JPH03296938A - Magneto-optical recording medium and recording method - Google Patents

Magneto-optical recording medium and recording method

Info

Publication number
JPH03296938A
JPH03296938A JP9940390A JP9940390A JPH03296938A JP H03296938 A JPH03296938 A JP H03296938A JP 9940390 A JP9940390 A JP 9940390A JP 9940390 A JP9940390 A JP 9940390A JP H03296938 A JPH03296938 A JP H03296938A
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
layer
magneto
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9940390A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nakagi
義幸 中木
Takashi Tokunaga
隆志 徳永
Motohisa Taguchi
元久 田口
Tatsuya Fukami
達也 深見
Kazuhiko Tsutsumi
和彦 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9940390A priority Critical patent/JPH03296938A/en
Publication of JPH03296938A publication Critical patent/JPH03296938A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a medium for direct overwriting with large reproducing output by depositing a first magnetic layer and a second magnetic layer on a substrate in a manner that the layer 2 satisfies a specified condition. CONSTITUTION:On a substrate 2, the first magnetic layer 3 having perpendicular magnetic anisotropy and comprising rare earth-transition metal amorphous alloy and the second magnetic layer 4 comprising rare earth-transition metal amorphous alloy coupled with the layer 3 by exchange force are formed so as to satisfy the relations expressed by formulae I and II. In the formulae, Tc1 is the Curie temp. of the first magnetic layer 3, Tc2 is the Curie temp. of the second magnetic layer 4, Hc1 is the coercive force of the first magnetic layer 3, Hc2 is the coercive force of the second magnetic layer 4, Hw1(2) is the exchange force from the second magnetic layer 4 to the first magnetic layer 3, Hw2(1) is the exchange force from the first magnetic layer 3 to the second magnetic layer 4, Hini is the initial auxiliary magnetic field, and Hb is the recording magnetic field. Thus, the obtd. magneto-optical recording medi um has large reproducing output and can be used for direct overwriting.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光磁気記録媒体および記録方式に関し、さ
らに詳しくいうと、直接オーバーライド可能な光磁気記
録媒体およびこの光磁気記録媒体を用いた光磁気記録方
式に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a magneto-optical recording medium and a recording method, and more specifically, to a magneto-optical recording medium that can be directly overridden and a magneto-optical recording medium using this magneto-optical recording medium. This relates to magnetic recording methods.

[従来の技術] 第3図(a)は、例えば特開昭63−285740号公
報に示された従来の光磁気記録媒体および記録装置の要
部断面図である0図において、(1)は記録媒体、(2
)は透光性の基板、(3)は第1磁性層、(4)は第2
磁性層であり例えばTbFe、丁bFeCo等のフェリ
磁性体である。(7)は記録・消去・再生用レーザービ
ーム、(8)は単一外部磁石である。
[Prior Art] FIG. 3(a) is a sectional view of a main part of a conventional magneto-optical recording medium and a recording device disclosed in, for example, Japanese Patent Application Laid-open No. 63-285740. Recording medium, (2
) is a transparent substrate, (3) is a first magnetic layer, and (4) is a second magnetic layer.
The magnetic layer is made of a ferrimagnetic material such as TbFe or TbFeCo. (7) is a laser beam for recording, erasing, and reproducing, and (8) is a single external magnet.

光磁気記録媒体(1)は基板(2)、第1磁性層(3)
および第2磁性層(4)で構成され、第1磁性層(3)
と第2磁性層(4)の間には交換力が働らいており、第
1磁性層(3)は情報を保持するための記録層である。
The magneto-optical recording medium (1) includes a substrate (2) and a first magnetic layer (3).
and a second magnetic layer (4), and a first magnetic layer (3).
An exchange force acts between the magnetic layer and the second magnetic layer (4), and the first magnetic layer (3) is a recording layer for retaining information.

第2磁性層(4)は、室温からキュリー温度の間で補償
温度を有する希土類−遷移金属磁性体からなっている。
The second magnetic layer (4) is made of a rare earth-transition metal magnetic material having a compensation temperature between room temperature and the Curie temperature.

第3図(b)は室温での第2磁性層(4)のヒステリシ
ス特性図であり、第1磁性層(3)の副格子磁化方向に
第2磁性層(4)の副格子磁化方向は揃う、第3図(e
)は外部磁石(8)の発生磁界特性図であり、単一外部
磁石(8)は記録媒体(1)に一定方向であるが発生磁
界分布を有し、レーザービーム(7)の直下端でHb、
他方端で旧niなる磁界を発生している。Hiniは第
1磁性層(3)の磁化方向にかかわらず第2磁性層(4
)の磁化方向を一様に磁化し、単一外部磁石(8)の直
上では第2磁性層(4)はその磁化方向を保持する。第
1磁性層(3)は記録消去時のレーザービーム(ア)の
強度でのみ磁性層の磁化方向が変化する。
FIG. 3(b) is a hysteresis characteristic diagram of the second magnetic layer (4) at room temperature, and the sublattice magnetization direction of the second magnetic layer (4) is in the sublattice magnetization direction of the first magnetic layer (3). Figure 3 (e
) is a characteristic diagram of the generated magnetic field of the external magnet (8), where the single external magnet (8) has a generated magnetic field distribution in a fixed direction toward the recording medium (1), and has a generated magnetic field distribution at the end directly below the laser beam (7). Hb,
A magnetic field called old ni is generated at the other end. Hini is the second magnetic layer (4) regardless of the magnetization direction of the first magnetic layer (3).
) and the second magnetic layer (4) maintains its magnetization direction immediately above the single external magnet (8). The magnetization direction of the first magnetic layer (3) changes only with the intensity of the laser beam (A) during recording and erasing.

