JPH03295410A - Interferometer type optical fiber gyro - Google Patents
Interferometer type optical fiber gyroInfo
- Publication number
- JPH03295410A JPH03295410A JP9724890A JP9724890A JPH03295410A JP H03295410 A JPH03295410 A JP H03295410A JP 9724890 A JP9724890 A JP 9724890A JP 9724890 A JP9724890 A JP 9724890A JP H03295410 A JPH03295410 A JP H03295410A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric material
- optical fiber
- frequency
- type optical
- fiber gyro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 31
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- 229910052451 lead zirconate titanate Inorganic materials 0.000 abstract description 4
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 8
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- BDMHSCBWXVUPAH-UHFFFAOYSA-N cobalt niobium Chemical compound [Co].[Nb] BDMHSCBWXVUPAH-UHFFFAOYSA-N 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000002305 electric material Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Gyroscopes (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は干渉計型光ファイバジャイロに関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an interferometer type optical fiber gyro.
(従来の技術)
干渉計型光ファイバジャイロの基本形は第2図のように
なっている。この光ファイバジャイロでは第3図のよう
に感度が低い、そこで従来は第4図のようにバイアス回
路Aを付加してそれにより光学バイアスを与えて第5図
のように感度の向上を図っている。(Prior Art) The basic form of an interferometer type optical fiber gyro is shown in FIG. This optical fiber gyro has low sensitivity as shown in Figure 3, so conventionally a bias circuit A was added as shown in Figure 4 to provide an optical bias and improve the sensitivity as shown in Figure 5. There is.
この光学バイアスを与えるものとして従来は位相変調器
が使用されている。この位相変調器は第6図のように筒
状の圧電材料1の外周に光ファイバ2が巻きつけられ、
その圧電材料lに電源3から電圧を印加すると同圧電材
料lが径方向に振動し、この振動により光ファイバ2が
長手方向に伸縮してファイバ長が変化し、これにより同
光ファイバ2内を伝送される光の位相が変化することを
利用して光学バイアスを行うものである。ちなみに前記
前記圧電材料lとしては圧電セラミックス(ジルコンチ
タン酸鉛等)及び圧電性高分子(PVDF)が使用され
ている。Conventionally, a phase modulator has been used to provide this optical bias. As shown in FIG. 6, this phase modulator has an optical fiber 2 wound around the outer periphery of a cylindrical piezoelectric material 1.
When a voltage is applied to the piezoelectric material 1 from the power source 3, the piezoelectric material 1 vibrates in the radial direction, and this vibration causes the optical fiber 2 to expand and contract in the longitudinal direction, changing the fiber length. Optical bias is performed by utilizing the change in the phase of transmitted light. Incidentally, piezoelectric ceramics (such as lead zirconate titanate) and piezoelectric polymers (PVDF) are used as the piezoelectric material 1.
干渉計型光ファイバジャイロでは、この位相の変化量を
所定の値1ベッセル関1&J (η=1.84))にす
ることによって光学バイアスを与えている。In the interferometer type optical fiber gyro, an optical bias is applied by setting the amount of change in this phase to a predetermined value 1 Bessel function 1&J (η=1.84)).
圧電材料は共振周波数又は反共振周波数では変調度(位
相変化N)が大きいので、従来はこのJ:うに大きな変
調度が得られる共振周波数又は反共振周波数で使用され
ていた。Piezoelectric materials have a large degree of modulation (phase change N) at the resonant frequency or anti-resonant frequency, so conventionally piezoelectric materials have been used at the resonant frequency or anti-resonant frequency where a large degree of modulation can be obtained.
(発明が解決しようとする課題)
しかし、圧電材料を共振周波数又は反共振周波数で振動
さセた場合、大きな変調度は得られるが温度変化に対し
て変調度(位相変化量)が変動するという問題があった
。(Problem to be solved by the invention) However, when a piezoelectric material is vibrated at a resonant frequency or an anti-resonant frequency, a large degree of modulation can be obtained, but the degree of modulation (amount of phase change) varies with temperature changes. There was a problem.
