JPH03296334A - Optical communication system - Google Patents

Optical communication system

Info

Publication number
JPH03296334A
JPH03296334A JP2099082A JP9908290A JPH03296334A JP H03296334 A JPH03296334 A JP H03296334A JP 2099082 A JP2099082 A JP 2099082A JP 9908290 A JP9908290 A JP 9908290A JP H03296334 A JPH03296334 A JP H03296334A
Authority
JP
Japan
Prior art keywords
optical
loopback
communication system
optical communication
communication terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2099082A
Other languages
Japanese (ja)
Inventor
Hisaharu Yanagawa
柳川 久治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2099082A priority Critical patent/JPH03296334A/en
Publication of JPH03296334A publication Critical patent/JPH03296334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To specify a fault location in an optical system quickly with high accuracy by arranging a single or plural optical loopback parts in an optical line. CONSTITUTION:Optical communication terminal equipments 10, 11 are interconnected by optical lines 12, 13 and an optical loopback parts 14 is arranged in plural locations in both the optical lines 12, 13. When a fault takes place in the optical system, the transmission line of a communication signal is selected to each said standby optical line and standby optical parts or the like. In parallel with the changeover of the transmission line, each optical loopback parts 14 is sequentially selected to loop back the communication signal, then a fault location, that is, a fault position is identified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光線路内に光ループバック部品を配置した光
通信システムに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical communication system in which an optical loopback component is arranged within an optical line.

(従来の技術) 光ファイバにより光信号を伝送する光通信システムには
、例えば、第8図に示すものが知られている。この光通
信システムは、光中継点等に配置され、光送信器1aと
光受信器1bとを有する光通信端末1と、同様に構成さ
れる光送信器2aと光受信器2bとを有する光通信端末
2との間を複数の光ファイバ3で光接続したものである
(Prior Art) For example, the system shown in FIG. 8 is known as an optical communication system that transmits optical signals through an optical fiber. This optical communication system is arranged at an optical relay point or the like, and includes an optical communication terminal 1 having an optical transmitter 1a and an optical receiver 1b, and an optical transmitter 2a and an optical receiver 2b configured in the same manner. The communication terminal 2 is optically connected to the communication terminal 2 using a plurality of optical fibers 3.

この光通信システムにおいて、何らかの通信障害が発生
したとすると、先ず、光通信端末1. 2では、電気回
路系における故障の有無を判定すべく、光通信端末1.
2の電気回路系でループバック操作が行われる。これに
より、光通信端末1の送信回路と光通信端末2の受信回
路あるいは光通信端末工の受信回路と光通信端末2の送
信回路の電気回路系を電気的に直結し、光通信端末1,
2間における電気的な故障の有無を判定する。
In this optical communication system, if some kind of communication failure occurs, first, the optical communication terminal 1. 2, optical communication terminal 1.2 is used to determine whether there is a failure in the electrical circuit system.
A loopback operation is performed in the second electrical circuit system. As a result, the transmitting circuit of the optical communication terminal 1 and the receiving circuit of the optical communication terminal 2 or the receiving circuit of the optical communication terminal and the electric circuit system of the transmitting circuit of the optical communication terminal 2 are electrically connected directly, and the optical communication terminal 1,
Determine whether there is an electrical failure between the two.

その結果、光通信端末1,2間の電気回路系に故障がな
いということになれば、光学系における故障ということ
になり、故障点の探索が実行される。
As a result, if it is determined that there is no failure in the electric circuit system between the optical communication terminals 1 and 2, the failure occurs in the optical system, and a search for the failure point is executed.

かかる故障点の探索には、通常、光フアイバ内に入射し
た光のレーリー散乱によるバックスキャタリングを利用
して故障点までの距離を測定するOTDR(optic
altime domain reflectomet
er)が使用されている。
To search for such a fault point, OTDR (optic) is usually used to measure the distance to the fault point using backscattering caused by Rayleigh scattering of light incident on the optical fiber.
altime domain reflectomet
er) is used.

(発明が解決しようとする課題) しかし、0TDRから得られるデータの解析には、0T
DRのセット及びウオームアツプに要する数10分を除
いても、数10秒〜数分の時間を要する。しかも、光学
系は、発信局の光源−光通信端末内光配線一光通信端末
架・光線路終端架間配線−局外光線路−架間配線一端末
内光配線一受信局の受光器とあり、その距離は数−に及
ぶ。これに対し、0TDRの距離測定上の分解能は、数
10m〜数100mLかないことから、故障点を具体的
に特定できず、必ずしも満足すべきものではなかった。
(Problem to be solved by the invention) However, in order to analyze the data obtained from 0TDR, 0T
Even excluding the several tens of minutes required for DR setup and warm-up, it takes several tens of seconds to several minutes. Furthermore, the optical system consists of the following: light source at the transmitting station - optical wiring within the optical communication terminal - optical communication terminal rack/optical line termination interframe wiring - optical line outside the station - interframe wiring - optical wiring within the terminal - optical receiver at the receiving station. Yes, and the distance is several -. On the other hand, the resolution of the distance measurement of 0TDR is only several tens of meters to several hundreds of milliliters, which makes it impossible to specifically identify the failure point and is not necessarily satisfactory.

本発明は上記の点に鑑みてなされたもので、光学系にお
ける故障点を迅速、且つ、精度よく特定することができ
る光通信システムを提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide an optical communication system that can quickly and accurately identify a failure point in an optical system.

(課題を解決するための手段) 上記目的を達成するため本発明の光通信システムにおい
ては、光線路内に単数もしくは複数の光ループバック部
品を配置したものである。
(Means for Solving the Problems) In order to achieve the above object, in the optical communication system of the present invention, one or more optical loopback components are arranged within the optical path.

好ましくは、光ループバック部品は、光信号をスルー状
態と折り返し状態に切替える光スイッチあるいは通信信
号は通過させ、試験信号を折り返す光合波分波器(以下
、単に「光合分波器jという)とする。
Preferably, the optical loopback component is an optical switch that switches the optical signal between a through state and a return state, or an optical multiplexer/demultiplexer (hereinafter simply referred to as "optical multiplexer/demultiplexer J") that passes the communication signal and returns the test signal. do.

ここにおいて、光合分波器は、光の合波1分波の他に、
特定波長の光を選択的に透過あるいはカットするフィル
タリング機能を有するものを含む。
Here, the optical multiplexer/demultiplexer not only multiplexes and demultiplexes light, but also
Including those with a filtering function that selectively transmits or cuts light of a specific wavelength.

(作用) 光線路内に配置した光ループバック部品は、光線路の切
替えあるいは光の分波と合波とにより、光をループバッ
クさせる。したがって、予め位置が分かっている光ルー
プバック部品によって信号光をループバックさせるだけ
で、故障点が迅速、且つ、精度よく特定される。
(Function) The optical loopback component disposed within the optical path loops back the light by switching the optical path or branching and combining the light. Therefore, simply by looping back the signal light using an optical loopback component whose position is known in advance, the point of failure can be quickly and accurately identified.

(実施例) 以下、本発明の第1の実施例を第1図乃至第4図に基づ
いて詳細に説明する。
(Example) Hereinafter, a first example of the present invention will be described in detail based on FIGS. 1 to 4.

第1図は、本発明の光通信システムを示す基本構成図で
あり、この光通信システムは、光通信端末10.11間
を光線路12.13によって光接続されており、両光線
路12.13内の複数箇所には、光ループバック部品1
4が配置されている。
FIG. 1 is a basic configuration diagram showing an optical communication system of the present invention, in which optical communication terminals 10.11 are optically connected by optical lines 12.13, and both optical lines 12.11 are optically connected. Optical loopback components 1 are installed at multiple locations within 13.
4 is placed.

ここで、光通信システムには、光学系における故障の対
策として、故障が発生と共に切替えられる図示しない予
備光線路及び予備光部品等が備えられている。
Here, the optical communication system is equipped with a backup optical line, a backup optical component, etc. (not shown), which are switched when a failure occurs, as a countermeasure against a failure in the optical system.