例えば、室温にて第1磁性層(3)が遷移金属磁気モー
メント優勢な磁性体を用いる。交換力は、各磁性層の副
格子磁気モーメントが揃うように働き、磁化方向は反対
向きの遷移金属磁気モーメントと希土類金属磁気モーメ
ントの総和となるので第2磁性層(4)の補償点以下で
は各磁性層の磁化は向き合う方向、第2磁性層(4)の
補償点以上では各磁性層の磁化は揃う方向が安定になる
For example, the first magnetic layer (3) uses a magnetic material in which the transition metal magnetic moment is dominant at room temperature. The exchange force works to align the sublattice magnetic moments of each magnetic layer, and the magnetization direction is the sum of the transition metal magnetic moment and the rare earth metal magnetic moment, which are in opposite directions, so below the compensation point of the second magnetic layer (4), The magnetization of each magnetic layer is stable in the direction in which they face each other, and the direction in which the magnetization in each magnetic layer is aligned is stable above the compensation point of the second magnetic layer (4).

レーザービーム(7)の出力を上げて第1磁性層(3)
が交換力により第2磁性層(4)の磁化方向に揃い、第
2磁性層(4)の副格子磁化方向がHbにより変化しな
いとき、第2磁性層(4)の磁化方向が第1磁性層(3
)に転写される。このとき第2磁性層(4)は上向き(
遷移金属磁気モーメントは下向き)−様に初期化されて
いるので、第1磁性層(3)の磁化方向は下向き(遷移
金属磁気モーメントは下向き)になる、第2磁性層(4
)の磁化反転温度を越えるときは、第2磁性層(4)の
補償温度も越え、Hbにより第2磁性層(4)の磁化方
向は上向き(遷移金属磁気モーメントは上向き)になる
、さらに第2磁性層(4)の磁化方向が第1磁性層(3
)に転写され、第1磁性層(3)の磁化方向は上向き(
遷移金属磁気モーメントは上向き)になる、このように
レーザービーム(7)の出力を変えるだけで第1磁性層
(3)の磁化状態を変えることで?!!オーバーライド
が可能になる。
Increase the output of the laser beam (7) to remove the first magnetic layer (3)
is aligned with the magnetization direction of the second magnetic layer (4) due to the exchange force, and when the sublattice magnetization direction of the second magnetic layer (4) is not changed by Hb, the magnetization direction of the second magnetic layer (4) is aligned with the first magnetic layer. Layer (3
) is transcribed. At this time, the second magnetic layer (4) is directed upward (
Since the transition metal magnetic moment is initialized in a downward direction), the magnetization direction of the first magnetic layer (3) is downward (the transition metal magnetic moment is downward), and the second magnetic layer (4) is initialized so that the transition metal magnetic moment is directed downward.
), the compensation temperature of the second magnetic layer (4) is also exceeded, and the magnetization direction of the second magnetic layer (4) is directed upward due to Hb (the transition metal magnetic moment is directed upward). The magnetization direction of the second magnetic layer (4) is the same as that of the first magnetic layer (3).
), and the magnetization direction of the first magnetic layer (3) is directed upward (
By changing the magnetization state of the first magnetic layer (3) simply by changing the output of the laser beam (7) in this way, the transition metal magnetic moment becomes upward)? ! ! Overrides are possible.

[発明が解決しようとする課題] 従来の光磁気記録媒体および記録方式は以上のように構
成され、直接オーバーライドができるが磁性層の構成が
異なっても同様の動作が可能であることを見いだした。
[Problems to be Solved by the Invention] Conventional magneto-optical recording media and recording systems are configured as described above and can be directly overridden, but it has been discovered that the same operation is possible even if the configuration of the magnetic layer is different. .

また、再生層となる第1磁性層のキュリー温度が第2磁
性層のキュリー温度より低く、記録時に印加するレーザ
ーパワーを大きくしないようにすると再生出力が大きく
とれない媒体となる。
Further, the Curie temperature of the first magnetic layer serving as the reproduction layer is lower than the Curie temperature of the second magnetic layer, and if the laser power applied during recording is not increased, the reproduction output cannot be increased.