(発明の目的)
本発明の目的は前記温度変化による変調度の変動が少な
い干渉計型光ファイバジャイロを提供することにある。(Object of the Invention) An object of the present invention is to provide an interferometer-type optical fiber gyro in which the degree of modulation varies little due to temperature changes.
(課題を解決するための手段)
干渉計型光ファイバジャイロの出力は、圧電材料へ印加
する電圧の周波数で同期検波を行った場合、以下の式で
示される6
ジャイロ出力=IJ、(η)SINΔΩ ・・・■ここ
で、 I:受光パワ
、J、(η) −次のベッセル関数
ΔΩ:位相差
干渉計型光ファイバジャイロでは、この位相差を検出す
ることにより角速度を求める1重に、干渉計型光ファイ
バジャイロにおいては一次のベッセル関数j1 (η)
が最大(n=1.84)になるように設定され、ηは以
下の式で示される。(Means for Solving the Problem) When synchronous detection is performed at the frequency of the voltage applied to the piezoelectric material, the output of the interferometer type optical fiber gyro is expressed by the following formula 6 Gyro output = IJ, (η) SINΔΩ...■Where, I: Received light power, J, (η) - Next Bessel function ΔΩ: In the phase difference interferometer type optical fiber gyro, the angular velocity is determined by detecting this phase difference. In the interferometer type optical fiber gyro, the first-order Bessel function j1 (η)
is set to be maximum (n=1.84), and η is expressed by the following formula.
n=2czsIN (nxfL/C) −■ここ
で、a:圧電材料の変調度(位相変化量)f:圧電材料
の印加周波数
n:ファイバの屈折率
1、、:ファイバ長
C・光速度
従って、圧電材料の変調度の変動を抑えることでジャイ
ロ出力の安定化を図ることができる。n=2czsIN (nxfL/C) - ■where, a: modulation degree of piezoelectric material (amount of phase change) f: applied frequency of piezoelectric material n: refractive index of fiber 1, ,: fiber length C・light velocity, therefore, By suppressing fluctuations in the degree of modulation of the piezoelectric material, it is possible to stabilize the gyro output.
本発明の干渉計型光ファイバジャイロは前記の原理に基
づいて開発さハたものである。即ち、本発明の干渉計型
光ファイバジャイロは第1図のように、圧電材料1にフ
ァイバ2を巻きつけ、同圧電材料lに電圧を印加して圧
電材料lを径方向に振動させ、この振動により前記ファ
イバ2中を伝送される光の位相を変化させる位相変調器
3により、光学バイアスを与えるようにした干渉計型光
ファイバジャイロにおいて、iij記位相位相変調器3
電材料lを同圧電材料1自身が有する共振周波数及び反
共振周波数以外の周波数で駆動させて光学バイアスを与
えるようにしたものである。The interferometer type optical fiber gyro of the present invention was developed based on the above-mentioned principle. That is, in the interferometer type optical fiber gyro of the present invention, as shown in FIG. In an interferometer type optical fiber gyro in which an optical bias is applied by a phase modulator 3 that changes the phase of light transmitted through the fiber 2 by vibration, the phase phase modulator 3 described in iii.
The electric material 1 is driven at a frequency other than the resonance frequency and anti-resonance frequency of the piezoelectric material 1 itself to apply an optical bias.
本発明の干渉計型光ファイバジャイロにおける圧電材料
1は、圧電セラミックス、圧電性高分子等であり、圧電
セラミックスはチタン酸バリウム、ジルコンチタン酸鉛
、コバルトニオブ鉛系、ビスマスニオブ酸鉛系である。The piezoelectric material 1 in the interferometer type optical fiber gyro of the present invention is piezoelectric ceramics, piezoelectric polymers, etc., and the piezoelectric ceramics are barium titanate, lead zirconate titanate, lead cobalt niobium, lead bismuth niobate. .
圧電性高分子は、ポリフッ化ビニリデン(PVll)F
)、フッ化ビニリデン/4フフ化エチレン共重合体(P
(VDF/TFE))、及ヒフッ化ビニリデン/3フ
ッ化エチレン(P (V D F / T rFE)で
ある。The piezoelectric polymer is polyvinylidene fluoride (PVll) F
), vinylidene fluoride/tetrafluoroethylene copolymer (P
(VDF/TFE)), and vinylidene fluoride/trifluoroethylene (P(VDF/TrFE)).
(作用)
本発明の干渉計型光ファイバジャイロでは位相変調器3
の圧電材料lを同圧電材料l自身が有する共振層l11
7教及び反共振周波数以外の周波数で振動させて光学バ
イアスを与えるようにしたので、共振周波数或は反共振
周波数で振動させた場合のように大きな変調度は得られ
ないが、第7図に○印で示されるように温度変化に対し
て変調度(位相変化量)の変動が少ないものとなる。(Function) In the interferometer type optical fiber gyro of the present invention, the phase modulator 3
A resonant layer l11 in which the piezoelectric material l itself has a piezoelectric material l of
Since we applied optical bias by vibrating at a frequency other than the 7-frequency and anti-resonant frequencies, we cannot obtain as large a modulation degree as when vibrating at the resonant or anti-resonant frequencies, but as shown in Figure 7. As shown by the circle, the modulation degree (phase change amount) fluctuates little with respect to temperature changes.
(実施例)
本発明の干渉計型光ファイバジャイロの一実施例を以下
に説明する。(Example) An example of an interferometer type optical fiber gyro of the present invention will be described below.
第1図の位相変調器3の圧電材料lは材質がジルコン酸
チタン酸鉛で、外径35mmφ、厚さ1.5mmφの筒
体である。これに光ファイバ2を約2m巻き、所定の位
相変化量になるように印加電圧を調整した。The piezoelectric material l of the phase modulator 3 in FIG. 1 is made of lead zirconate titanate, and is a cylindrical body with an outer diameter of 35 mm and a thickness of 1.5 mm. The optical fiber 2 was wound around this by about 2 m, and the applied voltage was adjusted so that a predetermined amount of phase change was achieved.
この圧電材料Iの共振周波数は27kHz、反共振周波
数は54kHzである。This piezoelectric material I has a resonant frequency of 27 kHz and an anti-resonant frequency of 54 kHz.
次に第7図に示すような評価系を用いて一20〜80℃
の温度変化に対する変調度の変動量を。Next, using an evaluation system as shown in Figure 7,
The amount of variation in modulation degree with respect to temperature change.
共振周波数、反共振周波数及び前記以外の周波数(f=
7.8kHz)について調べた。ちなみに、第7図にお
いて11は光源、12はカブラ、3は位相変調器、4は
駆動電源、15はカブラ、16は受光器、17はFFT
アナライザである。Resonant frequency, anti-resonant frequency and frequencies other than the above (f=
7.8kHz). By the way, in Fig. 7, 11 is a light source, 12 is a doubler, 3 is a phase modulator, 4 is a driving power source, 15 is a doubler, 16 is a light receiver, and 17 is an FFT.
It is an analyzer.
前記測定系による測定結果を第8図に示す、第8図は任
意の温度を所定時間づつ保持し、その保持された温度帯
における変調度の変動を示すものである。同図から明ら
かなように共振周波数(27KH,)の場合はX印のよ
うに1反共振周波数(54KHz)の場合は△印のよう
に、温度変化に対して変調度の変動が大きいが、f=7
.8kHzにおける変調度の変動は、共振周波数ならび
に反共振周波数で駆動した場合と比較して約半分である
。The measurement results obtained by the measurement system are shown in FIG. 8. FIG. 8 shows a change in the degree of modulation in the temperature range in which an arbitrary temperature is maintained for a predetermined period of time. As is clear from the figure, there is a large variation in the modulation degree with respect to temperature changes, as shown by the X mark in the case of the resonant frequency (27 KH) and the △ mark in the case of the 1 anti-resonant frequency (54 KHz). f=7
.. The variation in modulation depth at 8 kHz is about half compared to the case of driving at the resonant frequency and the anti-resonant frequency.
さらに変調度(位相変化量)と印加周波数の関係につい
て調べた結果が第9図である。同図に示されるように共
振周波数(27KHz)及び反共振周波数(54KHz
)付近では印加周波数の僅かな変動により変調度が大き
く変動するのに対して、前記以外の周波数(f=7.8
kHz)では変調度の変動が非常に小さいことがわかる
。Furthermore, FIG. 9 shows the results of investigating the relationship between the modulation degree (amount of phase change) and the applied frequency. As shown in the figure, the resonance frequency (27KHz) and anti-resonance frequency (54KHz)
), the modulation degree changes greatly due to a slight change in the applied frequency, whereas at frequencies other than the above (f = 7.8
kHz), it can be seen that the variation in the modulation degree is very small.
(発明の効果)
本発明の干渉計型光ファイバジャイロでは温度変動によ
るジャイロの出力の変動(スケールファクタ)の低減を
図ることが可能となる。また、圧電材料に印加する周波
数の変動に対してもジャイロの出力に与える影響が少な
い。(Effects of the Invention) With the interferometer type optical fiber gyro of the present invention, it is possible to reduce fluctuations (scale factor) in the output of the gyro due to temperature fluctuations. Furthermore, variations in the frequency applied to the piezoelectric material have little effect on the output of the gyro.
第1図は本発明の干渉計型光ファイバジャイロの一実施
例を示す説明図、第2図は干渉計型光ファイバジャイロ
の基本原理図、第3図は第2図の光ファイバジャイロの
感度の説明図、第4図はバイアス回路を設けた干渉計型
光ファイバジャイロの説明図、第5図は第4図の光ファ
イバジャイロの感度の説明図、第6図は光ファイバジャ
イロの位相変調器の説明図、第7図は測定系の説明図、
第8図は温度と変調度との関係を示す説明図、第9図は
圧電材料への印加周波数と変調度との関係を示す説明図
である。
lは圧電材料
2は光ファイバ
3は位相変調器
I(イ丁スt!II!riシ
第
S
図Fig. 1 is an explanatory diagram showing one embodiment of the interferometer type optical fiber gyro of the present invention, Fig. 2 is a diagram of the basic principle of the interferometer type optical fiber gyro, and Fig. 3 is the sensitivity of the optical fiber gyro shown in Fig. 2. Fig. 4 is an explanatory diagram of an interferometer type optical fiber gyro equipped with a bias circuit, Fig. 5 is an explanatory diagram of the sensitivity of the optical fiber gyro shown in Fig. 4, and Fig. 6 is an illustration of the phase modulation of the optical fiber gyro. An explanatory diagram of the instrument, Figure 7 is an explanatory diagram of the measurement system,
FIG. 8 is an explanatory diagram showing the relationship between temperature and the modulation degree, and FIG. 9 is an explanatory diagram showing the relationship between the frequency applied to the piezoelectric material and the modulation degree. 1 is a piezoelectric material 2 is an optical fiber 3 is a phase modulator I (Fig.
Claims (1)
圧を印加して圧電材料1を径方向に振動させると、同振
動により前記光ファイバ2中を伝送される光の位相が変
化すようにした位相変調器3により光学バイアスを与え
るようにした干渉計型光ファイバジャイロにおいて、前
記位相変調器3の圧電材料1を同圧電材料1自身が有す
る共振周波数及び反共振周波数以外の周波数で振動させ
て光学バイアスを与えるようにしたことを特徴とする干
渉計型光ファイバジャイロ。When an optical fiber 2 is wound around a piezoelectric material 1 and a voltage is applied to the piezoelectric material 1 to vibrate the piezoelectric material 1 in the radial direction, the phase of the light transmitted through the optical fiber 2 changes due to the vibration. In the interferometer-type optical fiber gyro in which an optical bias is applied by the phase modulator 3, the piezoelectric material 1 of the phase modulator 3 is operated at a frequency other than the resonance frequency and anti-resonance frequency of the piezoelectric material 1 itself. An interferometer-type optical fiber gyro characterized by applying optical bias through vibration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9724890A JPH03295410A (en) | 1990-04-12 | 1990-04-12 | Interferometer type optical fiber gyro |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9724890A JPH03295410A (en) | 1990-04-12 | 1990-04-12 | Interferometer type optical fiber gyro |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03295410A true JPH03295410A (en) | 1991-12-26 |
Family
ID=14187280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9724890A Pending JPH03295410A (en) | 1990-04-12 | 1990-04-12 | Interferometer type optical fiber gyro |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03295410A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5559908A (en) * | 1994-05-31 | 1996-09-24 | Honeywell Inc. | Method for damping optical fiber on a bias optical phase modulator |
US10369596B2 (en) * | 2014-11-26 | 2019-08-06 | Gigaphoton Inc. | Vibrator unit and target supply device |
-
1990
- 1990-04-12 JP JP9724890A patent/JPH03295410A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5559908A (en) * | 1994-05-31 | 1996-09-24 | Honeywell Inc. | Method for damping optical fiber on a bias optical phase modulator |
US10369596B2 (en) * | 2014-11-26 | 2019-08-06 | Gigaphoton Inc. | Vibrator unit and target supply device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4644793A (en) | Vibrational gyroscope | |
US4853579A (en) | Drive method for ultrasonic motor providing enhanced stability of rotation | |
US5117148A (en) | Vibrator | |
JP6633705B2 (en) | Piezoelectric element for automatic frequency control circuit, mechanical vibration system and device having the same, and method of manufacturing piezoelectric element | |
JP2004286503A (en) | Vibrator driving method and vibrator driving device | |
JPH09170927A (en) | Vibration type angular velocity detecting device | |
JP4608435B2 (en) | Physical quantity measuring device | |
JPS6063517A (en) | Phase modulator | |
JPH05180657A (en) | Method and device for compensating scale coefficient of piezoelectric rate sensor | |
JPH03295410A (en) | Interferometer type optical fiber gyro | |
EP0647831B1 (en) | Driving and detecting circuit of a vibrator | |
KR100219291B1 (en) | Method for adjusting the temperature characteristic of a vibrating gyroscope | |
JPH06281661A (en) | Method and equipment for compensating for substance instability of piezoelectric material | |
JP2006250643A (en) | Abnormality detection device for angular velocity sensor | |
JPH11173967A (en) | Method and apparatus for measuring viscosity of liquid | |
JP2005127841A (en) | Ring-shaped oscillation type angular velocity sensor | |
JPS60192206A (en) | Vibration type angular velocity meter | |
JP2780212B2 (en) | Optical fiber angular velocity sensor | |
CN116429281B (en) | Resonator based on array structure and temperature measurement method | |
JPH11201758A (en) | Piezoelectric vibrator and piezoelectric vibrational angular velocity meter | |
JPS6061613A (en) | Cylindrical vibration type angular velocity meter | |
JP2621931B2 (en) | Driving method of phase modulator for optical fiber gyro | |
JPH10332381A (en) | Angular speed detector | |
JPH08184444A (en) | Oscillation gyro and manufacture thereof | |
CN104215234B (en) | A kind of method that utilization binodal point electrode eliminates cylindrical shell gyro temperature drift |