光通信端末10.11は、光源10a、11a及び受光
器10b、llbを備えており、図示の如く光線路12
.13により互いに通信信号を送受信可能に光接続され
ている。
The optical communication terminal 10.11 is equipped with light sources 10a, 11a and light receivers 10b, llb, and has an optical path 12 as shown in the figure.
.. 13, they are optically connected to each other so that communication signals can be transmitted and received.

光線路12.13は、複数の光ファイバから構成され、
通信信号の伝送方向が異なっている。
The optical line 12.13 is composed of a plurality of optical fibers,
The transmission directions of communication signals are different.

光ループバック部品14は、第2図に示すように、固定
コネクタ15と可動コネクタ16とからなる光スイッチ
で、各コネクタ15.16から延出する各1組の光ファ
イバ15a、16aは、外部の光線路12.13に光接
続されている。また、可動コネクタ16には、0字状の
ファイバコイル16bが設けられている。
The optical loopback component 14 is an optical switch consisting of a fixed connector 15 and a movable connector 16, as shown in FIG. It is optically connected to optical lines 12 and 13 of. Furthermore, the movable connector 16 is provided with a zero-shaped fiber coil 16b.

本発明の光通信システムは、以上のように光線路12.
13に複数の光ループバック部品14が配置されている
As described above, the optical communication system of the present invention includes optical lines 12.
A plurality of optical loopback components 14 are arranged at 13 .

この光通信システムは、光学系に故障が発生すると、通
信信号の伝送路が上記各予備光線路及び予備光部品等に
切替えられる。かかる伝送路の切替と並行して、光ルー
プバック部品14の可動コネクタ16を第3図に示すよ
うに切替えると、通信信号をループバックさせることが
できる。したがって、各光ループバック部品14を順次
切替え、通信信号をループバックさせてゆけば、故障区
間、即ち、故障位置を特定することができる。
In this optical communication system, when a failure occurs in the optical system, the transmission path of the communication signal is switched to each of the above-mentioned spare optical lines and spare optical components. When the movable connector 16 of the optical loopback component 14 is switched as shown in FIG. 3 in parallel with such switching of the transmission path, the communication signal can be looped back. Therefore, by sequentially switching each optical loopback component 14 and looping back the communication signal, it is possible to identify the faulty section, that is, the faulty position.

ここにおいて、この光通信システムでは、故障発生に伴
う上記予備光線路等への切替えは素早く行わなければな
らないが、通信信号の伝送路が予備光線路等へ切替えら
れ光通信に支障はないので、故障位置の特定は急ぐ必要
はない。
Here, in this optical communication system, switching to the above-mentioned backup optical line, etc. due to the occurrence of a failure must be performed quickly, but since the communication signal transmission path is switched to the backup optical line, etc., there is no problem with optical communication. There is no need to rush to identify the location of the failure.

また、この光通信システムにおいては、光線路12.1
3に、通信信号(波長λoP)の他に試験信号(波長λ
T)を導入する場合には、光ループバック部品として、
第4図に示す光合分波器17゜18を夫々光線路12.
13に設け、光合分波器17.18間を光線路19で光
接続する。この場合、光合分波器17は光分波器として
、光合分波器19は光合波器として機能する。
In addition, in this optical communication system, the optical line 12.1
3, in addition to the communication signal (wavelength λoP), the test signal (wavelength λoP)
When introducing T), as an optical loopback component,
The optical multiplexer/demultiplexers 17 and 18 shown in FIG.
13, and an optical line 19 optically connects the optical multiplexer/demultiplexer 17 and 18. In this case, the optical multiplexer/demultiplexer 17 functions as an optical multiplexer and the optical multiplexer/demultiplexer 19 functions as an optical multiplexer.

次に、本発明の第2の実施例を説明する。第5図は、サ
ービス総合ディジタル網等の双方向通信システムに関す
る光通信システムを示し、光通信端末20.21間に光
線路光合分波器22.23が配置され、光合分波器22
.23間を光接続する光線路24に光ループバック部品
25が配置されている。
Next, a second embodiment of the present invention will be described. FIG. 5 shows an optical communication system related to a two-way communication system such as an integrated service digital network, in which optical line optical multiplexer/demultiplexers 22 and 23 are arranged between optical communication terminals 20 and 21.
.. An optical loopback component 25 is disposed on an optical path 24 that optically connects the optical fibers 23 to 23.

光通信端末20.21は、光源20a、21a及び受光
器20b、21bを夫々備えており、図示の如く、光合
分波器22.23との間を、夫々光線路26.27及び
光線路28.29で接続されている。ここで、光源20
aは波長λ1の信号光を、光源21aは波長λ、の信号
光を夫々発信する。
The optical communication terminal 20.21 includes light sources 20a, 21a and light receivers 20b, 21b, respectively, and as shown in the figure, optical lines 26, 27 and 28 are connected to the optical multiplexer/demultiplexer 22, 23, respectively. It is connected with .29. Here, the light source 20
a emits a signal light having a wavelength λ1, and a light source 21a emits a signal light having a wavelength λ.

光合分波器22.23は、波長λ1.λ、の信号光の合
分波を行うもので、光ループバックに関与するものでは
ない。
The optical multiplexer/demultiplexer 22.23 has wavelengths λ1. It performs multiplexing and demultiplexing of signal light of λ, and is not involved in optical loopback.

光ループバック部品25は、例えば、第6図に示す光ス
イッチが使用される。この光ループバック部品25は、
固定コネクタ25aと可動コネクタ25bとからなる光
スイッチである。固定コネクタ25aは、内部に光線路
25cが形成されている。また、可動コネクタ25bに
は、互いに並行する光線路25c!、25eが形成され
、一方の光線路25eが開口する可動コネクタ25bの
側面には、光線路25e内を伝播してきた信号光を反射
する光ミラー30が形成されている。
As the optical loopback component 25, for example, an optical switch shown in FIG. 6 is used. This optical loopback component 25 is
This is an optical switch consisting of a fixed connector 25a and a movable connector 25b. An optical path 25c is formed inside the fixed connector 25a. Moreover, the movable connector 25b has optical paths 25c parallel to each other! , 25e are formed, and an optical mirror 30 that reflects the signal light propagated through the optical path 25e is formed on the side surface of the movable connector 25b where one optical path 25e opens.

したがって、本実施例の光通信システムにおいては、光
通信端末20の光源20aから波長λ1の信号光が、光
通信端末21の光源21aから波長λ!の信号光が夫々
相手方に発信される。
Therefore, in the optical communication system of this embodiment, a signal light of wavelength λ1 is emitted from the light source 20a of the optical communication terminal 20, and a signal light of wavelength λ! is emitted from the light source 21a of the optical communication terminal 21. signal light is transmitted to each other party.

すると、光通信端末20の光源20aから発信された信
号光(波長λ1)は、光線路26→光合分波器22→光
ループバック部品25→光合分波器23と進んで、光通
信端末21の受光器21bに受光される。また、光通信
端末21の光源21aから発信された信号光(波長λ2
)は、これとは逆の経路を通って光通信端末20の受光
器20bに受光され、このようにして双方向波長多重通
信が行われる。
Then, the signal light (wavelength λ1) transmitted from the light source 20a of the optical communication terminal 20 travels through the optical line 26 → optical multiplexer/demultiplexer 22 → optical loopback component 25 → optical multiplexer/demultiplexer 23, and then reaches the optical communication terminal 21 The light is received by the light receiver 21b. In addition, the signal light (wavelength λ2
) is received by the light receiver 20b of the optical communication terminal 20 through a path opposite to this, and bidirectional wavelength division multiplexing communication is performed in this way.

この光通信システムにおいて、光学系に発生した故障区
間、即ち、故障位置を特定するときには、光ループバッ
ク部品25の可動コネクタ25bを固定コネクタ25a
に対して移動させる。これにより、可動コネクタ25b
の光線路25dと接続されていた固定コネクタ25aの
光線路25cは、可動コネクタ25bの光線路25eに
切替えられる。
In this optical communication system, when specifying a faulty section, that is, a fault position, that has occurred in the optical system, the movable connector 25b of the optical loopback component 25 is connected to the fixed connector 25a.
move against. As a result, the movable connector 25b
The optical path 25c of the fixed connector 25a, which was connected to the optical path 25d of , is switched to the optical path 25e of the movable connector 25b.

したがって、光線路24により光通信端末2゜側から伝
送されてきた信号光(波長λ、)は、光ループバック部
品25に形成された光ミラー30によって反射され、同
じ経路を光通信端末20側へと逆進する。これと同様に
、光線路24により光通信端末21側から伝送されてき
た信号光(波長λりも、光ミラー3oで反射されること
により、光通信端末21側へと戻って行く。この光ルー
プバック部品25による信号光のループバックにより、
故障区間、即ち、故障位置を特定することができる。
Therefore, the signal light (wavelength λ,) transmitted from the optical communication terminal 2° side through the optical line 24 is reflected by the optical mirror 30 formed in the optical loopback component 25, and follows the same path toward the optical communication terminal 20 side. Go backwards. Similarly, the signal light (wavelength λ) transmitted from the optical communication terminal 21 side through the optical path 24 is reflected by the optical mirror 3o and returns to the optical communication terminal 21 side. This light Due to the loopback of the signal light by the loopback component 25,
It is possible to specify the fault area, that is, the fault location.

ここで、光ループバック部品は、第7図に示す光合分波
器26を用いてもよい。光合分波器26は、Y分岐タイ
プの光線路を備え、3カ所の光ポー)26a〜26cを
有しており、光ポート26cには光ミラー31が形成さ
れている。この光合分波器26は、光ポート26aから
入射された信号光(波長λ1.λりと試験光(波長λT
)を分渡し、光ポート26bから信号光(波長λ1.λ
t)を、光ポート26cから試験光(波長λT)を出射
する。
Here, an optical multiplexer/demultiplexer 26 shown in FIG. 7 may be used as the optical loopback component. The optical multiplexer/demultiplexer 26 includes a Y-branch type optical path and has three optical ports 26a to 26c, and an optical mirror 31 is formed in the optical port 26c. This optical multiplexer/demultiplexer 26 receives signal light (wavelength λ1.λ) and test light (wavelength λT
), and the signal light (wavelength λ1.λ
t), the test light (wavelength λT) is emitted from the optical port 26c.

(発明の効果) 以上の説明で明らかなように本発明の光通信システムに
よれば、光線路内に単数もしくは複数の光ループバック
部品を配置したので、光学系における故障点を迅速、且
つ、精度よく特定できる。
(Effects of the Invention) As is clear from the above description, according to the optical communication system of the present invention, one or more optical loopback components are disposed within the optical path, so that failure points in the optical system can be quickly and easily fixed. Can be identified with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明の第1の実施例を示すもので
、第1図は光通信システムの基本構成図、第2図は光ル
ープバック部品の構成図、第3図は第2図の同上部品を
切替だ状態を示す構成図、第4図は光ループバック部品
を光合分波器とした場合の構成図、第5図乃至第7図は
本発明の第2の実施例を示し、第5図は光通信システム
の基本構成図、第6図は光ループバック部品の構成図、
第7図は光ループバック部品を光合分波器とした場合の
構成図、第8図は従来の光通信システムの基本構成図で
ある。 12.13・・・光線路、14・・・光ループバック部
品(光スイッチ)、17.18・・・光合分波器(光ル
ープバック部品)、24・・・光線路、25・・・光ル
ープバック部品(光スイッチ)、26・・・光合分波器
(光ループバック部品)。
1 to 4 show a first embodiment of the present invention. FIG. 1 is a basic configuration diagram of an optical communication system, FIG. 2 is a configuration diagram of optical loopback components, and FIG. 3 is a diagram of a basic configuration of an optical communication system. Figure 2 is a configuration diagram showing a state in which the same components as above are switched, Figure 4 is a configuration diagram when the optical loopback component is an optical multiplexer/demultiplexer, and Figures 5 to 7 are a diagram showing a second embodiment of the present invention. 5 is a basic configuration diagram of the optical communication system, FIG. 6 is a configuration diagram of optical loopback components,
FIG. 7 is a configuration diagram when an optical multiplexer/demultiplexer is used as an optical loopback component, and FIG. 8 is a basic configuration diagram of a conventional optical communication system. 12.13... Optical line, 14... Optical loopback component (optical switch), 17.18... Optical multiplexer/demultiplexer (optical loopback component), 24... Optical line, 25... Optical loopback component (optical switch), 26... optical multiplexer/demultiplexer (optical loopback component).

Claims (3)

【特許請求の範囲】[Claims] (1)光線路内に単数もしくは複数の光ループバック部
品を配置したことを特徴とする光通信システム。
(1) An optical communication system characterized by placing one or more optical loopback components in an optical path.
(2)前記光ループバック部品が、光信号をスルー状態
と折り返し状態に切替える光スイッチである、請求項1
記載の光通信システム。
(2) Claim 1, wherein the optical loopback component is an optical switch that switches an optical signal between a through state and a return state.
The optical communication system described.
(3)前記光ループバック部品が、通信信号は通過させ
、試験信号を折り返す光合波分波器である、請求項1記
載の光通信システム。
(3) The optical communication system according to claim 1, wherein the optical loopback component is an optical multiplexer/demultiplexer that passes communication signals and returns test signals.
JP2099082A 1990-04-13 1990-04-13 Optical communication system Pending JPH03296334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099082A JPH03296334A (en) 1990-04-13 1990-04-13 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099082A JPH03296334A (en) 1990-04-13 1990-04-13 Optical communication system

Publications (1)

Publication Number Publication Date
JPH03296334A true JPH03296334A (en) 1991-12-27

Family

ID=14237991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099082A Pending JPH03296334A (en) 1990-04-13 1990-04-13 Optical communication system

Country Status (1)

Country Link
JP (1) JPH03296334A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211479A (en) * 1992-01-30 1993-08-20 Fujitsu Ltd Optical loopback method for same wavelength duplex transmitting device
US5357360A (en) * 1990-07-11 1994-10-18 Siemens Aktiengesellschaft Optical data network having adjustable delays for switching over to backup unit
JP5342709B1 (en) * 2013-06-25 2013-11-13 ミハル通信株式会社 Optical transmission system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357360A (en) * 1990-07-11 1994-10-18 Siemens Aktiengesellschaft Optical data network having adjustable delays for switching over to backup unit
JPH05211479A (en) * 1992-01-30 1993-08-20 Fujitsu Ltd Optical loopback method for same wavelength duplex transmitting device
JP5342709B1 (en) * 2013-06-25 2013-11-13 ミハル通信株式会社 Optical transmission system

Similar Documents

Publication Publication Date Title
US5077729A (en) Testing optical fiber links
US6980287B2 (en) System for testing an optical network using optical time-domain reflectometry (OTDR)
US10250324B1 (en) Optical time-domain reflectometer interoperable trunk switch
JP3759845B2 (en) Method and system for monitoring optical transmission lines
US5579421A (en) Optical integrated circuits and methods
US20090257747A1 (en) Testing a fiber link in a communication system without interrupting service
EP1524781B1 (en) Optical link performance monitoring using OTDM with laser for data transmission/reception
US20190103934A1 (en) Optical protection switch with broadcast multi-directional capability
EP0622912B1 (en) Optical signal transmission network
EP0625295B1 (en) Optical signal transmission network
JPH03296334A (en) Optical communication system
US20020135840A1 (en) Connection verification and monitoring in optical wavelength multiplexed communications systems
US5995687A (en) Circuit for testing an optical communication system
JP2512770B2 (en) WDM optical communication device
JP4383162B2 (en) Optical branch line monitoring system
JP4015091B2 (en) Optical line monitoring device
JP2004156962A (en) Monitoring system and monitoring method for optical branching line
JPH10170396A (en) Method and system for testing light beam path
JP2002520946A (en) Optical subscriber connection network
KR100917562B1 (en) System for managing the optical subscriber loops
JP2001050857A (en) Optical path line testing system
JPH1127211A (en) Branch optical line checking device
KR20030041448A (en) Remote fiber monitoring system for pon using looping elements
KR20030097258A (en) Remote long fiber test system
CN116519265A (en) Apparatus and method for optical fiber quality monitoring