さらに、特開平1−100752号公報に示されたよう
に、第2磁性層に対して第1磁性層のキュリー温度が高
く、また室温にて保磁力が小さい記録媒体を用いても高
速に磁界を変調しないと直接オーバライドが可能になら
ない。
Furthermore, as shown in JP-A-1-100752, the Curie temperature of the first magnetic layer is higher than that of the second magnetic layer, and even if a recording medium with a small coercive force at room temperature is used, the magnetic field can be applied at high speed. Direct overrides are not possible without modulating .

この発明は上記のような課題を解決するためになされた
もので、大きい再生出力を有し、記録時に定常な磁界を
発生している環境下で単一レーザービームの出射出力を
変え、直接オーバーライドができる光磁気記録媒体およ
び記録方式を得ることを目的とするものである。
This invention was made to solve the above-mentioned problems, and has a large playback output, and it can directly override by changing the output output of a single laser beam in an environment where a steady magnetic field is generated during recording. The purpose of the present invention is to obtain a magneto-optical recording medium and a recording method that can perform the following steps.

[課題を解決するための手段] この発明に係る光磁気記録媒体は、基板に設けられた垂
直磁気異方性を有する希土類−遷移金属非晶質合金から
なる第1磁性層と、この第1磁性層に設けられ上記第1
磁性層と交換力で結合された希土類−遷移金属非晶質合
金からなる第2磁性層を備え、 Tc+  >  Tcま ただし、T c 、 :第1磁性層のキュリー温度Tc
2:第2磁性層のキュリー温度 を満たし、かつ室温にて Hc 、−Hvv、、+> I Hini I >HC
ltHWl+21> Hb  Hc +  HW 11
21 > 0ただし、Hc、:第1磁性層の保磁力 HC2:第2磁性層の保磁力 Hw + + 21 :第1磁性層が第2磁性層から受
ける交換力 HVV 2111 :第2磁性層が第1磁性層から受け
る交換力 旧ni:初期補助磁界 Hb:記録磁界 を満足する。
[Means for Solving the Problems] A magneto-optical recording medium according to the present invention includes: a first magnetic layer made of a rare earth-transition metal amorphous alloy having perpendicular magnetic anisotropy provided on a substrate; The first magnetic layer is provided in the magnetic layer.
A second magnetic layer made of a rare earth-transition metal amorphous alloy is bonded to the magnetic layer by exchange force, and Tc+ > Tc, where Tc: Curie temperature Tc of the first magnetic layer.
2: Satisfies the Curie temperature of the second magnetic layer, and at room temperature Hc, -Hvv,, +> I Hini I > HC
ltHWl+21> Hb Hc + HW 11
21 > 0 However, Hc: Coercive force of the first magnetic layer HC2: Coercive force of the second magnetic layer Hw + + 21: Exchange force HVV received by the first magnetic layer from the second magnetic layer 2111: Coercive force of the second magnetic layer Exchange force received from the first magnetic layer (old ni): initial auxiliary magnetic field Hb: satisfies the recording magnetic field.

また、この発明に係る光磁気記録方式は、(a)  上
記の光磁気記録媒体を用い、(b)  W配光磁気記録
媒体を一定方向に移動させ、 (e)レーザービームの強度を消去・記録・再生と3値
変調し、 (d)印加磁界は一定方向でかつ磁界強度がレーザービ
ームが照射される直前の部位とレーザービームが照射さ
れる部位で異なるものを用いて、 (e)  記録動作後から再生動作より前にHr   
>  Hc+−Hwzt+ Hb−Hr   <   0 を満足する再生補助磁界Hrを前記媒体に印加する。
Further, the magneto-optical recording method according to the present invention (a) uses the above magneto-optical recording medium, (b) moves the W light distribution magnetic recording medium in a fixed direction, and (e) erases and erases the intensity of the laser beam. (d) The applied magnetic field is in a constant direction and the magnetic field strength is different between the area immediately before the laser beam is irradiated and the area where the laser beam is irradiated; (e) Recording. Hr after operation and before playback operation
>Hc+-Hwzt+Hb-Hr<0 A reproduction auxiliary magnetic field Hr is applied to the medium.

[作 用] この発明の光磁気記録媒体においては、補助の第1磁性
層がHC+<Hwlのときはオーバーライド後、Hw、
−Hc+以上の磁界を印加することで記録層である第2
磁性層の情報を第1磁性層に転写し再生を行う、Hc、
>Hw+のときは、外部磁石によりオーバーライドが可
能になり、記録後は両磁性層の副格子磁化は揃っている
ため、そのまま再生ができる。
[Function] In the magneto-optical recording medium of the present invention, when the auxiliary first magnetic layer HC+<Hwl, after overriding, Hw,
-Hc+ or higher magnetic field is applied to the second recording layer.
Transferring the information of the magnetic layer to the first magnetic layer and reproducing it, Hc;
>Hw+, override is possible with an external magnet, and since the sublattice magnetizations of both magnetic layers are aligned after recording, reproduction can be performed as is.

また、この発明の光磁気記録方式においては、第2磁性
層からの交換力Hw lt 21より保磁力が室温では
大きいため、記録動作後、再び第2外部磁石を通過する
と基板側から入射するレーザー出力ではこのままでは情
報の再生はできないが、記録動作終了後にHrなるHb
と逆方向の磁界を印加することで第2磁性層の記録情報
が第1磁性層に転写され、再生が可能となる。
In addition, in the magneto-optical recording method of the present invention, since the coercive force is larger at room temperature than the exchange force Hw lt 21 from the second magnetic layer, the laser beam incident from the substrate side passes through the second external magnet again after the recording operation. Information cannot be reproduced as it is at the output, but after the recording operation is completed, Hr becomes Hb.
By applying a magnetic field in the opposite direction, the recorded information in the second magnetic layer is transferred to the first magnetic layer, making reproduction possible.

[実施例] 第1図はこの発明の一実施例を示し、同図(a)は要部
断面図であり、符号(1)〜(4)および(7)。
[Embodiment] FIG. 1 shows an embodiment of the present invention, and FIG. 1(a) is a cross-sectional view of the main part, with reference numerals (1) to (4) and (7).

(8)は第3図(a)におけると同様である。同図(b
)は室温での第1磁性層(3)のヒステリシス特性図、
同図(c)は外部磁石の発生磁界である。第2磁性層(
4)からの交換力Hw1.!、より保磁力が室温では小
さく、第1磁性層(3)は室温で外部から磁界が印加さ
れていないと交換力により第2磁性層(4)の磁化方向
に揃うようにしである。また室温では希土類金属磁気モ
ーメント優勢の磁性膜で記録時および初期化時に印加す
る外部磁界の方向は同一方向になる。第2磁性層(4)
は、記録時の大きいレーザー出力にさらされるとき以外
は単一外部磁石(8)によりその磁化方向は影響されず
、情報の記録保持を担うものである。
(8) is the same as in FIG. 3(a). The same figure (b
) is a hysteresis characteristic diagram of the first magnetic layer (3) at room temperature,
Figure (c) shows the magnetic field generated by the external magnet. Second magnetic layer (
4) Exchange force Hw1. ! The coercive force is smaller at room temperature, and the first magnetic layer (3) is aligned in the magnetization direction of the second magnetic layer (4) due to exchange force when no external magnetic field is applied at room temperature. Furthermore, at room temperature, in a magnetic film in which the rare earth metal magnetic moment is dominant, the direction of the external magnetic field applied during recording and initialization is the same. Second magnetic layer (4)
The single external magnet (8) is responsible for recording and retaining information, with its magnetization direction not being affected except when exposed to high laser power during recording.

初期化動作は記録媒体(1)が移動してきて、単一外部
磁石(8)の第1図(b)中の反転磁界H1゛より大き
な磁界Hiniを発生する部位で第2磁性層(4)は−
様に上向きに磁化される(遷移金属磁気モーメントは下
向き)、このとき反転磁界H1°より大きな磁界を発生
する部位がら離れてもレーザービーム(7)が照射され
る部位まで反転磁界H1−より大きな磁界(Hb〜Mi
ni)が印加されているので、第1磁性層(3)は単一
外部磁石(8)の直上にあるときは一様に上向きに磁化
されている。
The initialization operation is performed when the recording medium (1) moves and the second magnetic layer (4) generates a magnetic field Hini larger than the reversal magnetic field H1' in FIG. 1(b) of the single external magnet (8). Ha-
(transition metal magnetic moment is directed downward). At this time, even if the part that generates a magnetic field larger than the reversal magnetic field H1° is far away, the part that is irradiated with the laser beam (7) will have a magnetic field larger than the reversal magnetic field H1-. Magnetic field (Hb~Mi
ni), the first magnetic layer (3) is uniformly magnetized upward when directly above the single external magnet (8).

レーザービーム(7)の出力をあげて第2磁性層(4)
が交換力により第1磁性層(3)の磁化方向に揃い第1
磁性層(3)の磁化反転温度には達しないとき、第1磁
性層(3)の磁化方向が第2磁性層(4)に転写される
。このとき第1磁性層(3)は室温で上向き(遷移金属
磁気モーメントは下向き)−様に初期化されているので
第2磁性層(4)の磁化方向は下向き(遷移金属磁気モ
ーメントは下向き)になる。
The output of the laser beam (7) is increased to form the second magnetic layer (4).
is aligned with the magnetization direction of the first magnetic layer (3) due to the exchange force, and the first
When the magnetization reversal temperature of the magnetic layer (3) is not reached, the magnetization direction of the first magnetic layer (3) is transferred to the second magnetic layer (4). At this time, the first magnetic layer (3) is initialized to face upward (transition metal magnetic moment is downward) at room temperature, so the magnetization direction of the second magnetic layer (4) is downward (transition metal magnetic moment is downward). become.

第1磁性層(3)の磁化反転温度を越えるときは、Hb
により第1磁性層(3)の磁化方向は上向き(遷移金属
磁気モーメントは上向き)になり、さらに第1磁性層(
3)の磁化方向が第2磁性層(4)に転写され、第2磁
性層(4)の磁化方向は上向き(遷移金属磁気モーメン
トは上向き)になる、このとき第2磁性層(4)の磁化
方向の確定は、記録媒体(1)の降温が記録媒体(1)
の移動に比べ素早く起こるために、単一外部磁石(8)
からの磁界が印加されている状態で起こる。単一外部磁
石(8)の磁界中から記録媒体(1)が離れると、第1
磁性層(3)の磁化方向は第2磁性層(4)に対し磁性
層間の磁壁が消失するように変化する。
When the magnetization reversal temperature of the first magnetic layer (3) is exceeded, Hb
As a result, the magnetization direction of the first magnetic layer (3) is directed upward (the transition metal magnetic moment is directed upward), and the first magnetic layer (
The magnetization direction of 3) is transferred to the second magnetic layer (4), and the magnetization direction of the second magnetic layer (4) becomes upward (the transition metal magnetic moment is upward). The magnetization direction is determined by the temperature drop of the recording medium (1).
single external magnet (8) to occur quickly compared to the movement of
This occurs when a magnetic field is applied. When the recording medium (1) leaves the magnetic field of the single external magnet (8), the first
The magnetization direction of the magnetic layer (3) changes with respect to the second magnetic layer (4) so that the domain wall between the magnetic layers disappears.

このような動作を行い、レーザービーム(7)の出力を
変えるだけで第1磁性層(3)の磁化状態を変えられ直
接オーバーライドが可能になる。
By performing such an operation and simply changing the output of the laser beam (7), the magnetization state of the first magnetic layer (3) can be changed and direct overriding becomes possible.

さらに具体例を挙げると、Fe上にTb、C。To give a more specific example, Tb and C on Fe.

チップを配した第1ターゲツト源およびFe上にTbチ
ップを配した第2ターゲツトを備えたスパッター装置内
に、1.6μmピッチのグループがあらかじめ設けられ
ている透光性のガラス基板(2)を配し、アルゴン雰囲
気中で第1磁性層(3)としてスパッター速度が100
人/sinで第1ターゲツト源より膜厚700人積層し
た。この状態で半日放置した後、第2磁性層(4)とし
て第2ターゲツト源より膜厚600人積層した。このと
き第1磁性層(3)と第2磁性層(4)のキュリー温度
はそれぞれ220℃。
A light-transmitting glass substrate (2) on which groups with a pitch of 1.6 μm were previously provided was placed in a sputtering apparatus equipped with a first target source having chips arranged thereon and a second target having Tb chips arranged on Fe. The sputtering speed was 100 as the first magnetic layer (3) in an argon atmosphere.
A film thickness of 700 layers was laminated from the first target source at a thickness of 700 layers per sin. After leaving this state for half a day, a second magnetic layer (4) was deposited to a thickness of 600 layers using a second target source. At this time, the Curie temperatures of the first magnetic layer (3) and the second magnetic layer (4) are each 220°C.

170℃であり、室温の保磁力はそれぞれ3kise、
>15に6eであった。また室温での交換力[=(磁壁
エネルギー)/2/ (飽和磁化)/(膜厚)コは3.
2k 6e 、< 5 k 6eであった。この媒体デ
ィスクを線速6m1secで回転させ、Hini=フk
iie。
The temperature is 170℃, and the coercive force at room temperature is 3kise, respectively.
>15 and 6e. Also, the exchange force at room temperature [=(domain wall energy)/2/(saturation magnetization)/(film thickness)] is 3.
2k6e, <5k6e. This medium disk is rotated at a linear speed of 6 m 1 sec, Hini=Fk
iie.

Hb・400oe の連続的に変化する単一磁石(8)
を用いることで、9mWのピークパワー、4.5m W
のボトムパワー、1mWのリードパワーの条件下で、例
えば2 MHz& 5 MHzの2つの異なる記録周波
数に対して完全なオーバーライド特性が得られた。第1
磁性層(3)と第2磁性層(4)の積層を逆にした従来
例と同様な構成にした記録媒体に対して、約1割弱の大
きな再生出力が得られた。
Continuously changing single magnet of Hb・400oe (8)
By using 9mW peak power, 4.5mW
Under conditions of a bottom power of 1 mW and a read power of 1 mW, perfect override characteristics were obtained for two different recording frequencies, for example, 2 MHz & 5 MHz. 1st
A reproduction output that was approximately 10% higher was obtained compared to a recording medium having the same structure as the conventional example in which the magnetic layer (3) and the second magnetic layer (4) were stacked in reverse.

第2図は他の実施例を示し、同図(a)は光磁気記録媒
体の要部断面図で構成としては単一磁石(8)の代わり
に第1外部磁石(5)および第2外部磁石(6)を設け
である。第2外部磁石(6)はMiniなる磁界を発生
する永久磁石で、第1外部磁石(5)は記録時にはHb
、記録終了時にはHbとは逆の方向の磁界Hrを発生す
る電磁石である。同図(b)は室温での第1磁性層(3
)のヒステリシス特性図であり、同図(c)は外部磁石
の発生磁界を示す、第2磁性層(4)からの交換力HW
 + + 2.より保磁力が室温では大きい、第2磁性
層(4)は、記録時の大きいレーザー出力にさらされる
とき以外は第1外部磁石(5)によりその磁化方向は影
響されず、情報の記録保持を担うものである。
FIG. 2 shows another embodiment, and FIG. 2(a) is a cross-sectional view of the main part of a magneto-optical recording medium, in which a first external magnet (5) and a second external magnet are used instead of a single magnet (8). A magnet (6) is provided. The second external magnet (6) is a permanent magnet that generates a Mini magnetic field, and the first external magnet (5) is a Hb magnetic field during recording.
, is an electromagnet that generates a magnetic field Hr in the opposite direction to Hb at the end of recording. Figure (b) shows the first magnetic layer (3) at room temperature.
), and (c) is a hysteresis characteristic diagram of the exchange force HW from the second magnetic layer (4), which shows the magnetic field generated by the external magnet.
+ + 2. The second magnetic layer (4), which has a higher coercive force at room temperature, has a magnetization direction that is not affected by the first external magnet (5) except when exposed to high laser power during recording, so that it can retain information. It is the responsibility of

オーバーライド動作はまえの実施例と同様であるが、第
2磁性層(4)からの交換力HW++z+より保磁力が
室温では大きいため、記録動作後、再び第2外部磁石(
6)を通過すると基板(2)側から入射するレーザービ
ーム(7)ではこのままでは情報の再生はできないが、
記録動作終了後にHrなるHbと逆方向の磁界を印加す
ることで第2磁性層(4)の記録情報が第1磁性層(3
)に転写され、再生が可能となる。ここで第1外部磁石
(5)の発生磁界の反転が必要になるが、記録動作・再
生動作時の切り替えにのみ伴うので記録装置の転送速度
特性の大きな障害にはならない。
The override operation is the same as in the previous embodiment, but since the coercive force is larger at room temperature than the exchange force HW++z+ from the second magnetic layer (4), after the recording operation, the second external magnet (
After passing through 6), the laser beam (7) that enters from the substrate (2) side cannot reproduce information as it is, but
After the recording operation is completed, by applying a magnetic field Hr in the opposite direction to Hb, the recorded information in the second magnetic layer (4) is transferred to the first magnetic layer (3).
) and can be reproduced. Although reversal of the magnetic field generated by the first external magnet (5) is required here, it is only associated with switching between recording and reproducing operations, so it does not seriously impede the transfer speed characteristics of the recording device.

具体的には、Fe上にTb、Coチップを配した第1タ
ーゲツト源およびFe上にTbチップを配した第2ター
ゲツトを備えたスパッター装置内に、1.6μ鋤ピツチ
のグル−プがあらかじめ設けられている透光性のガラス
基板(2)を配し、アルゴン雰囲気中で第1磁性層(3
)としてスパッター速度が100人/winで第1ター
ゲツト源より膜厚1000人積層した。この状態で、半
日放置した後、第2磁性層(4)として第2ターゲツト
源より膜厚600人積層した。このとき第1磁性層(3
)と第2磁性層(4)のキュリー温度は220℃、17
0℃であり、室温の保磁力はそれぞれ3 k5e 、 
>15に6eであった。また室温での交換力[=(磁壁
エネルギー)/2/(飽和磁化)/(膜厚)]は2.5
に6e、<5に6eであった。このディスクを線速6 
m/secで回転させ、旧1i=71(oe ]b=2
506e  の磁界で10−Hのピークパワー、5mW
のボトムパワー 1mWのリードパワーの条件下で、例
えば2 MHzk 5 N13の2つの異なる記録周波
数に対して完全なオーバーライド特性が得られ、Hr 
=−7006e の磁界で再生が可能であった。
Specifically, a group of 1.6 μ plow pitches was prepared in advance in a sputtering apparatus equipped with a first target source having Tb and Co chips on Fe and a second target having Tb chips on Fe. The light-transmitting glass substrate (2) provided is arranged, and the first magnetic layer (3) is placed in an argon atmosphere.
), a film thickness of 1000 layers was deposited from the first target source at a sputtering rate of 100 layers/win. After leaving this state for half a day, a second magnetic layer (4) was deposited to a thickness of 600 from the second target source. At this time, the first magnetic layer (3
) and the second magnetic layer (4) have a Curie temperature of 220°C, 17
0℃, and the coercive force at room temperature is 3 k5e, respectively.
>15 and 6e. Also, the exchange force [=(domain wall energy)/2/(saturation magnetization)/(film thickness)] at room temperature is 2.5
It was 6e in <5, and 6e in <5. This disk has a linear speed of 6
Rotate at m/sec, old 1i = 71 (oe ] b = 2
10-H peak power at 506e magnetic field, 5mW
Under the condition of read power of 1 mW, perfect override characteristics are obtained for two different recording frequencies, for example 2 MHzk5N13, and Hr
Reproduction was possible with a magnetic field of =-7006e.

また、各実施例ではガラス基板に2つの磁性層を設けた
が、基板としてポリカーボネート、ボレオリフィン等の
プラスチック基板を用いてもよく、磁性層としてDyF
eCo 、 GdTbFe 、 DyCdFeCo 、
(、dFe 、 TbNdFeco、DyCo等でもよ
く、さらに誘電層、非磁性層、磁性層を設けてもよい、
またこれらのディスクをエポキシ系樹脂、熱可塑性樹脂
等で貼合わせてもよい。
Further, in each example, two magnetic layers were provided on the glass substrate, but a plastic substrate such as polycarbonate or boreolifin may be used as the substrate, or DyF as the magnetic layer.
eCo, GdTbFe, DyCdFeCo,
(, dFe, TbNdFeco, DyCo, etc. may be used, and a dielectric layer, a nonmagnetic layer, and a magnetic layer may also be provided.
Further, these disks may be bonded together using epoxy resin, thermoplastic resin, or the like.

[発明の効果] 以上のように、この発明の光磁気記録媒体によれば、基
板に設けられた垂直磁気異方性を有する希土類−遷移金
属非晶質合金からなる第1磁性層、この第1磁性層に設
けられ上記第1磁性層と交換力で結合された希土類−遷
移金属非晶質合金からなる第2磁性層を備え、第2磁性
層を記録層とすることで直接オーバーライドが可能にな
り、かつ再生出力も大きくなる。
[Effects of the Invention] As described above, according to the magneto-optical recording medium of the present invention, the first magnetic layer made of a rare earth-transition metal amorphous alloy having perpendicular magnetic anisotropy provided on the substrate; A second magnetic layer made of a rare earth-transition metal amorphous alloy is provided in one magnetic layer and bonded to the first magnetic layer by exchange force, and direct override is possible by using the second magnetic layer as a recording layer. , and the playback output also increases.

また、この発明の光磁気記録方式によれば、第第2磁性
層からの交換力よりも保磁力が大きいときでも、記録磁
界と逆方向の磁界を印加することにより、オーバーライ
ドが可能となる。
Further, according to the magneto-optical recording method of the present invention, even when the coercive force is greater than the exchange force from the second magnetic layer, override is possible by applying a magnetic field in the opposite direction to the recording magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれこの発明の実施例の(a)
光磁気記録媒体の要部断面図、(b)第2磁性層の磁化
ヒステリシス特性図、(e)外部磁石の発生磁界特性図
、第3図は従来の光磁気記録媒体についての同様の図で
ある。 (1)・・記録媒体、(2)・・基板、(3)・・第1
磁性層、(4)・・第2磁性層、(5)・・第1外部磁
石、(6)・・第2外部磁石、(7)・・レーザービー
ム、(8)・・単一外部磁石。 なお、各図中、同一符号は同−又は相当部分を示す。 箒1図
FIG. 1 and FIG. 2 are (a) of an embodiment of the present invention, respectively.
3 is a similar diagram of a conventional magneto-optical recording medium; (b) magnetization hysteresis characteristic diagram of the second magnetic layer; (e) magnetic field characteristic diagram generated by an external magnet; be. (1)...Recording medium, (2)...Substrate, (3)...First
Magnetic layer, (4)...Second magnetic layer, (5)...First external magnet, (6)...Second external magnet, (7)...Laser beam, (8)...Single external magnet . In each figure, the same reference numerals indicate the same or corresponding parts. Broom 1 diagram

Claims (2)

【特許請求の範囲】[Claims] (1)基板と、この基板に設けられた垂直磁気異方性を
有する希土類−遷移金属非晶質合金からなる第1磁性層
と、この第1磁性層に設けられ上記第1磁性層と交換力
で結合された希土類−遷移金属非晶質合金からなる第2
磁性層とを備え、Tc_1>Tc_2 ただし、Tc_1:第1磁性層のキュリー温度Tc_2
:第2磁性層のキュリー温度 を満たし、かつ室温にて Hc_2−Hw_2_(_1_)>|Hini|>Hc
_1+Hw_1_(_2_)>|Hb|Hc_1−Hw
_1_(_2_)>0ただし、Hc_1:第1磁性層の
保磁力 Hc_2:第2磁性層の保磁力 Hw_1_(_2_):第1磁性層が第2磁性層から受
ける交換力 Hw_2_(_1_):第2磁性層が第1磁性層から受
ける交換力 Hini:初期補助磁界 Hb:記録磁界 を満足する光磁気記録媒体。
(1) A substrate, a first magnetic layer made of a rare earth-transition metal amorphous alloy having perpendicular magnetic anisotropy provided on this substrate, and a first magnetic layer provided on this first magnetic layer to replace the first magnetic layer. A second layer consisting of a force-bonded rare earth-transition metal amorphous alloy
and a magnetic layer, Tc_1>Tc_2, where Tc_1: Curie temperature Tc_2 of the first magnetic layer.
: Satisfies the Curie temperature of the second magnetic layer and at room temperature Hc_2-Hw_2_(_1_)>|Hini|>Hc
_1+Hw_1_(_2_)>|Hb|Hc_1−Hw
_1_(_2_)>0 However, Hc_1: Coercive force of the first magnetic layer Hc_2: Coercive force of the second magnetic layer Hw_1_(_2_): Exchange force that the first magnetic layer receives from the second magnetic layer Hw_2_(_1_): Exchange force Hini that the two magnetic layers receive from the first magnetic layer: Initial auxiliary magnetic field Hb: Magneto-optical recording medium that satisfies the recording magnetic field.
(2)(a)請求項(1)記載の光磁気記録媒体を用い
、 (b)前記光磁気記録媒体を一定方向に移 動させ、 (c)レーザービームの強度を消去・記録・再生と3値
変調し、 (d)印加磁界は一定方向でかつ磁界強度が前記レーザ
ービームが照射される直前の部位と前記レーザービーム
が照射される部位とで異なるものを用い、 (e)記録動作後から再生動作より前に |Hr|>Hc_1−Hw_1_(_2_)Hb・Hr
<0 を満足する再生補助磁界Hrを前記媒体に印加する光磁
気記録方式。
(2) (a) using the magneto-optical recording medium according to claim (1); (b) moving the magneto-optical recording medium in a certain direction; and (c) adjusting the intensity of the laser beam to perform erasing, recording, and reproduction. (d) The applied magnetic field is in a constant direction and the magnetic field strength is different between the area immediately before the laser beam is irradiated and the area where the laser beam is irradiated, and (e) From after the recording operation. Before playback operation |Hr|>Hc_1-Hw_1_(_2_)Hb・Hr
A magneto-optical recording method in which a reproduction auxiliary magnetic field Hr satisfying <0 is applied to the medium.
JP9940390A 1990-04-17 1990-04-17 Magneto-optical recording medium and recording method Pending JPH03296938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9940390A JPH03296938A (en) 1990-04-17 1990-04-17 Magneto-optical recording medium and recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9940390A JPH03296938A (en) 1990-04-17 1990-04-17 Magneto-optical recording medium and recording method

Publications (1)

Publication Number Publication Date
JPH03296938A true JPH03296938A (en) 1991-12-27

Family

ID=14246527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9940390A Pending JPH03296938A (en) 1990-04-17 1990-04-17 Magneto-optical recording medium and recording method

Country Status (1)

Country Link
JP (1) JPH03296938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639567A (en) * 1994-03-09 1997-06-17 Imation Corp. Exchange-coupled direct overwrite magneto-optic recording media

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144447A (en) * 1986-12-08 1988-06-16 Nikon Corp Reproducing method for magneto-optical recording capable of overwriting and reproducing device and magneto-optical recording medium for magneto-optical recording used therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144447A (en) * 1986-12-08 1988-06-16 Nikon Corp Reproducing method for magneto-optical recording capable of overwriting and reproducing device and magneto-optical recording medium for magneto-optical recording used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639567A (en) * 1994-03-09 1997-06-17 Imation Corp. Exchange-coupled direct overwrite magneto-optic recording media

Similar Documents

Publication Publication Date Title
JP2579631B2 (en) Magneto-optical recording method
JPH06162589A (en) Magneto-optical recording medium and magneto-optical recording method
US5530685A (en) Magneto-optical recording apparatus having paired devices for applying external magnetic fields
US5736265A (en) Magneto-optical recording medium and recording method using the same
US5768218A (en) Magneto-optical recording medium having a plurality of magnetic layers
JP3215311B2 (en) Magneto-optical recording medium and magneto-optical recording method
JPH03296938A (en) Magneto-optical recording medium and recording method
JPH076420A (en) Magneto-optical recording medium
JPH06302029A (en) Magneto-optical recording medium and recording method therefor
JP3770389B2 (en) Magneto-optical recording medium
JPH04219642A (en) Magneto-optical recording medium and method thereof
JP2746313B2 (en) Information recording method
JPH03276441A (en) Magneto-optical recording medium and method for magneto-optical recording
KR930010474B1 (en) Manufacturing method of optical magnetic materials
JPH07320320A (en) Magneto-optical recording medium, recording and reproducing method of magneto-optically recorded information
JP2505602B2 (en) Magneto-optical record carrier and method of manufacturing magneto-optical record carrier
JP3000385B2 (en) Magneto-optical recording method
JPH03119540A (en) Magneto-optical recording medium
JP2805787B2 (en) Magneto-optical recording method
Imamura Magneto-optical recording
JPH02108258A (en) Magneto-optical disk
JPH05182267A (en) Magneto-optical recording medium and recording method thereof
JPH0896427A (en) Magneto-optical recording medium and recording method for same
JPH03276448A (en) Magneto-optical recording method
JPH03296937A (en) Magneto-optical recording medium