JPH03296629A - Temperature or pressure sensor with float or balloon - Google Patents

Temperature or pressure sensor with float or balloon

Info

Publication number
JPH03296629A
JPH03296629A JP2099837A JP9983790A JPH03296629A JP H03296629 A JPH03296629 A JP H03296629A JP 2099837 A JP2099837 A JP 2099837A JP 9983790 A JP9983790 A JP 9983790A JP H03296629 A JPH03296629 A JP H03296629A
Authority
JP
Japan
Prior art keywords
sensor
temperature
float
balloon
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2099837A
Other languages
Japanese (ja)
Other versions
JP2935050B2 (en
Inventor
Takeshi Oshima
剛 大島
Shigeo Nishitani
西谷 重夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2099837A priority Critical patent/JP2935050B2/en
Publication of JPH03296629A publication Critical patent/JPH03296629A/en
Application granted granted Critical
Publication of JP2935050B2 publication Critical patent/JP2935050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To enable remote measurement of a temperature or a pressure in a liquid by attaching a float or balloon to a sensor. CONSTITUTION:A sensor 22 for measuring temperature is integrated with a float 23 and the float 23, for example, has a required coating of an acid- resisting, solvent-resisting agent or the like applied on the outer circumference of a foamed resin 24. With such an arrangement, the sensor 22 floats near the surface of various liquids and can measure temperatures at points near the liquid surface. The balloon 34 is filled with a lighter gas according to a density of a gas to be measured as compared therewith. For example, when the gas to be measured in temperature is air, He is filled or when it is a gas heavier than air, for example, chlorine gas, air is done. Moreover, a ferromagnetic body or a magnet 26 is provided at a proper point of the balloon 34 and a position of the sensor 22 is controlled with the magnet 26 from outside a container filled with the gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は所定の容器に封入した或はパイプ中を流動する
流体各部の温度又は圧力をワイヤレスで測定する為、フ
ロート或はバルーンを付した温度又は圧力センサJIC
関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention uses a float or balloon attached to wirelessly measure the temperature or pressure of each part of a fluid sealed in a predetermined container or flowing in a pipe. Temperature or pressure sensor JIC
related.

(従来技術) 従来から温度或は圧力をワイヤレスで測定する手法の−
として9例えば圧電振動子にアンテナコイルを付したセ
ンサを測温すべき部位に配置し、これに外部から適当な
周波数の電波信号を照射して前記圧電振動子を強制励振
した後前記電波信号の照射を中止すると強制的罠励振さ
れた圧電振動子はその周囲の温度罠対応した共振周波数
で暫時振動を継続する故、前記アンテナコイルから放射
される残響信号の周波数を検出することにより前記セン
サ周辺の温度を知るシステムが存在する。
(Prior art) Conventional techniques for measuring temperature or pressure wirelessly
For example, a sensor consisting of a piezoelectric vibrator with an antenna coil attached is placed at the area where the temperature is to be measured, and a radio wave signal of an appropriate frequency is irradiated from the outside to forcibly excite the piezoelectric vibrator. When the irradiation is stopped, the piezoelectric vibrator subjected to forced trap excitation continues to vibrate for a while at a resonant frequency corresponding to the temperature trap around it. There is a system to know the temperature of

更に信号の授受を超音波に置換したシステムが本願発明
者等によって提案されておシ、これによればセンサに用
いる振動片は必ずしも圧電体である必要性はなく従って
圧電体に付する如き電極はもとよりアンテナコイルも不
安である為センサの超小型化と低価格化とが可能となシ
Furthermore, a system in which the transmission and reception of signals is replaced with ultrasonic waves has been proposed by the present inventors, and according to this system, the vibrating piece used in the sensor does not necessarily have to be a piezoelectric material, and therefore an electrode such as that attached to a piezoelectric material can be used. Since the antenna coil is also unstable, it is possible to make the sensor ultra-small and low-cost.

しかも信号授受を電波による場合には金属壁を介しての
ワイヤレス・センシングは全く不可能であるのに対して
超音波はいか力る固体壁をも伝搬し得るといった長所を
有するものである。
Moreover, when signals are transmitted and received using radio waves, wireless sensing through metal walls is completely impossible, whereas ultrasonic waves have the advantage of being able to propagate through any solid wall.

而して斯るタイプのセンサは生体内の所jPg分の温度
測定或は容器又は管内の所定位置に於ける温度又は圧力
の測定を目的として従来生体、容器或は管内の特定の位
置に固定することにのみ意を用いていた為容器又は管内
の流体中の種々の部位、殊に所望の位置に於ける温度、
圧力をワイヤレスにて測定する手段は考究されていなか
った。
Therefore, this type of sensor is conventionally fixed at a specific position in a living body, container, or tube for the purpose of measuring temperature at a certain point in the living body, or measuring temperature or pressure at a predetermined position in a container or tube. The temperature at various locations in the fluid inside the container or pipe, especially at the desired location,
No means of measuring pressure wirelessly has been considered.

(発明の目的) 本発明は上述した如く容器或は管内に満された或は管内
を流れる流体の容器又は管内各部の温度又は圧力をワイ
ヤレスで測定すると共に前記測定点を容器或管外から任
意に制御し得るセンサを提供することを目的とする。
(Object of the Invention) As described above, the present invention wirelessly measures the temperature or pressure of each part of the container or pipe of the fluid filled or flowing inside the container or pipe, and the measurement point can be arbitrarily set from outside the container or pipe. The purpose is to provide a sensor that can be controlled.

(発明の概要) 上述の目的を達成する為1本発明に係るセンサはフロー
ト又はバルーンを付したものであって更にその一部を強
磁性体或は磁石にて構成することによシ前記容器或は管
外から研石にてセンサの位置を制御せんとするものであ
る。
(Summary of the Invention) In order to achieve the above-mentioned objects, the sensor according to the present invention is equipped with a float or a balloon, and a part thereof is made of a ferromagnetic material or a magnet. Alternatively, the position of the sensor may be controlled using a grinding stone from outside the tube.

(実施例) 以下9本発明を図面に示した実施例に基づいて詳細に説
明する。
(Examples) The present invention will be described in detail below based on the embodiments shown in the drawings.

実施例の説明に先立って本発明の理解を助ける為1本発
明を適用すべきワイヤレス・センシングシステムの概要
について簡$に説明する。
Prior to describing embodiments, an overview of a wireless sensing system to which the present invention is applied will be briefly explained in order to facilitate understanding of the present invention.

第5図は従来より研究されていた電磁波を信号受授の媒
体とするワイヤレス温度センサの概念を示す図であって
、センサIFi例えば音叉型圧電振動子2fカプセル3
中に封止すると共に前記圧電振動子2の電極端子をアン
テナ・フィル4に直結し、当該アンテナ・コイル4の外
周をプラスチック・キャップ5で覆うといった構成をと
る。
FIG. 5 is a diagram showing the concept of a wireless temperature sensor that uses electromagnetic waves as a medium for signal reception, which has been studied in the past.
At the same time, the electrode terminals of the piezoelectric vibrator 2 are directly connected to the antenna fill 4, and the outer periphery of the antenna coil 4 is covered with a plastic cap 5.

一万、測定系はアンテナ・コイル6Ktffi波送受切
換器7を介して発振器8と受信器9を接続し、受信器9
にて受信した信号の周波数を周波数カウンタ10で読み
皐るものである。岡。
10,000, the measurement system connects the oscillator 8 and receiver 9 via the antenna coil 6Ktffi wave transmitter/receiver switch 7, and the receiver 9
The frequency of the signal received is read by a frequency counter 10. hill.

11は系のコントローラであって上述した切換器79発
振器8及び受信器9を後述する適当なタイミングで制御
するものである。
Reference numeral 11 denotes a system controller, which controls the above-mentioned switch 79, oscillator 8, and receiver 9 at appropriate timings to be described later.

以上の如き構成を有するワイヤレス温度11定系はタイ
ミング・チャー)K示す如く先ず前記測定系のアンテナ
・コイル6よp一定時間電磁波をセンサ1周辺けて放射
してセンサ1中の圧電振動子2を強制励振せしめた後前
記電磁、波の照射を中止する。斯くするとその間前記圧
電振動子2はその周辺の温度に対応する共振周波数にて
振動するのでセンサ1のアンテナ・コイル4から当該残
響振動に基づく電磁波を放射せしめこれを測定系のアン
テナ・コイル6で受信し。
The fixed system of the wireless temperature 11 having the above-mentioned configuration is based on the timing chart. As shown in FIG. After forced excitation, the irradiation of the electromagnetic waves is stopped. During this time, the piezoelectric vibrator 2 vibrates at a resonant frequency corresponding to the surrounding temperature, and the antenna coil 4 of the sensor 1 emits electromagnetic waves based on the reverberant vibrations, which are then transmitted to the antenna coil 6 of the measurement system. Received.

その周波数を受信器9を介して周波数カウンタ10にて
読み取ればセンサ1周辺の温度を知ることができる。
If the frequency is read by the frequency counter 10 via the receiver 9, the temperature around the sensor 1 can be known.

上述した如き温度測定系の信号受授媒体を電波から超音
波に置換したのが第6図に示す系であって、センサ12
としては例えば無電極圧電振動子或は単々る振動片13
をカプセル14内に封止したものを用いる。−万、測定
系はアンテナ・フィル6を超音波マイクロフォン15に
置換すれば足り、その動作原理は電波を信号受授媒体と
したものと全く同様であって、電磁環境の厳しい場所、
或は電波を透過しない金属壁等を介しての温度測定に適
する。
The system shown in FIG. 6 replaces radio waves with ultrasonic waves as the signal reception medium of the temperature measurement system described above, and the sensor 12
For example, an electrodeless piezoelectric vibrator or a single vibrating piece 13
is sealed in a capsule 14. - For the measurement system, it is sufficient to replace the antenna filter 6 with an ultrasonic microphone 15, and its operating principle is exactly the same as that in which radio waves are used as a signal reception medium.
Alternatively, it is suitable for temperature measurement through metal walls etc. that do not transmit radio waves.

更に第7図(alは圧力を測定する為のセンサの一例を
示す断面図であって、圧電振動子16の表裏をダイヤグ
ラム17で封止し、当該振動子16表裏の電極リード1
8′に夫々アンテナφコイル4に接続すると共に当該ア
ンテナ・コイル4をプラスチック・キャップ5で扱えば
よい。斯くすることによって周辺の圧力の変動VC広じ
てダイヤグラム17が伸縮しこれが前記圧電振動子16
にストレスを与えるのでその共振周波数の変動から圧力
を読み取ることができる。
Furthermore, FIG. 7 (al is a sectional view showing an example of a sensor for measuring pressure, in which the front and back sides of the piezoelectric vibrator 16 are sealed with a diagram 17, and the electrode leads 1 on the front and back sides of the vibrator 16 are sealed.
8' to the antenna φ coil 4, respectively, and the antenna coil 4 may be handled with a plastic cap 5. By doing so, the diagram 17 expands and contracts due to fluctuations in the surrounding pressure VC, which causes the piezoelectric vibrator 16 to expand and contract.
The pressure can be read from the fluctuations in the resonance frequency.

同図(b+は超音波式圧力センサの−fl’を示す一部
破断斜視図であって、双音叉型振動片19をその両端を
固定した長円形断面を有するベース20.20間で金属
ケース21にて封止したものでおる。斯くすることによ
シ前記ケース21がその周囲の圧力によシ変形すると前
記双音叉型振動片19が長平方向に伸縮しこれに応じて
その共振周波数が変化するものである。
In the same figure (b+ is a partially cutaway perspective view showing -fl' of the ultrasonic pressure sensor, a double tuning fork type vibrating piece 19 is attached to a metal case between bases 20 and 20 having an oval cross section with both ends fixed. 21. By doing so, when the case 21 is deformed by the pressure around it, the twin tuning fork type vibrating piece 19 expands and contracts in the longitudinal direction, and the resonant frequency accordingly increases. It changes.

以上説明した如き測定系を用いて1例えば容器又は管中
の液体、気体の温度又は圧力を測定せんとする場合、従
来は容器底面或は管の壁面にセンサを放置するか機械に
固定するのが一般的でめった為、測温部位を自由に選ぶ
ことが困難であったこと前述の通りである。
When trying to measure, for example, the temperature or pressure of a liquid or gas in a container or pipe using a measurement system such as the one described above, conventionally the sensor was left on the bottom of the container or the wall of the pipe, or it was fixed to a machine. As mentioned above, it was difficult to freely select the temperature measurement site because it was common and rare.

この問題を解決する為本発明に係るセンサは基本的に第
1図(a)乃至(d)の如き構成をとる。
In order to solve this problem, the sensor according to the present invention basically has a configuration as shown in FIGS. 1(a) to 1(d).

即ち、第1図(alは温度測定用センサ22をフロート
23と一体化したものであって、フロート23Fi例え
ば発泡樹脂24の外周に耐酸、耐溶剤等所要のコーティ
ング25を施したものである。斯る構成をとることによ
って当該センサ22は各種液体の表面近傍を浮遊し得る
ので該液面近傍各所の温度を測定することは可能である
That is, in FIG. 1 (al), a temperature measurement sensor 22 is integrated with a float 23, and the float 23Fi is, for example, a foamed resin 24 whose outer periphery is coated with a required coating 25 such as acid-resistant and solvent-resistant. With such a configuration, the sensor 22 can float near the surface of various liquids, making it possible to measure the temperature at various locations near the liquid surface.

しかしながら上述した如き構成のセンサを以ってしてF
i液体の任意の部位の温度を測定することは困難である
。そこで同図(b) K示す如く前記フロート23中に
強磁性体9例えばフェライト、鉄、ニッケル等のブロッ
ク或は永久磁石片26を埋設しこれにセンサ22を固定
するようにする。斯くするととKよシ液体を満した容器
、管の外壁面から磁石を用いて当該センサの位置を自由
に制御することが可能となる。
However, with a sensor configured as described above, F
i It is difficult to measure the temperature of any part of the liquid. Therefore, as shown in FIG. 2B, a block of ferromagnetic material 9 such as ferrite, iron, nickel, etc. or a permanent magnet piece 26 is buried in the float 23, and the sensor 22 is fixed thereto. In this way, it becomes possible to freely control the position of the sensor using a magnet from the outer wall surface of the container or tube filled with liquid.

もちろんこの場合前記容器ヌは管は非磁性体又は弱磁性
体であることが必要であることは云うまでもない。
Of course, in this case, it goes without saying that the container tube must be made of a non-magnetic material or a weakly magnetic material.

更に当該フロートの材質1体積或は/及び埋設する強磁
性体ブロック26の重量等を適宜調整してセンサ全体の
予備浮力を零に近づけておけば、とのセンサを投入する
液体を治した容器或は管の外壁に沿って移動する磁石に
よって液体中のいずれの深度に於ける温度をも容易に測
定することが可能となろう。
Furthermore, if the preliminary buoyancy of the entire sensor is brought close to zero by appropriately adjusting the volume of the material of the float and/or the weight of the buried ferromagnetic block 26, etc. Alternatively, a magnet moving along the outer wall of the tube could easily measure the temperature at any depth in the liquid.

同図(C)はゴム磁石27にて中空フロートを形成しそ
の表面に所要のコーティング28を施したもの、同図(
diは強磁性体片或は磁石片29を発泡樹脂24中に分
散せしめた実施例を示す。
The same figure (C) shows a hollow float formed with a rubber magnet 27 and a required coating 28 applied to its surface.
di indicates an embodiment in which ferromagnetic pieces or magnet pieces 29 are dispersed in the foamed resin 24.

これらはいずれも一実施例に過ぎず1本発明の基本的趣
旨に反しない限シ各種の実施態様があシ得ることは自明
であり、これらも本発明の一部であることは云うまでも
ない。
These are only examples, and it is obvious that various embodiments can be made as long as they do not go against the basic spirit of the present invention, and it goes without saying that these are also part of the present invention. do not have.

ところで上述した実施例は第1図(a)に示したものを
除いていずれも位置制御用磁石によって液体を満した容
器又は管の内壁近傍に引き寄せられることになる故、該
部近傍の温度のみを測定することになシ、少しく側温部
位の選択の自由度を欠く。
By the way, in all of the above-mentioned embodiments except for the one shown in FIG. 1(a), the position control magnet is drawn near the inner wall of the container or tube filled with liquid, so the temperature only near that part is However, when it comes to measuring temperature, there is a slight lack of freedom in selecting the temperature on the outer side.

この問題を解決する為には第2図(a)及び(b) K
示す如く仮想線にて示した容器又は管の内壁3゜に沿っ
て摺動し得るスライダ31或は車輪(図示省略)を備え
た2段のアーム32ft所要の間隔を以って相互固定し
たフロートを用意し前記アーム32の任意の位置圧セン
サ23を取付けるようにすると共に前記スライダ31或
は車輪の近傍に強磁性体片或は磁石片26を固定するよ
う構成すればこのようなフロートti少力くともストレ
ートな或は曲率が一定以上の管或は容器内を容器又は管
の外壁を移動する磁石33によって自由に移動せしめる
ことができるから液体中の任意の部位の温度を測定する
ことが可能となろう。
In order to solve this problem, Figure 2 (a) and (b) K
As shown, a two-stage arm 32ft equipped with a slider 31 or wheels (not shown) capable of sliding along the inner wall 3° of the container or tube shown in phantom lines, and a float fixed to each other at a required interval. If a ferromagnetic material piece or a magnet piece 26 is fixed near the slider 31 or the wheel, such float ti can be reduced. Since it can be moved freely inside a tube or container that is at least straight or has a curvature above a certain level by means of a magnet 33 that moves on the outer wall of the container or tube, it is possible to measure the temperature of any location in the liquid. It will be possible.

同、上述した如きフロートは前記アーム32を分割摺動
式に構成しておけは外種直経の容器又は管に対応するこ
とが可能であろう。又アーム32上のセンサの位置につ
いてもアーム32上をスライドし得るセンサ増付具を備
えれば容器、管の半径方向の任意に位置にセンサを配置
する上で好都合であろう。
Similarly, if the arm 32 is configured to be divided and slidable, the float as described above will be able to accommodate a container or pipe that is directly connected to the outside. Regarding the position of the sensor on the arm 32, it would be convenient to provide a sensor attachment that can slide on the arm 32, allowing the sensor to be placed at any position in the radial direction of the container or tube.

以上液体の温度を測定する為のセンサについて説明した
が1本発明の基本的アイディアは気体の温度測定にも同
様に適用し得る。
Although the sensor for measuring the temperature of liquid has been described above, the basic idea of the present invention can be similarly applied to measuring the temperature of gas.

即ち、第3図(al Itiバルーン34にセンサ22
を固定した実施例を示す断面図であって、バルーン34
の中には被測定気体の密度に応じてそれよシ軽い気体を
充填する。例えば温度を測定すべき気体が空気であれば
Heを、塩素カスの如く突気よシ重い気体であれば空気
を充填すればよかろう。
That is, as shown in FIG.
FIG. 3 is a sectional view showing an example in which the balloon 34 is fixed.
The inside is filled with a lighter gas depending on the density of the gas to be measured. For example, if the gas whose temperature is to be measured is air, it may be filled with He, and if the gas is heavier than air, such as chlorine scum, it may be filled with air.

又、被測定カスの性質や温度に応じてバルーンの材質を
選択したり、バルーン外周に適当なコーティングを施す
べきことも自明である。
It is also obvious that the material of the balloon should be selected depending on the properties and temperature of the waste to be measured, and that an appropriate coating should be applied to the outer periphery of the balloon.

更に、バルーン34の適所に強磁性体或は磁石26を付
し、気体を充満した容器或は管の外部から磁石によって
センサ22の位置を制御するようKするのが望ましい。
Furthermore, it is preferable to attach a ferromagnetic material or a magnet 26 to a suitable position on the balloon 34 so that the position of the sensor 22 is controlled by the magnet from outside the gas-filled container or tube.

同図(b)はバルーン35の形状を円盤状としその外周
に多数のセ/す22を付したものである。
In FIG. 3B, the balloon 35 is shaped like a disk and has a large number of cells 22 on its outer periphery.

斯くすることKよって同時に数個所の温度を測定するこ
とが可能となる。
By doing so, it becomes possible to measure the temperature at several locations at the same time.

冑、この際被測温カスを充満した容器又は管の外部で磁
石を適宜移動してバルーン35の姿勢を制御すれば測温
位置を比較的自由に選択することができよう。
At this time, if the attitude of the balloon 35 is controlled by appropriately moving a magnet outside the container or tube filled with the waste to be measured, the temperature measurement position can be selected relatively freely.

又、ガスを充満した容器或は筒30内の温度の高度毎の
分布を測定せんとする場合KFi第4図(at及び(b
)に示す如く1例えばバナナ状バルーン36を適当なア
ーム37の先端に取付け、該バルーン36の容器或は筒
30内壁との当接面に強磁性体或は磁石プレート38を
スライダとして付着すると共に前記アーム37の適所に
センサ22を固定し、容器或は筒30の外部から磁石に
てバルーン36及びこれから延びるアーム37に皐付け
たセンサ22の位置を制御すればよい。
In addition, when trying to measure the distribution of temperature within the container or cylinder 30 filled with gas at different altitudes, KFi Fig. 4 (at and (b)
), for example, a banana-shaped balloon 36 is attached to the tip of a suitable arm 37, and a ferromagnetic material or magnet plate 38 is attached as a slider to the contact surface of the balloon 36 with the inner wall of the container or tube 30. The sensor 22 may be fixed at a proper position on the arm 37, and the position of the sensor 22 attached to the balloon 36 and the arm 37 extending therefrom may be controlled using a magnet from outside the container or cylinder 30.

以上、フロート或はバルーンに付した温度又は圧力セン
サを磁石を用いて流体を満した容器又は管、筒内で任意
の位置に移動し、核部の温度、圧力を測定する手法につ
いて説明したが。
Above, we have explained the method of measuring the temperature and pressure of the core by moving a temperature or pressure sensor attached to a float or balloon to an arbitrary position within a container, tube, or cylinder filled with fluid using a magnet. .

フロート或はバルーンに付したセンサの位置を制御する
際前記容器等の外壁に沿って移動する磁石は永久磁石で
もよいし電磁石でもよい。
The magnet that moves along the outer wall of the container or the like when controlling the position of the sensor attached to the float or balloon may be a permanent magnet or an electromagnet.

又、当該制御用磁石は必ずしも1個に限る必gIはなく
9例えば複数佃の電磁石を所定の位置に固定しこれらの
磁力を適宜制御するととKよってフロート或はバルーン
の位置、姿勢を変化させるようにしてもよい。
Furthermore, the number of control magnets is not necessarily limited to one; for example, if a plurality of electromagnets are fixed at a predetermined position and their magnetic forces are controlled appropriately, the position and attitude of the float or balloon can be changed. You can do it like this.

(発明の効果) 本発明は以上説明した如く構成するものであるから、先
ず液体表面近傍或は管内を流れる流体の温度又は圧力を
測定するのに適すると共に磁石によシ流体内に於ける温
度又は圧力の測定部位を制御可能なセンサを用いれば流
体の温度分布等を当該流体を満した容器、管等の外部よ
シワイヤレスで測定し得るので、流体密度精密測定時の
温度補正、化学反応筒内の温度、圧力分布の測定或は爆
発性流体の温度、圧力管理の為の計測等に著しい効果を
発揮する。
(Effects of the Invention) Since the present invention is constructed as described above, it is suitable for measuring the temperature or pressure of a fluid flowing near a liquid surface or inside a pipe, and is suitable for measuring the temperature or pressure within a fluid by using a magnet. Alternatively, if a sensor that can control the pressure measurement site is used, the temperature distribution of the fluid can be measured wirelessly from the outside of a container, pipe, etc. filled with the fluid, so temperature correction and chemical reactions can be easily performed when precisely measuring fluid density. It is extremely effective in measuring the temperature and pressure distribution inside a cylinder, and in measuring the temperature and pressure management of explosive fluids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al乃至(d)は夫々本発FIAVC係るフロ
ート付きセンサの異った実施例を示す断面図、第2図(
al及び(blは夫々本発明に係るフロート付センサの
他の実施例を示す平面図及び側面図、第3図(a)及び
(b) Fi夫々本発明に係るバルーン付きセンナの異
った実施例を示す断面図、第4図(al及び(b)は夫
々本発明に係るバルーン付きセンサの他の実施例を示す
平面図及び側面図、第5図及び第6図は夫々本発明に於
いて使用する電磁波及び超音波金信号受授媒体とするワ
イヤレス温度センサの測定システムを説明する概念図、
第7図(al及び(blは夫々本発明に於いて使用する
圧力センサの異った構成を示す断面図及び一部破断斜視
図でおる。 1.12及び22・・・・・・・・・センサ、    
2.13゜16及び19・・・・・・・・・振動片、 
  23・・・・・・−・・フロート、    34.
35及び36・・・・・・・・・ノくルーフ 、   
 26,27.29及び38・・・・・・・・・強磁性
体又は磁石、   30・・・・・・・・・容器又は管
FIGS. 1(al to d) are cross-sectional views showing different embodiments of the float-equipped sensor according to the present invention, and FIG.
al and (bl are respectively a plan view and a side view showing other embodiments of the sensor with a float according to the present invention, and FIGS. 3(a) and (b) respectively are different implementations of the sensor with a balloon according to the present invention. FIGS. 4A and 4B are plan views and side views showing other embodiments of the balloon-equipped sensor according to the present invention, and FIGS. 5 and 6 are cross-sectional views showing examples of the present invention. A conceptual diagram illustrating a measurement system for a wireless temperature sensor that uses electromagnetic waves and ultrasonic signals as a reception medium,
Figure 7 (al and (bl) are a sectional view and a partially cutaway perspective view showing different configurations of the pressure sensor used in the present invention, respectively. 1.12 and 22...・Sensor,
2.13°16 and 19... Vibration piece,
23...--Float, 34.
35 and 36...Nokuroof,
26, 27. 29 and 38... Ferromagnetic material or magnet, 30... Container or tube.

Claims (2)

【特許請求の範囲】[Claims] (1)外部から照射した電波或は超音波によって強制的
に励振された振動片が、その周辺温度或は圧力に対応し
た共振周波数にて振動を開始した後、前記外部からの電
波或は超音波の照射を中止した際前記振動片から放射さ
れる残響電波或は超音波の周波数を検知して前記振動片
周辺の温度或は圧力を測定するタイプのセンサに於いて
、該センサにフロート或はバルーンを付することによっ
て流体中の温度或は圧力を遠隔測定し得るようにしたこ
とを特徴とするフロート或はバルーンを付した温度又は
圧力センサ。
(1) After the vibrating piece is forcibly excited by externally irradiated radio waves or ultrasonic waves and starts vibrating at a resonant frequency corresponding to its surrounding temperature or pressure, the externally irradiated radio waves or ultrasonic waves In a type of sensor that measures the temperature or pressure around the vibrating piece by detecting the frequency of reverberant radio waves or ultrasonic waves emitted from the vibrating piece when the irradiation of sound waves is stopped, the sensor is equipped with a float or A temperature or pressure sensor equipped with a float or a balloon, characterized in that the temperature or pressure in a fluid can be remotely measured by attaching the balloon.
(2)前記フロート或はバルーン又はセンサ自体の一部
又は全部を強磁性体又は磁石にて構成することにより流
体中に浮遊せしめたセンサの位置を該流体を満した或は
該流体が流れる容器或は管の外部から磁石(電磁石を含
む)によって制御し得るようにしたことを特徴とする請
求項(1)記載のフロート或はバルーンを付した温度又
は圧力センサ。
(2) Part or all of the float, balloon, or sensor itself is made of a ferromagnetic material or magnet, and the sensor is suspended in the fluid, and the position of the sensor is located in a container filled with the fluid or through which the fluid flows. The temperature or pressure sensor equipped with a float or balloon according to claim 1, wherein the temperature or pressure sensor is capable of being controlled by a magnet (including an electromagnet) from outside the tube.
JP2099837A 1990-04-16 1990-04-16 Temperature or pressure sensor with float or balloon Expired - Fee Related JP2935050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099837A JP2935050B2 (en) 1990-04-16 1990-04-16 Temperature or pressure sensor with float or balloon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099837A JP2935050B2 (en) 1990-04-16 1990-04-16 Temperature or pressure sensor with float or balloon

Publications (2)

Publication Number Publication Date
JPH03296629A true JPH03296629A (en) 1991-12-27
JP2935050B2 JP2935050B2 (en) 1999-08-16

Family

ID=14257922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099837A Expired - Fee Related JP2935050B2 (en) 1990-04-16 1990-04-16 Temperature or pressure sensor with float or balloon

Country Status (1)

Country Link
JP (1) JP2935050B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038312A1 (en) * 2004-09-30 2006-04-13 Fuji Xerox Co., Ltd. Wireless response apparatus and image shaping apparatus
JP2009287992A (en) * 2008-05-28 2009-12-10 Kondo Kogyo Kk Float type minute pressure difference display device
JP2012189538A (en) * 2011-03-14 2012-10-04 Murata Mfg Co Ltd Radio sensor system
JP2014190713A (en) * 2013-03-26 2014-10-06 Katsumi Narasaki Odor sensor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083829A (en) * 2001-09-12 2003-03-19 Toyo Commun Equip Co Ltd Pressure sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038312A1 (en) * 2004-09-30 2006-04-13 Fuji Xerox Co., Ltd. Wireless response apparatus and image shaping apparatus
JP2006108766A (en) * 2004-09-30 2006-04-20 Fuji Xerox Co Ltd Wireless responder and image forming apparatus
US8237545B2 (en) 2004-09-30 2012-08-07 Fuji Xerox Co., Ltd. Wireless transponder and image forming device
JP2009287992A (en) * 2008-05-28 2009-12-10 Kondo Kogyo Kk Float type minute pressure difference display device
JP2012189538A (en) * 2011-03-14 2012-10-04 Murata Mfg Co Ltd Radio sensor system
JP2014190713A (en) * 2013-03-26 2014-10-06 Katsumi Narasaki Odor sensor device

Also Published As

Publication number Publication date
JP2935050B2 (en) 1999-08-16

Similar Documents

Publication Publication Date Title
US2990543A (en) Sensing the presence or absence of material
US10527585B2 (en) Electromagnetic driving/receiving unit for a field device of automation technology
US11125602B2 (en) Electromagnetic driving/receiving unit for a field device of automation technology
TW200946886A (en) Apparatus for measuring pressure in a vessel using magnetostrictive acoustic transducer
US8356519B2 (en) Non-contact type transducer for rod member having multi-loop coil
JP4058378B2 (en) Angular velocity sensor and angular velocity detector
JPH03296629A (en) Temperature or pressure sensor with float or balloon
SE468071B (en) PROCEDURAL AND ELECTRO-Acoustic Converters For Broadcasting Of Low-Frequency Acoustic Trolleys In A Trunk
CN101672691A (en) Hydrophone phase low-frequency calibration tube
US4869349A (en) Flexcompressional acoustic transducer
JPS646690B2 (en)
JP2002135894A (en) Ultrasonic sensor and electronic device using it
EP3055710A1 (en) Vector sensor for measuring particle movement in a medium
JPH0721413B2 (en) Acoustic gyrometer
US4862430A (en) Wide pass band elastic wave omnidirectional transducer
JP2023551545A (en) Identification system for identifying medical equipment
US3375489A (en) Pressure compensated transducer
JP4315316B2 (en) Ultrasonic logging source
CN106199466A (en) A kind of novel naval vessels monitoring magnetic field sensor
WO2004102117A1 (en) Angular speed sensor and angular speed detector
JPH0560158U (en) Vibrator
US6259245B1 (en) Electric-current sensing device
WO2023119479A1 (en) Attachment for ultrasonic transducer
JP2516747B2 (en) Ultrasonic temperature / pressure sensor
RU2249796C1 (en) Method and device for measuring cryogenic liquid level in vessel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees