JPH03297098A - Plasma generating device - Google Patents

Plasma generating device

Info

Publication number
JPH03297098A
JPH03297098A JP2098408A JP9840890A JPH03297098A JP H03297098 A JPH03297098 A JP H03297098A JP 2098408 A JP2098408 A JP 2098408A JP 9840890 A JP9840890 A JP 9840890A JP H03297098 A JPH03297098 A JP H03297098A
Authority
JP
Japan
Prior art keywords
plasma
magnetic field
microwave power
mode
teon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2098408A
Other languages
Japanese (ja)
Other versions
JPH0715838B2 (en
Inventor
Kibatsu Shinohara
己拔 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Koshuha Co Ltd
Original Assignee
Nihon Koshuha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Koshuha Co Ltd filed Critical Nihon Koshuha Co Ltd
Priority to JP2098408A priority Critical patent/JPH0715838B2/en
Publication of JPH03297098A publication Critical patent/JPH03297098A/en
Publication of JPH0715838B2 publication Critical patent/JPH0715838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To accomplish a plasma generating device to generate plasma which has a large bore and is as flat as practicable, by performing TEon mode excitation with microwave power in a metal cylinder, applying a mag. field corresponding to the excited frequency, and thereby generating cyclotron resonance. CONSTITUTION:One end face in axial direction of a metal cylinder 1 is sealed with a metal plate 12, and microwave power is supplied from a terminal 2 so as to make TEon mode excitation, and the inside of a plasma chamber 1 is put in a required intensity of magnetic field using an excitation coil 3 or a permanent magnet. A gaseous substance is fed to the plasma chamber 1 from a plasma substance cast-in hole 4. Because a magnetic field of such an intensity as to generate absorption of cyclotron resonance is applied around this cast-in hole 4, plasma is ignited, dispersed in the chamber 1 following the stream of the gas, and equalized. As this plasma stream is excited by the microwave power in the TEon mode, the diameter becomes large. This allows uniform generation of plasma having a large bore.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 プラズマ発生装置の応用分野は年毎に拡大しつつある。[Detailed description of the invention] [Industrial application field] The field of application of plasma generators is expanding every year.

プラズマ発生装置からは電子、イオン、イオンラジカル
などを発生させることができ、特に電子工業方面では、
取り出したイオンビームによって、イオン注入、イオン
ブレーティング、結晶成長、スパッタリング、エツチン
グ、化合物合成など多方面に応用されている。
Plasma generators can generate electrons, ions, ion radicals, etc., especially in the electronics industry.
The extracted ion beam is used in a wide variety of applications, including ion implantation, ion blating, crystal growth, sputtering, etching, and compound synthesis.

本発明は、マイクロ波電力を供給してプラズマを発生さ
せ、イオンビームを取り出すプラズマ発生装置に関する
The present invention relates to a plasma generation device that supplies microwave power to generate plasma and extracts an ion beam.

〔従来の技術〕[Conventional technology]

電子サイクロトロン共鳴吸収(ECR)は磁界と電子の
相互作用によって、マイクロ波電力が有効に電子を加熱
して高密度のプラズマを作るので、プラズマ発生装置と
して各方面で利用されているが、いまだに100腫以上
の大口径で可及的平坦なプラズマを発生させることが困
難である。
Electron cyclotron resonance absorption (ECR) is used in various fields as a plasma generation device because microwave power effectively heats electrons and creates high-density plasma through the interaction of magnetic fields and electrons. It is difficult to generate plasma as flat as possible with a diameter larger than that of a tumor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、ECRを使用するプラズマ発生装置としては、種
々の方式が発表されているが、全て単一モード励振であ
って、そのため大口径のプラズマが発生出来なかった。
Conventionally, various systems have been announced as plasma generators using ECR, but all of them use single mode excitation, and therefore cannot generate large-diameter plasma.

本発明では、大口径の金属製円筒内でマイクロ被電力に
よるTEonモード励振を行い、この周波数に対応する
磁界を加えてサイクロトロン共鳴を生じさせることによ
り大口径で可及的平坦なプラズマを発生させるプラズマ
発生装置を提供することを目的とする。
In the present invention, TEon mode excitation is performed using micro-power in a large-diameter metal cylinder, and a magnetic field corresponding to this frequency is applied to generate cyclotron resonance, thereby generating a large-diameter, flat plasma as possible. The purpose is to provide a plasma generator.

〔lI題を解決するための手段〕[Means for solving the lI problem]

本発明は、イオン化物質が注入される金属製の円筒、該
円筒の一方の軸方向端面から複数のループコイル又は細
隙を経由してTEonモードの励振を行うマイクロ波電
力供給手段、該円筒の外部よりマイクロ波周波数に対応
する磁界を加えて電子サイクロトロン共鳴吸収を生じさ
せる磁界発生手段を有することを特徴とするプラズマ発
生装置である。
The present invention relates to a metal cylinder into which an ionized substance is injected, a microwave power supply means for exciting a TEon mode from one axial end face of the cylinder via a plurality of loop coils or a narrow gap, and This plasma generation device is characterized by having a magnetic field generating means that applies a magnetic field corresponding to a microwave frequency from the outside to cause electron cyclotron resonance absorption.

〔作 用〕[For production]

金属製円筒内の共振モードには、TE波とTM波とがあ
るが、前者は電界が導体に接しないのに、後者では電界
が導体を切ることになり損失が大きく能率が悪い、そこ
で本発明ではTE波の高次モードであるTEonモード
励振を採用した。モード信号の添字の始めの0は、円周
方向に電磁界の変化のないことを示し、次のnは半径方
向の変化の回数を示している。またこの金属製円筒の軸
方向両端が金属板で塞がれていると、共振器を形成して
このモードはTEon−の形で示され、このときmは軸
方向の電磁界の変化の数を現している。TE、21共振
器の電磁界の縦断面図を第2図、横断面図を第3図に示
している。第2図・第3図において、1はプラズマ室、
2はマイクロ波電力の入力端子、71・72は電界分布
、8は磁界分布、12・13は金属板を示す、プラズマ
室1は金属製の円筒の構造を有し、その円筒の軸方向の
両端面は金属板12・13で塞がれている。it電界分
布磁界分布も金属壁面に触れないので、そのための損失
は軽微である0図はnが2の場合を示しているが、一般
には0層になる0本発明では、TEonモード励振によ
ってマイクロ波電力を加えるので、プラズマ励起部が単
一モード励振のn倍となり、大口径の金属製円筒内に広
がるので、目的を達成することができる。
There are two types of resonance modes in a metal cylinder: TE waves and TM waves.In the former, the electric field does not touch the conductor, but in the latter, the electric field cuts the conductor, resulting in large losses and poor efficiency. The invention employs TEon mode excitation, which is a higher-order mode of TE waves. The 0 at the beginning of the subscript of the mode signal indicates that there is no change in the electromagnetic field in the circumferential direction, and the next n indicates the number of changes in the radial direction. If both axial ends of this metal cylinder are closed with metal plates, a resonator is formed and this mode is expressed in the form TEon-, where m is the number of changes in the electromagnetic field in the axial direction. is expressed. A longitudinal cross-sectional view of the electromagnetic field of the TE, 21 resonator is shown in FIG. 2, and a cross-sectional view is shown in FIG. 3. In Figures 2 and 3, 1 is a plasma chamber;
2 is an input terminal for microwave power, 71 and 72 are electric field distributions, 8 is a magnetic field distribution, and 12 and 13 are metal plates.The plasma chamber 1 has a metal cylinder structure, and the axial direction of the cylinder is Both end faces are closed with metal plates 12 and 13. It electric field distribution The magnetic field distribution also does not touch the metal wall surface, so the loss due to this is slight. 0 The figure shows the case where n is 2, but in general it is a 0 layer. 0 In the present invention, the micro Since the wave power is applied, the plasma excitation part becomes n times the single mode excitation and spreads inside the large diameter metal cylinder, so that the purpose can be achieved.

TEon、形弁振器の場合、直径りが最小値以下になる
と減衰してしまって、軸方向への伝搬ができなくなるの
で、直径りは最小値以上にしなければならない。各伝搬
モードに対する遮断波長λCと周波数2.45GHzに
対する最小直径I)+inには、下表の関係がある。
In the case of a TEon type valve vibrator, if the diameter is less than the minimum value, it will be attenuated and propagation in the axial direction will not be possible, so the diameter must be greater than the minimum value. The cutoff wavelength λC for each propagation mode and the minimum diameter I)+in for a frequency of 2.45 GHz have the relationship shown in the table below.

その共振長し■は下表の欅に求められる。Its resonance length (■) is determined by Keyaki in the table below.

いま使用周波数を2.45GHzとすると、その波長λ
0は λo−122.364■ となり、共振器の共振長し■は管内波長の(′A)だか
ら、次式で求められる。
If the frequency used now is 2.45 GHz, its wavelength λ
0 becomes λo-122.364■, and since the resonance length of the resonator and ■ is the tube wavelength ('A), it can be determined by the following equation.

L=λO/2/ (1−(λ0/λC)り @4従って
、使用周波数2.45GHzの共振器の直径りを最小直
径Dmin以上に数点選んだ場合、上表のように、TE
on+モードでは直径りを太くすると、共振長しが短く
なるので、Lを長くするにはTEon−モードにすれば
、m倍に波長することができる。
L=λO/2/ (1-(λ0/λC)ri @4 Therefore, if several diameters of resonators with a working frequency of 2.45 GHz are selected to be greater than or equal to the minimum diameter Dmin, as shown in the table above, TE
In the on+ mode, increasing the diameter will shorten the resonance length, so to lengthen L, set the TEon- mode, and the wavelength can be multiplied by m.

電子サイクロトロン共鳴では、磁界とマイクロ波電力の
相互作用によって、プラズマ電子を選択加熱して、高密
度のプラズマを作ることができる。
In electron cyclotron resonance, the interaction of a magnetic field and microwave power can selectively heat plasma electrons to create a high-density plasma.

電子サイクロトロン周波数f (GHz)と磁界強度B
 (kGauss)の間には、次の関係がある。
Electron cyclotron frequency f (GHz) and magnetic field strength B
(kGauss) has the following relationship.

f=2.8B 即ち、f=2.45 (GHz)では、B=0゜875
 (kGauss)となる。ただこの磁界強度はプラズ
マ発生室の全面に亘ってこの値にする必要はなく、特に
イオン化物質の導入口付近でプラズマ点火させる部分と
、プラズマ発生室の出口付近でマグネチック・ミラー作
用を行わせるために、この磁界強度に調整すれば良い。
f=2.8B, that is, at f=2.45 (GHz), B=0°875
(kGauss). However, the magnetic field strength does not need to be at this value over the entire surface of the plasma generation chamber; in particular, a magnetic mirror effect should be performed in the area where the plasma is ignited near the ionized substance inlet and near the exit of the plasma generation chamber. Therefore, the magnetic field strength should be adjusted to this value.

〔実施例〕〔Example〕

第1図は本発明の詳細な説明するための縦断面図である
FIG. 1 is a longitudinal sectional view for explaining the present invention in detail.

1は金属円筒で作られたプラズマ室で、この金属円筒の
軸方向の一方の端面ば金属板12で封止され、TEon
モード励振を行うように端子2からマイクロ波電力が供
給されている。3は励磁コイルまたは永久磁石でプラズ
マ室1内を必要な磁界強度におく、4はプラズマ物質投
入口で多方向からガス状物質をプラズマ室1内に送り込
み、プラズマ室1の内部は10−”乃至10 ”3To
rr程度にしている。このプラズマ物質投入口4の付近
ではサイクロトロン共鳴吸収を起こすような強度の磁界
が加えられているので、プラズマが点火され、ガスの流
れに従ってプラズマ室1の内部に拡散して平均化される
。このプラズマ流はTEonモードのマイクロ波電力で
励振されているので、直径の太いものとなる。プラズマ
室1の他方の端面ば金属板13に多くの小孔が穿たれて
おり、イオン引き出し電極5との電位差によって、太い
イオン・ビーム6となって外部に取り出される。
1 is a plasma chamber made of a metal cylinder, one end surface in the axial direction of this metal cylinder is sealed with a metal plate 12, and the TEon
Microwave power is supplied from terminal 2 to perform mode excitation. 3 is an excitation coil or a permanent magnet to maintain the required magnetic field strength inside the plasma chamber 1; 4 is a plasma material inlet for feeding gaseous substances into the plasma chamber 1 from multiple directions; the inside of the plasma chamber 1 is 10-" to 10”3To
I keep it around rr. Since a magnetic field strong enough to cause cyclotron resonance absorption is applied near the plasma material inlet 4, the plasma is ignited, diffused into the plasma chamber 1 according to the gas flow, and is averaged. Since this plasma flow is excited by microwave power in the TEon mode, it has a large diameter. A large number of small holes are bored in the metal plate 13 at the other end of the plasma chamber 1, and due to the potential difference with the ion extraction electrode 5, a thick ion beam 6 is extracted to the outside.

第4図は、ループコイルでマイクロ波電力を供給する状
態をプラズマ室1の内部からみたものである。TEon
モード励振では端面の辺りの磁界が、第2図や第3図に
示されているように、直径方向に向いているので、ルー
プコイル21・22のむきを磁界に直角になるようにし
、しかもその隣り合う励振位相が逆になるように取り付
ける。またプラズマ室内は低度の真空状態だから、金属
板12のループ取り付は部は耐熱絶縁物9で封じる。
FIG. 4 shows the state in which microwave power is supplied by the loop coil, as seen from inside the plasma chamber 1. TEon
In mode excitation, the magnetic field around the end face is oriented in the diametrical direction as shown in Figures 2 and 3, so the loop coils 21 and 22 should be oriented perpendicular to the magnetic field. Install them so that their adjacent excitation phases are opposite. Furthermore, since the plasma chamber is in a low vacuum state, the loop attachment portion of the metal plate 12 is sealed with a heat-resistant insulator 9.

すなわち、第4図においてループコイル21は、耐熱絶
縁物9の位置211からプラズマ室内に引き込まれた後
図面左側に折り曲げられ、さらに折り曲げられた後金属
板12に接合される。ループコイル22は、ループコイ
ル21と逆の方向から引き込まれるので、位W221か
らプラズマ室内に引き込まれる。
That is, in FIG. 4, the loop coil 21 is drawn into the plasma chamber from a position 211 of the heat-resistant insulator 9, then bent to the left in the drawing, further bent, and then joined to the metal plate 12. Since the loop coil 22 is drawn in from the opposite direction to the loop coil 21, it is drawn into the plasma chamber from the position W221.

また導波管から細隙を通してマイクロ波動振を行う場合
には、第5図のように磁界に直角に穿たれた細隙10を
通して導波管11からマイクロ波電力が供給される。こ
の場合も、隣り合う細隙10の励振位相が逆になるよう
に構成し、その細隙には耐熱絶縁物で封じて気密を保っ
ている。
When microwave vibration is performed from a waveguide through a gap, microwave power is supplied from the waveguide 11 through a gap 10 cut at right angles to the magnetic field, as shown in FIG. In this case as well, the excitation phases of adjacent slits 10 are configured to be opposite, and the slits are sealed with a heat-resistant insulator to maintain airtightness.

本発明において、大型の共振器を使用する場合に問題に
なるのは、TMモードをいかに抑止するかである。異種
モード共振だがTEonモードでは特にTM、nモード
と寸法が一致するので問題となのである。
In the present invention, when using a large resonator, the problem is how to suppress the TM mode. Although it is a different mode resonance, the TEon mode is particularly problematic because its dimensions match those of the TM and n modes.

TM、nモードでは、TEonの電界と磁界が逆になる
ので、共振器壁内にマイクロ波電流が流れ損失が増加す
る。そこで本発明では、異種モード・サプレッサーとし
て第6図の構成を試みた。第6図はプラズマ室の円筒の
端面部分の一部縦断面図であり、円筒101と金属板1
21の間に耐熱絶縁環91を挿入してTMモード共振の
電気ロスを大きくしたものである。耐熱絶縁環91は異
種モード共振のTMモードのサプレッサーとして用いら
れたものである。
In TM and n modes, the electric field and magnetic field of TEon are reversed, so microwave current flows within the resonator wall and loss increases. Therefore, in the present invention, the configuration shown in FIG. 6 was attempted as a heterogeneous mode suppressor. FIG. 6 is a partial longitudinal sectional view of the end face of the cylinder of the plasma chamber, showing the cylinder 101 and the metal plate 1.
A heat-resistant insulating ring 91 is inserted between 21 to increase the electrical loss of TM mode resonance. The heat-resistant insulating ring 91 is used as a suppressor of the TM mode of different mode resonance.

本実施例ではマイクロ波電源として2.45GHz、5
kWのものを使用し、プラズマ室寸法は直径320■、
長さ235.7閣(TEO22モードとなる)を使い、
外部から励磁コイルによって875 gaussとなる
磁界を加えた。その結果、多数の試料で高能率で大口径
のほぼ均一なプラズマ発生が認められた。
In this example, the microwave power source is 2.45 GHz, 5
kW, the plasma chamber dimensions are 320cm in diameter,
Using length 235.7 (TEO22 mode),
A magnetic field of 875 gauss was applied externally by an excitation coil. As a result, highly efficient, large-diameter, almost uniform plasma generation was observed in many samples.

〔発明の効果〕〔Effect of the invention〕

本発明によって、高能率で200閣乃至500■といっ
た大口径のプラズマが、はぼ均一に発生できた。
According to the present invention, large-diameter plasma of 200 mm to 500 square meters can be generated uniformly with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のプラズマ発生装置の構成説明図、第2
図はTE6.、共振器のit磁界縦断面図、第3図はそ
の横断面図、第4図はループコイルを用いた実施例を示
す図、第5図は細隙によるマイクロ波動振を用いた実施
例を示す図、第6図はサプレッサーの縦断面図。 1はプラズマ室、2は入力端子、21・22はループコ
イル、3は励磁コイルまたは永久磁石、4はプラズマ物
質投入口、5はイオン引き出し電極、6はイオンビーム
、71・72は電界分布、8は磁界分布、9は耐熱絶縁
物、10は細隙、11は導波管、12・13・121は
金属板、91は耐熱絶縁環、101は円筒。 第3図
FIG. 1 is an explanatory diagram of the configuration of the plasma generating device of the present invention, and FIG.
The figure is TE6. , FIG. 3 is a cross-sectional view of the IT magnetic field of the resonator, FIG. 4 is a diagram showing an example using a loop coil, and FIG. 5 is an example using microwave vibration due to a slit. The figure shown in FIG. 6 is a longitudinal sectional view of the suppressor. 1 is a plasma chamber, 2 is an input terminal, 21 and 22 are loop coils, 3 is an excitation coil or permanent magnet, 4 is a plasma material inlet, 5 is an ion extraction electrode, 6 is an ion beam, 71 and 72 are electric field distributions, 8 is a magnetic field distribution, 9 is a heat-resistant insulator, 10 is a slit, 11 is a waveguide, 12, 13, and 121 are metal plates, 91 is a heat-resistant insulating ring, and 101 is a cylinder. Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)イオン化物質が注入される金属製の円筒、該円筒
の一方の軸方向端面から複数のループコイル又は細隙を
経由してTEonモードの励振を行うマイクロ波電力供
給手段、該円筒の外部よりマイクロ波周波数に対応する
磁界を加えて電子サイクロトロン共鳴吸収を生じさせる
磁界発生手段を有することを特徴とするプラズマ発生装
置。
(1) A metal cylinder into which an ionized substance is injected, a microwave power supply means for exciting the TEon mode from one axial end face of the cylinder via a plurality of loop coils or slits, and the outside of the cylinder. 1. A plasma generation device comprising magnetic field generating means for applying a magnetic field corresponding to a microwave frequency to cause electron cyclotron resonance absorption.
(2)円筒と軸方向端面との間にマイクロ波電力のTM
モードの供給を抑止するためのサプレッサーを備えた請
求項(1)記載のプラズマ発生装置。
(2) TM of microwave power between the cylinder and the axial end face
The plasma generator according to claim 1, further comprising a suppressor for suppressing supply of the mode.
JP2098408A 1990-04-13 1990-04-13 Plasma generator Expired - Fee Related JPH0715838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098408A JPH0715838B2 (en) 1990-04-13 1990-04-13 Plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098408A JPH0715838B2 (en) 1990-04-13 1990-04-13 Plasma generator

Publications (2)

Publication Number Publication Date
JPH03297098A true JPH03297098A (en) 1991-12-27
JPH0715838B2 JPH0715838B2 (en) 1995-02-22

Family

ID=14219010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098408A Expired - Fee Related JPH0715838B2 (en) 1990-04-13 1990-04-13 Plasma generator

Country Status (1)

Country Link
JP (1) JPH0715838B2 (en)

Also Published As

Publication number Publication date
JPH0715838B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US6456011B1 (en) Magnetic field for small closed-drift ion source
US5216329A (en) Device for distributing a microwave energy for exciting a plasma
US5370765A (en) Electron cyclotron resonance plasma source and method of operation
KR940010844B1 (en) Ion source
US5666023A (en) Device for producing a plasma, enabling microwave propagation and absorption zones to be dissociated having at least two parallel applicators defining a propogation zone and an exciter placed relative to the applicator
JPH0732072B2 (en) Plasma excitation apparatus and method and plasma generation apparatus
JPH08330096A (en) Flat plasma generator using fluctuating magnetic pole
JPH088095A (en) High-frequency induction plasma source device for plasma treatment
ITFI940194A1 (en) RADIOFREQUENCY PLASMA SOURCE
US20030218430A1 (en) Ion source with external RF antenna
JPS61118938A (en) Ignition method and apparatus for superhigh frequency ion source
CA2438098C (en) Magnetic field for small closed-drift thruster
Engemann et al. Large volume electron cyclotron resonance plasma generation by use of the slotted antenna microwave source
JPH03297098A (en) Plasma generating device
US5506405A (en) Excitation atomic beam source
JP2567892B2 (en) Plasma processing device
Amemiya et al. Electron energy distribution in multicusp-type ECR plasma
Namura et al. Effects of permanent magnet arrangements and antenna locations on the generation of multicusp electron cyclotron resonance plasma
JP3585512B2 (en) Microwave plasma generator
KR20020004934A (en) Plasma source of linear beam ions
JP3498424B2 (en) ECR ion source
RU2095877C1 (en) Ion production method and ion source implementing it
JP2001338589A (en) Electron cyclotron resonance ion source
JP2700035B2 (en) Ion source
JP2581053B2 (en) Microwave ion source

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees