JPH03295758A - Variable load type electronic control method of air spring for railway vehicle - Google Patents

Variable load type electronic control method of air spring for railway vehicle

Info

Publication number
JPH03295758A
JPH03295758A JP9721090A JP9721090A JPH03295758A JP H03295758 A JPH03295758 A JP H03295758A JP 9721090 A JP9721090 A JP 9721090A JP 9721090 A JP9721090 A JP 9721090A JP H03295758 A JPH03295758 A JP H03295758A
Authority
JP
Japan
Prior art keywords
air
internal pressure
air springs
air spring
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9721090A
Other languages
Japanese (ja)
Other versions
JPH0737230B2 (en
Inventor
Koichiro Ishihara
広一郎 石原
Ryutaro Ishikawa
龍太郎 石川
Tomoshi Koizumi
小泉 智志
Shuji Hamamoto
浜本 修二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2097210A priority Critical patent/JPH0737230B2/en
Publication of JPH03295758A publication Critical patent/JPH03295758A/en
Publication of JPH0737230B2 publication Critical patent/JPH0737230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To accelerate the convergence of control and perform stable control by controlling the intake/discharge of air springs so that the absolute value of the differ ence between the sums of inner pressures of air springs on diagonal lines of front and rear bogies rests within the target inner pressure difference set in proportion to the average inner pressure of all air springs of the front and rear bogies for both the right and left sides. CONSTITUTION:Pressure gauges 17 and rotary encoders 5 serving as a height detector are installed on air springs 1, 2 and 3, 4 respectively provided on the right and left sides of the front bogie 9 and the rear bogie 10 of a railway vehicle. Intake valves 11-14 are provided in the middle of pipes 7 connecting a main air reservoir 6 and the air springs 1-4, and exhaust valves 21-24 are provided on other exhaust pipes. Detected signals of the rotary encoders 5 and pressure gauges 17 are inputted to a controller 8, if the absolute value of the difference between the sums of the inner pressures of air springs on diagonal lines of the front bogie 9 and the rear bogie 10 is the target inner pressure difference or above set in proportion to the average inner pressure of all air springs, the valves are opened or closed so that the inner pressure of each air spring rests within the preset target value.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、空気ばね付き台車を有する鉄道車両の軌道
ねじれ部で発生する輪重変動を小さくした空気ばねの電
子制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electronic control method for air springs that reduces wheel load fluctuations occurring at twisting sections of a railroad vehicle having an air spring bogie.

従来の技術 空気ばね付き台車を有する鉄道車両は、個々の空気ばね
高さを連結棒を用いて機械的に検知し、その動きを高さ
調整弁のレバーに伝えて弁の開閉を行ない、高さの修正
、内圧の調整を行なっていた。
Conventional technology Railway vehicles equipped with bogies equipped with air springs mechanically detect the height of each air spring using connecting rods, and transmit the movement to the lever of the height adjustment valve to open and close the valve. They were making adjustments to the internal pressure.

しかし、鉄道車両が緩和曲線、すなわちカント逓減区間
で停車した場合は、高さ調整機構が自動的に働き、各空
気ばね高さを一定に保とうとするため、次のようなメカ
ニズムにより内圧の低下が生じ、輪重抜けが発生するこ
とがあった。
However, when a railway vehicle stops at a transition curve, that is, a section of decreasing cant, the height adjustment mechanism automatically works to keep the height of each air spring constant, so the internal pressure decreases due to the following mechanism. This could result in wheel load loss.

すなわち、鉄道車両がカント逓減区間で停車すると、−
車両の前後台車の間で内航側と外軌側のレール高さが異
なり軌道ねじれが生じているため、前後台車は異なる傾
斜角で傾く。そのため、各空気ばねに付属している高さ
調整弁の働きにより、第9図に示すように前台車(9)
と後台車(10)には互いに逆向きのモーメントが働き
、そのモーメントがつり合う角度に車体(15)は傾斜
して静止する。
In other words, when a railway vehicle stops in a section of decreasing cant, −
Because the rail heights on the inner and outer tracks of the vehicle differ between the front and rear bogies, causing track twist, the front and rear bogies tilt at different inclination angles. Therefore, by the action of the height adjustment valve attached to each air spring, the front bogie (9) is raised as shown in Figure 9.
Opposite moments act on the rear bogie (10) and the vehicle body (15) tilts at an angle where the moments are balanced and comes to rest.

この状態では、前台車(9)と後台車(10)の空気ば
ね高かは必ずしも目標高さにはなっていないため、自動
高さ調整機構の高さ調整弁の給排気は継続する。そのた
め、車両の対角方向に位置する空気ばねの内圧に不均一
が生じる。
In this state, the heights of the air springs of the front truck (9) and the rear truck (10) are not necessarily the target heights, so the air supply/exhaust operation of the height adjustment valve of the automatic height adjustment mechanism continues. Therefore, non-uniformity occurs in the internal pressure of the air springs located diagonally across the vehicle.

この内圧の不均一により、各車輪の負担する荷重に不均
一が生じる。その結果、輪重変動が大きく、荷重分担の
少ない車輪は、いわゆる輪重抜けを生じ車両の再起動時
に脱線する危険性がある。
This non-uniform internal pressure causes non-uniform loads to be borne by each wheel. As a result, wheels with large wheel load fluctuations and low load sharing are at risk of causing so-called wheel load loss and derailment when the vehicle is restarted.

従来の空気ばね制御系においても、この輪重変動を少し
でも小さくするため、左右空気ばねの間を差圧弁で接続
している。この差圧弁は、設定差。
Even in conventional air spring control systems, the left and right air springs are connected by a differential pressure valve in order to reduce this wheel load fluctuation as much as possible. This differential pressure valve is a setting difference.

圧を超える左右空気ばね間の内圧差が生じた場合に連通
するように設けられている。したがって、この設定差圧
は小さいことが望ましい。しかし、曲線路におけるカン
ト負けを防止する観点から、この設定差圧はあまり小さ
くできず、一方、前後台車それぞれの設定差圧の合計が
一車両内の最大内圧差となるので、輪重変動に対しては
設定差圧を大きくとることは不利となる。
The air springs are provided so as to communicate when an internal pressure difference between the left and right air springs exceeds the pressure. Therefore, it is desirable that this set differential pressure is small. However, from the perspective of preventing canting on curved roads, this set differential pressure cannot be made too small, and on the other hand, the sum of the set differential pressures of the front and rear bogies becomes the maximum internal pressure difference within one vehicle, so wheel load fluctuations In contrast, it is disadvantageous to set a large differential pressure.

発明が解決しようとする課題 上記のごとく、従来の空気ばね付き台車を有する鉄道車
両は、各空気ばねに高さ調整機構があり、各空気ばねご
とに高さ調整が行なわれている。また、前後台車のそれ
ぞれに左右空気ばね間を差圧弁で接続し、左右空気ばね
間の空気圧の調整が行なわれている。
Problems to be Solved by the Invention As described above, in a conventional railway vehicle having a bogie with an air spring, each air spring has a height adjustment mechanism, and the height is adjusted for each air spring. Furthermore, the air pressure between the left and right air springs is adjusted by connecting the left and right air springs to each of the front and rear trucks with differential pressure valves.

しかし、このような制御方法では、カント逓減区間の軌
道ねじれ部で停車した場合、空気ばねが設定高さと設定
差圧を満足して輪重変動を防止することはできなかった
However, with this control method, when the vehicle stops at a twisting section of the track in a tapering cant section, it is not possible for the air spring to satisfy the set height and differential pressure and prevent wheel load fluctuations.

この発明は、カント逓減区間における輪重変動を防止し
、カント逓減区間に停車した車両が再起動する際の脱線
防止を目的とした鉄道車両用空気ばねの電子制御方法を
提供するものである。そして、特に車両重量あるいは乗
客の多少に応じて、制御のパラメータを変化させ、より
合理的な制御方法とすることにより、弁の開閉頻度の減
少や制御の安定度を向上させ、弁の寿命の増大や空気消
費量の減少を図ることを目的とする。
The present invention provides an electronic control method for an air spring for a railway vehicle, which is aimed at preventing wheel load fluctuations in a decreasing cant section and preventing derailment when a vehicle stopped in a decreasing cant section restarts. By changing the control parameters depending on the weight of the vehicle or the number of passengers, and creating a more rational control method, we can reduce the frequency of opening and closing the valve, improve the stability of the control, and extend the life of the valve. The purpose is to increase air consumption and reduce air consumption.

課題を解決するための手段 上記目的を達成するため、この発明の鉄道車両用空気ば
ねの電子制御方法は、空気ばね台車を有する鉄道車両に
おいて、前後台車の各空気ばねに、連続的に計測する高
さ検出器、圧力計および空気流量を低くした給気弁と排
気弁を設け、各高さ検出器および圧力計の検出信号を制
御器に入力し、設定差圧および設定高さと比較演算して
制御器からの制御信号により答弁を開閉操作するように
構成し、 ■ 前後台車の各空気ばねの内圧と高さを検出して、前
後台車の対角線上にある空気ばねの内圧の和の差の絶対
値、または前後台車の同じ側にある前後空気ばねの内圧
の差の絶対値が左右側ともに、前後台車の全空気ばねの
平均内圧に比例して設定した目標内圧差内に納まるよう
に答弁の給排気を制御する、 ■ 上記■の制御方法により空気ばねの内圧制御を行な
い、引続き空気ばね高さ制御や高さ制御を行なう、 ■ 上記■の制御方法において、全空気ばねの平均内圧
測定値が設定平均内圧下限値より小さいときは各排気弁
を開いて排気のみを行ない、逆に平均内圧測定値が設定
平均内圧上限値より大きいときは各給気弁を開いて給気
のみを行ない、平均内圧測定値が設定平均内圧下限値と
設定平均内圧上限値の間にあるときは各給気弁と各排気
弁を開いて給気と排気を同時に行なう、 のである。
Means for Solving the Problems In order to achieve the above object, the electronic control method for air springs for a railway vehicle of the present invention continuously measures each air spring of the front and rear bogies in a railway vehicle having an air spring bogie. A height detector, a pressure gauge, and an air supply valve and exhaust valve with low air flow rates are installed, and the detection signals from each height detector and pressure gauge are input to the controller and compared with the set differential pressure and set height. ■ Detects the internal pressure and height of each air spring on the front and rear bogies, and calculates the difference in the sum of the internal pressures of the air springs diagonally on the front and rear bogies. , or the absolute value of the difference in internal pressure between the front and rear air springs on the same side of the front and rear bogies, on both the left and right sides, so that they fall within the target internal pressure difference set in proportion to the average internal pressure of all air springs on the front and rear bogies. Answer: Control the air supply and exhaust, ■ Control the internal pressure of the air spring using the control method described in ■ above, and then perform height control of the air spring, ■ Control the average internal pressure of all air springs using the control method described in ■ above. When the measured value is smaller than the set average internal pressure lower limit, each exhaust valve is opened and only air is exhausted; conversely, when the average internal pressure measured value is greater than the set average internal pressure upper limit, each air supply valve is opened and only air is supplied. When the average internal pressure measurement value is between the set average internal pressure lower limit value and the set average internal pressure upper limit value, each air supply valve and each exhaust valve are opened to perform air supply and exhaust at the same time.

作    用 第4図に示すように、前台車の空気ばね(1) (2)
と後台車の空気ばね(3)(4)のそれぞれの内圧をP
L、Pl、P、、P、とし、またばね高さをh5h!、
hsSh4としたとき、第9図に示すようにカント逓減
区間において、前台車(9)と後台車(10)にたがい
に逆向きのモーメントが働けば、その際の各空気ばねの
内圧は、例えば第6図に示すように、Pl とP4が低
く、Pl とPgが高い。したがって、対角線上の空気
ばねの内圧の和の差の絶対値、すなわち1(PI十P4
)   (Pt+Ps)lの値により内圧の変動を最も
顕著に表わすことができる。そのため、設定差圧をΔP
eとしたとき、(P r+ P 4)   (P *斗
Pa)l<ΔPeを満足するように内圧制御を行なえば
、空気ばねの内圧変動を小さく押えることができる。
As shown in Figure 4, the air springs (1) (2) of the front bogie
and the internal pressure of the air springs (3) and (4) of the rear bogie are P
Let L, Pl, P,,P, and the spring height be h5h! ,
When hsSh4 is shown in Fig. 9, if opposite moments act on the front bogie (9) and the rear bogie (10) in the cant decreasing section, the internal pressure of each air spring at that time is, for example, As shown in FIG. 6, Pl and P4 are low, and Pl and Pg are high. Therefore, the absolute value of the difference between the sums of the internal pressures of the air springs on the diagonals, that is, 1 (PI + P4
) (Pt+Ps) The variation in internal pressure can be most clearly expressed by the value of l. Therefore, set differential pressure to ΔP
If the internal pressure is controlled to satisfy (P r + P 4) (P * Pa) l < ΔPe, it is possible to suppress the internal pressure fluctuation of the air spring to a small value.

また、カント区間においては、左右空気ばねの内圧に差
がなければ第8図に示すように前台車(9)と後台車(
10)はともに内軟側に向けてモーメントが発生しカン
ト負けが起る。しかし、例えば第8図の状態で第7図に
示すように片側の空気ばね(2)(4)の内圧P!、P
4が低く、他側の空気ばね(1)(3)の内圧Pr、P
−が高いカント区間では+ (P1+P4)   (P
s+Ps)lの値はあまり変化せず、十分に左右内圧間
に差を発生させ、カント負は現象の発生を防止できる。
In addition, in the cant section, if there is no difference in the internal pressure of the left and right air springs, the front bogie (9) and the rear bogie (
In both cases 10), a moment is generated toward the inner soft side and cant loss occurs. However, for example, in the state shown in FIG. 8, as shown in FIG. 7, the internal pressure P of the air springs (2) and (4) on one side! , P
4 is low, and the internal pressure Pr, P of the air springs (1) and (3) on the other side
In the cant section where − is high, + (P1+P4) (P
The value of s+Ps)l does not change much, a sufficient difference is generated between the left and right internal pressures, and the negative cant can prevent the phenomenon from occurring.

前後空気ばねの内圧の差圧IP+  Pal、PxP*
lについても、上記対角線上の空気ばねの内圧の和の差
の絶対値と同様の性質を有し、制御上の効果が認められ
ており、 P+  P−<ΔPe   がつ、 Pl  P4  <ΔPe を満足するように制御を行なえばよい。
Differential pressure between the internal pressure of the front and rear air springs IP+ Pal, PxP*
l also has the same properties as the absolute value of the difference in the sum of the internal pressures of the air springs on the diagonal line, and is recognized to have a control effect, and P+ P-<ΔPe and Pl P4 <ΔPe. All you have to do is control it to your satisfaction.

しかし、上記制御おいて、設定差圧ΔPeを常に一定値
に固定しておくのは、制御の安定度からみて得策ではな
い。
However, in the above control, it is not advisable to always fix the set differential pressure ΔPe to a constant value from the viewpoint of control stability.

すなわち、空車時(平均内圧約2気圧)と満車時(平均
内圧約6気圧ンの各空気ばねの圧力偏差は平均内圧にほ
ぼ比例して大きくなっている。
That is, the pressure deviation between each air spring when the car is empty (average internal pressure of about 2 atm) and when it is full (average internal pressure of about 6 atm) increases almost in proportion to the average internal pressure.

例えば、空車時の圧力がPt=2.1気圧、P、=1.
9気圧、P、=2.1気圧、P、=2.0気圧のとき、
対角線上の差圧はl (2,1+2.0) −(1,9
+2.1) l = 0.1気圧となり、ΔP e= 
0.2気圧を設定しても、不感帯へ入れることは困難で
なく、比較的迅速に実施できる。しかし、満車時におい
ては、各空気ばねの圧力は、例えば空車時と同じ圧力変
動率(全空気ばね4個の内圧平均値を100としたとき
、最小内圧を示す空気ばねの内圧値を100から引いた
もの)を示す場合、すなわちP+=6.3気圧、Ps=
5.7気圧、P場=6.3気圧、P、=6.0気圧のと
き、対角線上の差圧は(6,3+6.0) −(5,7
+6.3) l =0.3気圧となり、ΔPe内に納ま
らず、さらに弁の開閉動作を継続することになる。この
場合は、過剰に小さな変動率内に納めようとし不必要に
弁の開閉を行なうことになる。
For example, the pressure when the car is empty is Pt=2.1 atm, P,=1.
When 9 atm, P = 2.1 atm, P = 2.0 atm,
The pressure difference on the diagonal is l (2,1+2.0) −(1,9
+2.1) l = 0.1 atm, ΔP e=
Even if the pressure is set at 0.2 atm, it is not difficult to enter the dead zone and can be achieved relatively quickly. However, when the car is full, the pressure of each air spring has the same pressure fluctuation rate as when the car is empty. ), that is, P+=6.3 atm, Ps=
When 5.7 atm, P field = 6.3 atm, P, = 6.0 atm, the differential pressure on the diagonal is (6,3 + 6.0) - (5,7
+6.3) l=0.3 atm, which does not fall within ΔPe, and the valve continues to open and close. In this case, an attempt is made to keep the fluctuation rate within an excessively small range, resulting in unnecessary opening and closing of the valve.

一方、逆に満車時を対象としてΔPeを大きく設定する
と、空車時には大きな圧力変動率を許容してしまうこと
になり、本来の目的が失われる。
On the other hand, if ΔPe is set to a large value when the vehicle is full, a large rate of pressure fluctuation will be allowed when the vehicle is empty, and the original purpose will be lost.

したがって、応荷重型の目標値を設定することが効率的
で、安定かつ精度の良い制御を行なう上で必要となる。
Therefore, setting variable load type target values is necessary for efficient, stable, and accurate control.

つまり、 ΔPe=β・P ただし、βニ一定の係数 P:全空気ばね4個の平均内圧と することが望ましい。In other words, ΔPe=β・P However, β is a constant coefficient P: Average internal pressure of all four air springs It is desirable to do so.

上記応荷重壓の差圧目標値を設定して圧力制御を行なう
場合、一定締りの弁を用いると、空気元溜め圧(6〜8
気圧)と空気ばね内圧および入気圧の圧力差の関係から
同一時間給気弁あるいは排気弁を開閉しても給気量が多
くなる場合と、排気量が多くなる場合がある。
When performing pressure control by setting the differential pressure target value of the variable load bottle mentioned above, if a valve with constant tightness is used, the air source reservoir pressure (6 to 8
Due to the relationship between the pressure difference between the air pressure (atmospheric pressure), the air spring internal pressure, and the intake pressure, even if the air supply valve or exhaust valve is opened and closed for the same period of time, the amount of air supplied may increase, and the amount of exhaust air may increase.

2mmφのオリフィスを用いた弁において1秒間に通過
する空気流量(ノーマル状態、1気圧、14℃)を給気
側と排気側について調べた。その結果を第1表に示す。
The flow rate of air passing per second (normal state, 1 atm, 14° C.) in a valve using a 2 mmφ orifice was investigated on the air supply side and the exhaust side. The results are shown in Table 1.

この表かられかるように、空車では給気が強く、満車で
は排気が強いので、圧力を不感帯内に入れてバランスを
保持する立場から、この傾向を相殺する方向の制御を積
極的に取り入れることが望ましい。
As can be seen from this table, the supply air is strong when the car is empty, and the exhaust air is strong when the car is full. Therefore, in order to keep the pressure within the dead zone and maintain the balance, it is important to actively implement controls to offset this tendency. is desirable.

第  1  表 の1に示すように、また(PI+P4)< (Ps十p
s)のときは第2表の2に示すように、弁の開閉を応荷
重壓にして、不感帯内に早く入るように制御する。この
ようにすることによって、第1表に示した給気と排気の
アンバランスを打ち消す方向の安定性の高い制御が得ら
れる。
As shown in 1 of Table 1, (PI + P4) < (Ps 10p
In the case of s), as shown in 2 of Table 2, the opening and closing of the valve is controlled so that it enters the dead zone quickly. By doing so, highly stable control can be obtained in the direction of canceling out the imbalance between air supply and exhaust air shown in Table 1.

第2表の1 この点について、対角線上の差圧制御と前後の差圧制御
に分けて具体的に説明する。
1 in Table 2 This point will be specifically explained by dividing it into diagonal differential pressure control and front and rear differential pressure control.

■ 対角線上の差圧制御の場合 +(PI+P4)   (Pr+Pa)l>ΔPeにお
いて、(P++P4)> (Pz+P*)のときは第2
表(備考) なお、Pxは設定平均内圧下限値、Plは
設定平均内圧上限値であり、例えばP e= 2.5k
g/ cm”、Py= 4.5kg/c♂とする。
■ In case of diagonal differential pressure control +(PI+P4) (Pr+Pa)l>ΔPe, when (P++P4)> (Pz+P*), the second
Table (remarks) In addition, Px is the set average internal pressure lower limit value, Pl is the set average internal pressure upper limit value, for example, P e = 2.5k
g/cm”, Py=4.5kg/c♂.

また、空気元圧、オリフィス径などの選択に応じてPx
、Pv を変化させて1も良い。「−」は弁を閉じたま
まを意味する。
Also, depending on the selection of air source pressure, orifice diameter, etc., Px
, Pv may be changed to 1. "-" means the valve remains closed.

第2表の2 第3表の1 (備考) なお、備考説明は第2表の1と同じ。2 of Table 2 1 of Table 3 (Notes) The notes explanation is the same as 1 in Table 2.

■ 前後の差圧制御の場合 IP、−P、I>ΔPeの場合は第3表の1に示すよう
に、またIP、−P、I>ΔPeの場合は第3表の2に
示すように、弁の開閉を応荷重型にして、不感帯内に早
く入るように制御する。
■ In the case of differential pressure control before and after: If IP, -P, I > ΔPe, as shown in 1 of Table 3, and if IP, -P, I > ΔPe, as shown in 2 of Table 3. , the valve is controlled to open and close according to the load so that it enters the dead zone quickly.

(備考) なお、備考説明は第2表の1を参照。(remarks) Please refer to 1 in Table 2 for notes.

(以下余白) 第3表の2 (備考) なお、備考条件は第2表の1を参照。(Margin below) 2 of Table 3 (Remarks) Please refer to 1 in Table 2 for the remark conditions.

上記のごとく、応荷重型制御により空気ばねの圧力制御
を行なうとともに、他の制御アルゴリズムにより空気ば
ねの高さ制御や車体の傾斜角制御を行なえば、車体のス
トッパー当りの防止あるいは車体の望ましい姿勢制御を
行なうことができる。
As mentioned above, if the pressure of the air spring is controlled by variable load type control, and the height of the air spring and the tilt angle of the vehicle body are controlled by other control algorithms, it is possible to prevent the vehicle body from hitting the stopper or to achieve a desired posture of the vehicle body. can be controlled.

実施例 この発明の実施例を図面に基いて説明する。Example Embodiments of this invention will be described based on the drawings.

第1図に示すように、鉄道車両の前台車(9)と後台車
(10)の左右側に設けた空気ばね(1)(2)および
(3)(4)のそれぞれに、圧力計(17)と高さ検出
器として第5図に示す要領でロータリーエンコーダ(5
)を設置する。また、元空気溜(6)と各空気ばね(1
)〜(4)の間を接続した配管(7)の途中に、オン・
オフ制御の電磁弁からなる給気弁(11)、(12)、
(13)、(14)を設けるとともに、他に設けた排気
管にオン・オフ制御の電磁弁からなる排気弁(21)、
(22)、(23)、(24)を−設ける。そして、各
ロータリーエンコーダ(5)および圧力計(17)の検
出信号を制御器(8)に入力するように配線し、また各
給気弁および排気弁を開閉する制御器(8)からの出力
を伝えるための配線をする。
As shown in Fig. 1, pressure gauges ( 17) and a rotary encoder (5) as a height detector as shown in Figure 5.
). In addition, the original air reservoir (6) and each air spring (1
) to (4) in the middle of the pipe (7) that connects it.
Air supply valves (11), (12) consisting of off-controlled solenoid valves,
(13) and (14), and an exhaust valve (21) consisting of a solenoid valve for on/off control provided in an additional exhaust pipe;
(22), (23), and (24) are provided. Then, the detection signals of each rotary encoder (5) and pressure gauge (17) are wired to be input to the controller (8), and the output from the controller (8) that opens and closes each air supply valve and exhaust valve is Wiring to convey the information.

この発明による空気ばね内圧の応荷重製電子制御は、先
に記載したとおり、前台車(9)と後台車(10)の対
角線上にある空気ばねの内圧の和の差の絶対値が、 (PI+P4)   (P*+Ps)I >ΔPeのと
き、制御器(8)から答弁へ制御信号を流し、電磁弁を
開閉し、各空気ばねの内圧が設定された目標値に納まる
ように制御する、また、対角線上の差圧制御の場合と同
様に、前台車(9)と後台車(10)の同じ側にある前
後の空気ばねの内圧の差の絶対値が、 P++Ps  >ΔPe   あるいは、P、−P、I
>ΔPe のとき制御器(8)から答弁へ制御信号を流し、電磁弁
を開閉し、各空気ばねの内圧が設定された目標値に納ま
るように制御する、前後の差圧制御がある。
As described above, in the variable load electronic control of the air spring internal pressure according to the present invention, the absolute value of the difference in the sum of the internal pressures of the air springs on the diagonal of the front bogie (9) and the rear bogie (10) is ( PI+P4) (P*+Ps) When I > ΔPe, a control signal is sent from the controller (8) to the answer valve to open and close the solenoid valve and control the internal pressure of each air spring to be within the set target value. Also, as in the case of diagonal differential pressure control, the absolute value of the difference in internal pressure between the front and rear air springs on the same side of the front bogie (9) and the rear bogie (10) is P++Ps > ΔPe or P, -P, I
> ΔPe, a control signal is sent from the controller (8) to the response valve to open and close the solenoid valve, and there is differential pressure control before and after the air spring, which controls the internal pressure of each air spring to be within a set target value.

上記対角線上の内圧制御のフローチャートを第2図に示
す。
A flow chart of the internal pressure control on the diagonal line is shown in FIG.

対角線上の内圧の和の差の絶対値が設定差圧値ΔPeよ
り大きい場合は、この発明の内圧制御により、第2表の
1および第2表の2に示す手段で給気弁および排気弁の
給排気が制御され、設定差圧内に納められる。そして、
引き続き他の制御系による空気ばねの高さ制御や車体の
傾斜角制御が行なわれる。また、対角線上の内圧の和の
差の絶対値が設定差圧値ΔPe内に納まっているときは
、内圧制御を行なうことなく、次の他の制御アルゴリズ
ムによる空気ばねの高さ制御や車体の傾斜角制御に移行
して空気ばねの制御が行なわれる。
When the absolute value of the difference between the sums of internal pressures on the diagonal line is larger than the set differential pressure value ΔPe, the internal pressure control of the present invention controls the intake valve and the exhaust valve by the means shown in Table 2 1 and Table 2 2. The air supply and exhaust are controlled and kept within the set differential pressure. and,
Subsequently, other control systems control the height of the air spring and the tilt angle of the vehicle body. In addition, when the absolute value of the difference between the sums of the internal pressures on the diagonal line is within the set differential pressure value ΔPe, the internal pressure control is not performed and the height of the air spring is controlled using the following other control algorithm or the height of the vehicle body is The air spring is controlled by moving to tilt angle control.

また、上記の前後の内圧制御の場合のフローチャートを
第3図に示す。
Further, a flowchart for the above-mentioned before and after internal pressure control is shown in FIG.

この場合は、まずIP+P*lとΔPeを比較し、差圧
が設定差圧値を超えているときは、第3表の1に示す要
領で空気ばね(1)と(3)の給排気を制御して設定差
圧内に納め、また最初から設定差圧内に納まっていると
きはそのままで、次のPIP41とΔPeを比較する。
In this case, first compare IP+P*l and ΔPe, and if the differential pressure exceeds the set differential pressure value, supply and exhaust air springs (1) and (3) as shown in 1 of Table 3. The differential pressure is controlled to be within the set differential pressure, and if it is within the set differential pressure from the beginning, the next PIP41 and ΔPe are compared.

そして、ここで設定差圧値を超えているときは、第3表
の2に示す要領で空気ばね(2)と(4)の給排気を制
御して設定差圧内に納める。以上により、この発明の実
施による内圧制御を終ったのち、次に他の制御アルゴリ
ズムにより空気ばねの高さ制御や車体の傾斜角制御を引
き続き行なう。
If the differential pressure exceeds the set differential pressure, the air supply and exhaust of the air springs (2) and (4) is controlled in the manner shown in Table 3, 2, to keep the differential pressure within the set differential pressure. As described above, after the internal pressure control according to the present invention is completed, the height control of the air spring and the tilt angle control of the vehicle body are subsequently performed using other control algorithms.

上記のごとくしである制御同期の空気ばねの制御が終れ
ば、次の制御周期において再び最初の圧リ、小エネルギ
ーで駆動できる制御系にすることができ、ランニングコ
ストを低減できる。
Once the control synchronization of the air springs is completed as described above, the control system can be used again in the next control cycle to perform the initial pressure retrieval and drive with small energy, thereby reducing running costs.

(以下余白) この結果より、この発明の実施によれば、空気ばねの内
圧変動を低く押えることができ、また比寿命の延長がで
き、 同時に空気消費量が少なくな 発明の効果 この発明は、鉄道車両の空気ばね電子制御において、ば
ね上の荷重変動に応じた制御方法を取り入れることによ
り、内圧変動を低く押え、制御の収束が速く安定した制
御ができる。そのため、弁の寿命が延び、空気消費量が
少なくなり、効率のよい制御ができる。
(Left below) From these results, it can be seen that according to the implementation of this invention, it is possible to suppress the internal pressure fluctuation of the air spring, extend the specific life, and at the same time reduce air consumption.The effects of the invention are as follows: In the electronic control of air springs in railway vehicles, by incorporating a control method that responds to load fluctuations on the springs, internal pressure fluctuations can be kept low, control can quickly converge, and stable control can be achieved. This extends the life of the valve, reduces air consumption, and provides efficient control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の電子制御方法を実施するための装置
を設けた鉄道車両用空気ばね装置を示す説明図、第2図
および第3図はこの発明の実施により空気ばねの内圧制
御を行なう際のフローチャートで、第2図は対角線上の
内圧制御による場合、第3図は同じ側の前後内圧制御の
場合を示す、第4図はこの発明の実施において各空気ば
ねの内圧(PI−P4)および高さ (h+−h+)を
示した説明図、第5図はロータリエンコーダの説明図、
第6図は車両がカント逓減区間にある際の空気ばね内圧
の高低を示す説明図、第7図は車両がカント区間にある
際の空気ばねの内圧の高低を示す説明図、第8図は車両
がカント区間にある際の前台車(a図)および後台車(
b図)に作用するモーメントを示す説明図、第9図は車
両がカント逓減区間にある際、車体の前部と後部に発生
するモーメントを示す説明図であり、a図はカント逓減
区間と車体との関係を、b図は車体前部のモーメントを
、0図は車体後部のモーメントを、それぞれ示す。 1〜4・・・空気ばね 5・・・ロータリエンコーダ 6・・・元空気溜 8・・・制御器 10・・・後台車 21〜24・・・排気弁 7・・・配管 9・・・前台車 11〜14・・・給気弁 17・・・圧力計
Fig. 1 is an explanatory diagram showing an air spring device for a railway vehicle equipped with a device for carrying out the electronic control method of the present invention, and Figs. 2 and 3 show an air spring device for controlling the internal pressure of an air spring by carrying out the present invention. FIG. 2 shows the case of diagonal internal pressure control, FIG. 3 shows the case of longitudinal internal pressure control on the same side, and FIG. 4 shows the internal pressure of each air spring (PI-P4) in the implementation of this invention. ) and height (h+-h+), Figure 5 is an explanatory diagram of the rotary encoder,
Figure 6 is an explanatory diagram showing the level of the internal pressure of the air spring when the vehicle is in the cant decreasing section, Figure 7 is an explanatory diagram showing the level of the internal pressure of the air spring when the vehicle is in the cant interval, and Figure 8 is an explanatory diagram showing the level of the internal pressure of the air spring when the vehicle is in the cant section. The front bogie (Figure a) and rear bogie (Figure a) when the vehicle is in the cant section
Fig. 9 is an explanatory diagram showing the moment that acts on the front and rear parts of the vehicle body when the vehicle is in the decreasing cant section. Figure B shows the moment at the front of the vehicle body, and Figure 0 shows the moment at the rear of the vehicle body. 1-4... Air spring 5... Rotary encoder 6... Original air reservoir 8... Controller 10... Rear truck 21-24... Exhaust valve 7... Piping 9... Front bogie 11-14...Air supply valve 17...Pressure gauge

Claims (1)

【特許請求の範囲】 1 空気ばね台車を有する鉄道車両において、前後台車
の各空気ばねに、連続的に計測する高さ検出器、圧力計
および空気流量を低くした給気弁と排気弁を設け、各高
さ検出器および圧力計の検出信号を制御器に入力し、設
定差圧および設定高さと比較演算して制御器からの制御
信号により各弁を開閉操作するように構成し、前後台車
の各空気ばねの内圧と高さを検出して、前後台車の対角
線上にある空気ばねの内圧の和の差の絶対値、または前
後台車の同じ側にある前後空気ばねの内圧の差の絶対値
が左右側ともに、前後台車の全空気ばねの平均内圧に比
例して設定した目標内圧差内に納まるように各弁の給排
気を制御することを特徴とする鉄道車両用空気ばねの応
荷重型電子制御方法。 2 請求項1記載の制御方法により空気ばねの内圧制御
を行ない、引続き空気ばね高さ制御や車体傾斜制御を行
ない、空気ばね内圧変動、輪重変動を抑制したことを特
徴とする鉄道車両用空気ばねの応荷重型電子制御方法。 3 請求項1記載の内圧制御方法において、全空気ばね
の平均内圧測定値が設定平均内圧下限値より小さいとき
は各排気弁を開いて排気のみを行ない、逆に平均内圧測
定値が設定平均内圧上限値より大きいときは各給気弁を
開いて給気のみを行ない、平均内圧測定値が設定平均内
圧下限値と設定平均内圧上限値との間にあるときは各給
気弁と各排気弁を開いて給気と排気を同時に行ない、不
感帯への収束を促進することを特徴とする鉄道車両用空
気ばねの応荷重型電子制御方法。
[Claims] 1. In a railway vehicle having an air spring bogie, each air spring of the front and rear bogies is provided with a height detector for continuous measurement, a pressure gauge, and an air supply valve and an exhaust valve with low air flow rates. , the detection signals from each height detector and pressure gauge are input to the controller, compared with the set differential pressure and set height, and each valve is opened and closed by the control signal from the controller. Detect the internal pressure and height of each air spring and calculate the absolute value of the difference in the sum of the internal pressures of the air springs diagonally on the front and rear bogies, or the absolute value of the difference in the internal pressure of the front and rear air springs on the same side of the front and rear bogies. A flexible load for an air spring for a railway vehicle, characterized in that the air supply and exhaust of each valve is controlled so that the value on both the left and right sides falls within a target internal pressure difference set in proportion to the average internal pressure of all air springs of the front and rear bogies. Type electronic control method. 2. Air for a railway vehicle, characterized in that the internal pressure of the air spring is controlled by the control method according to claim 1, and the air spring height control and vehicle body inclination control are subsequently performed to suppress air spring internal pressure fluctuations and wheel load fluctuations. Spring variable load electronic control method. 3. In the internal pressure control method according to claim 1, when the average internal pressure measurement value of all air springs is smaller than the set average internal pressure lower limit value, each exhaust valve is opened to perform only exhaust, and conversely, the average internal pressure measurement value becomes the set average internal pressure. When the value is higher than the upper limit, each air supply valve is opened to supply air only, and when the average internal pressure measurement value is between the set average internal pressure lower limit and the set average internal pressure upper limit, each air intake valve and each exhaust valve are opened. A variable load type electronic control method for air springs for railway vehicles, characterized by opening air springs to simultaneously supply and exhaust air to promote convergence to a dead zone.
JP2097210A 1990-04-12 1990-04-12 Load-bearing electronic control method for railcar air springs Expired - Lifetime JPH0737230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097210A JPH0737230B2 (en) 1990-04-12 1990-04-12 Load-bearing electronic control method for railcar air springs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097210A JPH0737230B2 (en) 1990-04-12 1990-04-12 Load-bearing electronic control method for railcar air springs

Publications (2)

Publication Number Publication Date
JPH03295758A true JPH03295758A (en) 1991-12-26
JPH0737230B2 JPH0737230B2 (en) 1995-04-26

Family

ID=14186263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097210A Expired - Lifetime JPH0737230B2 (en) 1990-04-12 1990-04-12 Load-bearing electronic control method for railcar air springs

Country Status (1)

Country Link
JP (1) JPH0737230B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188367A1 (en) * 2016-04-28 2017-11-02 川崎重工業株式会社 Wheel load adjustment device for railroad vehicle
TWI786273B (en) * 2018-03-05 2022-12-11 日商東海旅客鐵道股份有限公司 Monitoring system for railway vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188367A1 (en) * 2016-04-28 2017-11-02 川崎重工業株式会社 Wheel load adjustment device for railroad vehicle
JP2017197061A (en) * 2016-04-28 2017-11-02 川崎重工業株式会社 Wheel weight adjusting device for railway vehicle
TWI786273B (en) * 2018-03-05 2022-12-11 日商東海旅客鐵道股份有限公司 Monitoring system for railway vehicle

Also Published As

Publication number Publication date
JPH0737230B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
CN112046533B (en) Rail vehicle tilting system, tilting control method and rail vehicle
JP5047789B2 (en) Air amount control method in closed air supply device of traveling device
WO1989000927A1 (en) Control apparatus for a vehicular suspension system
JPS6296113A (en) Ground clearance adjuster for vehicle
KR910008700B1 (en) Vehicle suspension apparatus
JPH02303913A (en) Suspension device for vehicle
JP2002316641A (en) Vehicle body inclination control device for rolling stock
JP2011183861A (en) Vehicle body leaning device for railroad vehicle
JPH03295758A (en) Variable load type electronic control method of air spring for railway vehicle
JP4261898B2 (en) Railway vehicle
JPH03167070A (en) Electronic control method of air spring for rolling stock
CN110077192B (en) Rigidity-adjustable semi-active hydro-pneumatic suspension system and regulation and control method thereof
JPH0757605B2 (en) Railway vehicle body control method
JPH03167069A (en) Electronic control method of air spring for railway vehicle
JPH03148370A (en) Air spring control method for rolling stock
JP2832329B2 (en) Vehicle body tilt control method for railway vehicles
JPH0415160A (en) Controlling method for attitude of vehicle body of train
JPH03164366A (en) Air spring electronic control method for railroad vehicle
JPH02303910A (en) Suspension device for vehicle
JPH03178862A (en) Wheel load fluctuation preventing method for rolling stock
RU2800617C1 (en) Tilt system and tilt control method for rail vehicle and rail vehicle
JPH0737231B2 (en) Electronic control method for air springs for railway vehicles
JPH03164367A (en) Air spring electronic control method for railroad vehicle
JP3372085B2 (en) Vehicle ventilation system
JPH0382666A (en) Control method for railroad vehicle on mild curve

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 15

EXPY Cancellation because of completion of term