embodiment of the present invention, FIG. 2 is a sectional view of the conventional example, and FIG. 3 is a plan view of the thermostatic chamber main body of the embodiment of the present invention.
4 and 5 are piping diagrams of an embodiment of the present invention. 1...Reaction vessel 3...Main body 4...Good heat conduction plate 5...Insulation plate 6...Good heat conduction block 7...Insulation block 8.9...Pipe joint 1) ...Insulation tube 12...Heating unit 13...Cooling unit 2...Lid 10...Control valve 14, 15, 6 28, 0 31, 32, 33... Pump for heat medium flow... Reaction vessel 17...Pump 18-25...Valve...High temperature tank
29...Low temperature chamber...Upper heat transfer plate...Lower heat transfer plate...High temperature chamber controller...Low temperature chamber controller or higher

Claims (6)

【特許請求の範囲】[Claims] (1)予め設定されたプログラムに従って温度を変化さ
せて、複数の反応容器各々に充填したサンプルと酵素の
反応を進行、停止させる自動反応装置において、前記反
応容器の上下両方向より加熱冷却する構造の恒温槽を有
していることを特徴とする自動反応装置。
(1) In an automatic reaction device that changes temperature according to a preset program to proceed and stop the reaction between a sample and an enzyme filled in each of a plurality of reaction containers, the reaction container is heated and cooled from both the top and bottom directions. An automatic reaction device characterized by having a constant temperature bath.
(2)前記恒温槽に熱媒体を流動するための流路を形成
し、また熱媒体を冷却する冷却ユニットと熱媒体を加熱
する加熱ユニットと、恒温槽、冷却ユニットと加熱ユニ
ット各々をチューブで配管し、且つバルブを有し、熱媒
体の流れを制御することにより恒温槽内の温度を制御す
ることを特徴とする第1項に記載の自動反応装置。
(2) A cooling unit for cooling the heat medium, a heating unit for heating the heat medium, and a tube for forming a flow path for the heat medium to flow in the constant temperature bath, and connecting each of the constant temperature bath, the cooling unit, and the heating unit using tubes. 2. The automatic reaction device according to item 1, which is equipped with piping and has a valve, and controls the temperature within the thermostatic chamber by controlling the flow of a heat medium.
(3)前記熱媒体の制御系において、加熱ユニットを経
て加熱する流路、冷却ユニットを経て冷却する流路およ
び熱媒体を、循環する断熱された流路に切替えることに
より恒温槽内の温度を制御することを特徴とする第1項
に記載の自動反応装置。
(3) In the control system for the heat medium, the temperature in the thermostatic chamber is controlled by switching the flow path for heating through the heating unit, the flow path for cooling through the cooling unit, and the heat medium to a circulating and insulated flow path. The automatic reaction device according to item 1, characterized in that the automatic reaction device is controlled.
(4)前記恒温槽は反応容器の上面から加熱冷却する部
分と反応容器の裏面から加熱冷却する部分の2つの部分
よりなり、また恒温槽の2つの部分に流れる熱媒体の量
を独立して制御することにより、各々独立して温度が制
御できる構造にしたことを特徴とする第1項に記載の自
動反応装置。
(4) The constant temperature bath consists of two parts: a part that heats and cools from the top surface of the reaction vessel and a part that heats and cools from the back of the reaction vessel, and the amount of heat medium flowing into the two parts of the constant temperature bath can be controlled independently. 2. The automatic reaction apparatus according to item 1, characterized in that the automatic reaction apparatus has a structure in which the temperature can be independently controlled by controlling the temperature.
(5)恒温槽に形成された流路の出入口は恒温槽上下各
々の部分に少なくとも1ヵ所ずつ有し、また恒温槽内で
流路は複数本に枝分かれをする構造にしたことを特徴と
する第1項に記載の自動反応装置。
(5) The flow path formed in the constant temperature chamber has at least one entrance and exit in each of the upper and lower parts of the constant temperature chamber, and the flow path is structured to branch into multiple lines within the constant temperature chamber. The automatic reaction device according to item 1.
(6)恒温槽の部材を反応容器に対向する部分のみを熱
伝導率の良い材料とし、それ以外の部分を断熱材料とし
たことを特徴とする第1項に記載の自動反応装置。
(6) The automatic reaction apparatus according to item 1, wherein only the part of the thermostatic chamber facing the reaction vessel is made of a material with good thermal conductivity, and the other parts are made of a heat-insulating material.
JP9831990A 1990-04-12 1990-04-12 Automatic reactor Pending JPH03297377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9831990A JPH03297377A (en) 1990-04-12 1990-04-12 Automatic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9831990A JPH03297377A (en) 1990-04-12 1990-04-12 Automatic reactor

Publications (1)

Publication Number Publication Date
JPH03297377A true JPH03297377A (en) 1991-12-27

Family

ID=14216592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9831990A Pending JPH03297377A (en) 1990-04-12 1990-04-12 Automatic reactor

Country Status (1)

Country Link
JP (1) JPH03297377A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024492A (en) * 1998-06-10 2000-01-25 Mettler Toledo Gmbh Reaction assemblies and group array of these reaction assemblies
US7182130B2 (en) 1999-11-26 2007-02-27 Eyela-Chino Inc. Sample temperature regulator
JP2013148591A (en) * 2007-10-26 2013-08-01 Toppan Printing Co Ltd Temperature adjusting mechanism for gene processor and gene processor
JPWO2021149465A1 (en) * 2020-01-22 2021-07-29

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000024492A (en) * 1998-06-10 2000-01-25 Mettler Toledo Gmbh Reaction assemblies and group array of these reaction assemblies
US7182130B2 (en) 1999-11-26 2007-02-27 Eyela-Chino Inc. Sample temperature regulator
JP2013148591A (en) * 2007-10-26 2013-08-01 Toppan Printing Co Ltd Temperature adjusting mechanism for gene processor and gene processor
JPWO2021149465A1 (en) * 2020-01-22 2021-07-29
WO2021149465A1 (en) * 2020-01-22 2021-07-29 富士フイルム株式会社 Processing device and measurement system

Similar Documents

Publication Publication Date Title
US2928253A (en) Thermoelectric apparatus for cooling and heating liquids
US5802856A (en) Multizone bake/chill thermal cycling module
EP0363143A3 (en) Temperature control apparatus
CN105688775A (en) Reactor with temperature control device
JPH03297377A (en) Automatic reactor
US20020002951A1 (en) Heating installation for a reactor
SU1764094A1 (en) Device for fluids heating or cooling
JPH03297378A (en) Automatic reactor
JP2665832B2 (en) Heating and cooling device
JPH01145026A (en) Electric hot-water heater
JP3507841B2 (en) Steam or hot water heating device
JPS57180079A (en) Temperature controller for fuel cell
JPH03216182A (en) Method and apparatus for controlling tank temperature
KR20190030070A (en) A temperature control apparatus for a fluid using thermoelectric element
JP3422017B2 (en) Constant temperature bath
JPH102647A (en) Heating and cooling device
CN217189477U (en) Temperature control system of reactor
JP3455307B2 (en) Steam or hot water heating device
JPH08112526A (en) Heater by steam or hot water
CN205517688U (en) Reactor with temperature regulating device
JPS5832108Y2 (en) Circulating heating type hot water storage type water heater
JPH0195231A (en) Hot water feeding device
JPS61190292A (en) Heat storage tank
JP2823881B2 (en) Instant water heater
JPH0928570A (en) Pot