JPH0329537Y2 - - Google Patents
Info
- Publication number
- JPH0329537Y2 JPH0329537Y2 JP1987070191U JP7019187U JPH0329537Y2 JP H0329537 Y2 JPH0329537 Y2 JP H0329537Y2 JP 1987070191 U JP1987070191 U JP 1987070191U JP 7019187 U JP7019187 U JP 7019187U JP H0329537 Y2 JPH0329537 Y2 JP H0329537Y2
- Authority
- JP
- Japan
- Prior art keywords
- inner shell
- shell
- outer shell
- exhaust
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003068 static effect Effects 0.000 claims description 11
- 229910001018 Cast iron Inorganic materials 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 230000002706 hydrostatic effect Effects 0.000 claims description 3
- 238000005192 partition Methods 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 description 8
- 230000035882 stress Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Exhaust Silencers (AREA)
- Supercharger (AREA)
Description
【考案の詳細な説明】
[産業上の利用分野]
この考案はエンジンの各気筒から排出された排
気ガスを一定の容積をもつた静圧室に集めてその
排気ガスの脈動成分を取り除き下流の排気ターボ
過給機へ供給する静圧形排気管に関する。[Detailed explanation of the invention] [Industrial application field] This invention collects the exhaust gas discharged from each cylinder of the engine into a static pressure chamber with a certain volume and removes the pulsating components of the exhaust gas. This invention relates to a static pressure type exhaust pipe that supplies an exhaust turbo supercharger.
[従来の技術]
エンジンの気筒から排出された排気ガスの脈動
成分を取り除くと共に、その排気ガスのエネルギ
損失をできるだけ小さく抑えるために静圧室の断
熱を図つた関連技術としては、本出願人が先に提
案した「排気管構造」(特願昭61−162058号)が
ある。[Prior Art] As a related technology that removes the pulsating components of the exhaust gas discharged from the cylinders of the engine and insulates the static pressure chamber in order to minimize the energy loss of the exhaust gas, the applicant has proposed There is the previously proposed "exhaust pipe structure" (Patent Application No. 162058/1982).
この「排気管構造」は第4図に示してあるよう
に、実質的に静圧室aを区画するステンレス金属
製の内管bの外面を断熱材cで被うと共に、その
内管bの外面に形成したビード部dを、上記断熱
材cの外面を鋳ぐるむ鋳鉄製の外管eの内面に当
接させて構成してある。 As shown in Fig. 4, this "exhaust pipe structure" covers the outer surface of an inner pipe b made of stainless steel that substantially partitions a static pressure chamber a with a heat insulating material c, and A bead portion d formed on the outer surface is configured to abut against the inner surface of an outer tube e made of cast iron, which surrounds the outer surface of the heat insulating material c.
[考案が解決しようとする問題点]
上記提案は静圧室での断熱を図ると共に、内管
の熱膨張を吸収するビード部を外管の内面に接触
させることによつて、熱膨張時における内管の変
形を阻止するようにしている。[Problems to be solved by the invention] The above proposal aims at heat insulation in the static pressure chamber, and also by bringing the bead part that absorbs the thermal expansion of the inner tube into contact with the inner surface of the outer tube, to reduce the thermal expansion during thermal expansion. This is to prevent deformation of the inner tube.
ところが、静圧室内の排気ガス温度が次第に高
まると、ステンレスと鋳鉄の熱膨張係数の違い或
いは上流側と下流側の排気ガスの温度差によつ
て、外殻が形成する排気ガスの流入口または排出
口に対して、内殻が形成する排気ガスの流入口ま
たは排出口が位置ずれを起す問題がある。 However, as the exhaust gas temperature in the static pressure chamber gradually increases, the exhaust gas inlet or There is a problem in that the exhaust gas inlet or outlet formed by the inner shell is misaligned with respect to the exhaust port.
第5図には、位置ずれを起こした流入口の要部
詳細断面が示してある。同図に示してあるように
実質的に流入口Aを形成する内殻部材fが外殻g
に対して位置ずれを起こすと、その内殻部材fと
外殻gの接合部hを中心にして、まずその接続部
hに引張の応力が集中する。すると内殻部材fの
他端と内殻iとの接続部分にもこの応力が加えら
れるから、この部分にも応力が集中し好ましくな
い状態になる。熱応力は内燃機関の状態の変化に
よつて繰返し負荷されるものであるから、上記接
続部hが次第に損傷を起す問題に発展するため解
決を求められている。 FIG. 5 shows a detailed cross-section of the main part of the inlet where the positional shift has occurred. As shown in the same figure, the inner shell member f that substantially forms the inlet A is connected to the outer shell g.
When a positional shift occurs with respect to the inner shell member f and the outer shell g, tensile stress is first concentrated at the joint h between the inner shell member f and the outer shell g. Then, since this stress is also applied to the connection portion between the other end of the inner shell member f and the inner shell i, stress is concentrated in this portion as well, resulting in an unfavorable state. Since thermal stress is repeatedly applied due to changes in the state of the internal combustion engine, the problem of gradual damage to the connection part h develops, and a solution is required.
[問題点を解決するための手段]
この考案は実質的に静圧室を区画する鋼板製内
殻と、該内殻を断熱層を介して収容する鋳鉄製厚
肉外殻とを同一平面で2分割し、内殻にその分割
面に沿つてフランジ継手部を形成すると共に、外
殻にその分割面に沿つて内殻のフランジ継手部を
インロー的に嵌合してボルト締結により挟圧する
厚肉のフランジ継手部を形成し、内殻と外殻の排
気ガスの流通口に上記断熱層を貫通させて伸縮自
在なたわみ管を掛渡して設けたものである。[Means for Solving the Problems] This invention essentially consists of a steel inner shell that partitions a static pressure chamber and a thick cast iron outer shell that accommodates the inner shell through a heat insulating layer on the same plane. The thickness is divided into two parts, a flange joint part is formed on the inner shell along the dividing surface, and the flange joint part of the inner shell is fit into the outer shell along the dividing surface in a spigot manner and compressed by bolt fastening. A solid flange joint is formed, and an expandable flexible pipe is provided by penetrating the heat insulating layer and extending between the exhaust gas flow ports of the inner shell and the outer shell.
[作用]
鋳鉄製厚肉外殻内に鋼板製内殻を収容し、これ
ら内・外殻のフランジ継手部を突合わせて接合
し、外殻のフランジ継手部をボルト締結すると、
内殻のフランジ継手部は外殻のフランジ継手部に
インロー的に嵌合された状態で挟圧される。この
ため内殻内で脈動や排気ブレーキ時の大きな圧力
変動が生じても、接続部分でのシールが一定に保
たれると共に、外殻に対して内殻の位置を一定に
保つ。フランジ継手部での能力を越えた圧力が、
内殻に加えられた場合や内殻が熱膨張した場合に
は、このときにたわみ管が自在に伸縮し、外殻に
対して内殻を相対移動する。したがつて、内殻の
シールは、このときにあつても損なわれることが
ない。ところで、断熱層は内殻を支持すると共に
外殻への熱伝導を断ち外殻の熱膨張を抑え、排気
ガスのエネルギ損失を低減する。[Function] When a steel plate inner shell is housed within a thick cast iron outer shell, the flange joints of the inner and outer shells are butted together, and the flange joints of the outer shell are bolted together.
The flange joint portion of the inner shell is fitted into the flange joint portion of the outer shell in a spigot manner and is pressed. Therefore, even if pulsations or large pressure fluctuations occur within the inner shell during exhaust braking, the seal at the connection remains constant and the position of the inner shell relative to the outer shell remains constant. Pressure exceeding the capacity of the flange joint
When added to the inner shell or when the inner shell undergoes thermal expansion, the flexible tube freely expands and contracts at this time, moving the inner shell relative to the outer shell. Therefore, the seal of the inner shell is not compromised even at this time. Incidentally, the heat insulating layer supports the inner shell, cuts off heat conduction to the outer shell, suppresses thermal expansion of the outer shell, and reduces energy loss of exhaust gas.
[実施例]
以下にこの考案の好適一実施例を添付図面に基
づいて説明する。[Embodiment] A preferred embodiment of this invention will be described below with reference to the accompanying drawings.
第1図に示すように、排気管本体1は、ステン
レス等の耐熱金属でなる箱形の内殻2と、この内
殻2の外面(表面)を覆う断熱層3と、その断熱
層3で被われた内殻2の外面を包囲する鋳鉄製の
外殻とから主に構成される。即ち三層構造の排気
管本体1が構成される。 As shown in FIG. 1, the exhaust pipe body 1 consists of a box-shaped inner shell 2 made of heat-resistant metal such as stainless steel, a heat insulating layer 3 covering the outer surface (surface) of the inner shell 2, and the heat insulating layer 3. It is mainly composed of a cast iron outer shell surrounding the outer surface of a covered inner shell 2. That is, the exhaust pipe main body 1 has a three-layer structure.
内殻2は、内燃機関側4への取付方向に対して
交差する方向で内燃機関側4の内殻2aと排気タ
ーボ過給機側6の内殻2bとに2分割され、それ
ら内殻2a,2bの分割面には、それぞれに内殻
2a,2b相互を突合せ接合するフランジ継手部
2c,2dが一体成形されている。これらのフラ
ンジ継手部2c,2dは上記分割面に沿つた部分
を外方へ折曲げて形成される。内燃機関側4の内
殻2a(以下第1内殻という)には、箱の底とな
る取付面2eに長手方向に間隔を有して排気ガス
の流入口5が開口されている。これに対して排気
ターボ過給機側6の内殻2b(以下第2内殻とい
う)には、箱の底となり且つ上記取付面2eに対
して他側面となる取付面2fに、排気ガスの排出
口7が開口されている。 The inner shell 2 is divided into two parts, an inner shell 2a on the internal combustion engine side 4 and an inner shell 2b on the exhaust turbocharger side 6, in a direction crossing the direction of installation on the internal combustion engine side 4. , 2b are integrally molded with flange joint portions 2c, 2d for butt-joining the inner shells 2a, 2b, respectively. These flange joints 2c and 2d are formed by bending the portions along the dividing plane outward. In the inner shell 2a (hereinafter referred to as the first inner shell) on the internal combustion engine side 4, exhaust gas inlets 5 are opened at intervals in the longitudinal direction on a mounting surface 2e serving as the bottom of the box. On the other hand, the inner shell 2b (hereinafter referred to as the second inner shell) on the exhaust turbo supercharger side 6 has a mounting surface 2f that serves as the bottom of the box and the other side with respect to the mounting surface 2e. The discharge port 7 is open.
したがつて、第1内殻2aと第2内殻2bとの
フランジ継手部2c,2d相互を突合わせて接合
すると、それら第1、第2内殻2a,2bで排気
ガスを流入させて脈動成分を除いて排出させる静
圧室8が区画形成されることになる。 Therefore, when the flange joint parts 2c and 2d of the first inner shell 2a and the second inner shell 2b are butted and joined together, exhaust gas flows in the first and second inner shells 2a and 2b, causing pulsation. A static pressure chamber 8 is defined in which components are removed and discharged.
また、その突合せ接合状態で上記第1及び第2
内殻2a,2bには、上記流入口5を挟んだ相対
する内殻2e,2fの内面に、相互に相対方向に
延びて接合し合う有底円筒形状の絞り部9,10
がそれぞれ形成されている。これら絞り部9,1
0はそれぞれの底9a,10aが相互に気密に接
合されるように平滑に、且つ取付方向に対して垂
直面を成して形成される。 In addition, in the butt-joined state, the first and second
The inner shells 2a, 2b have bottomed cylindrical constricted portions 9, 10 that extend in the relative direction and join to the inner surfaces of the opposing inner shells 2e, 2f with the inlet 5 interposed therebetween.
are formed respectively. These aperture parts 9, 1
0 is formed to be smooth and perpendicular to the mounting direction so that the respective bottoms 9a and 10a are hermetically joined to each other.
ところで、流入口5及び排出口7のそれぞれに
は、流入管11、排出管12が接続される。 Incidentally, an inflow pipe 11 and a discharge pipe 12 are connected to the inflow port 5 and the discharge port 7, respectively.
流入管11は、その下端にフランジ12を有
し、管の軸方向に間隔をおいて少なくとも1以上
の波形のたわみ部13を有して成形される。流入
管11は、第1内殻2aの内方から挿入された
後、第1内殻2aの取付面2eの内面にフランジ
12が固着されて第1内殻2aに一体化される。 The inlet tube 11 has a flange 12 at its lower end and is formed with at least one corrugated flexure 13 spaced apart in the axial direction of the tube. After the inflow pipe 11 is inserted from inside the first inner shell 2a, the flange 12 is fixed to the inner surface of the mounting surface 2e of the first inner shell 2a, and the inflow pipe 11 is integrated into the first inner shell 2a.
他方、排出管12は下端が上記排出口7の開口
縁に沿つて形成された筒部14に嵌合されて固着
されると共に、上端に後述する外殻内面に気密に
接合されるフランジ15を有し、さらに管の軸方
向に間隔をおいて少なくとも1以上のたわみ部1
6を有して成形される。ここで、流入管11及び
排出管12のたわみ部13,16は円周方向に沿
い且つ断面波形に形成される。 On the other hand, the discharge pipe 12 has a lower end fitted into and fixed to a cylindrical portion 14 formed along the opening edge of the discharge port 7, and a flange 15 hermetically joined to the inner surface of the outer shell, which will be described later, at the upper end. and further includes at least one flexible portion 1 spaced apart in the axial direction of the tube.
6 and is molded. Here, the flexible portions 13 and 16 of the inflow pipe 11 and the discharge pipe 12 are formed along the circumferential direction and have a corrugated cross section.
接合状態の第1及び第2内殻2a,2bは、そ
の外面が適当な肉厚の断熱層3で被われており、
絞り部9,10の内周面9b,10b及び流入管
11の外周面11a並びに排出管12の外周面1
2aもまた適当な肉厚の断熱層3で被われる。こ
れにより断熱された内殻2が得られる。 The outer surfaces of the first and second inner shells 2a and 2b in the joined state are covered with a heat insulating layer 3 of an appropriate thickness,
Inner peripheral surfaces 9b and 10b of the throttle parts 9 and 10, outer peripheral surface 11a of the inflow pipe 11, and outer peripheral surface 1 of the discharge pipe 12
2a is also covered with a heat insulating layer 3 of suitable thickness. This results in a heat-insulated inner shell 2.
さて、外殻20は、上記断熱層3の外面の全て
を被うように成形されると共に、上記内殻2の分
割面cで内燃機関側4の外殻20a(以下第1外
殻という)と、排気ターボ過給機側6の外殻20
b(以下第2外殻という)とに2分割される。こ
れら分割された第1及び第2外殻20a,20b
のそれぞれには、分割面c相互で上記第1及び第
2内殻2a,2bの接合してある状態のフランジ
継手部2c,2dをインロー嵌合し且つ挾み込む
フランジ継手部20c,20dが一体に成形され
ている。インロー嵌合し且つ挾み込む部分は第2
図に示すように、第1及び第2内殻2a,2bの
フランジ継手部2c,2dの外縁Eを完全に係合
するように形成しても、第3図に示すように外縁
Eとの間に圧力変動や熱膨張時における逃げ部D
を形成しても良い。 Now, the outer shell 20 is formed so as to cover the entire outer surface of the heat insulating layer 3, and the outer shell 20a (hereinafter referred to as the first outer shell) on the internal combustion engine side 4 at the dividing surface c of the inner shell 2. and the outer shell 20 of the exhaust turbo supercharger side 6
b (hereinafter referred to as the second outer shell). These divided first and second outer shells 20a, 20b
are provided with flange joints 20c, 20d into which the flange joints 2c, 2d, in which the first and second inner shells 2a, 2b are connected to each other at the dividing plane c, are fitted with a spigot and are sandwiched therebetween. Molded in one piece. The part that fits and is inserted into the spigot is the second part.
As shown in the figure, even if the outer edges E of the flange joints 2c and 2d of the first and second inner shells 2a and 2b are formed to completely engage, the outer edges E and the outer edges E as shown in FIG. Relief part D during pressure fluctuations and thermal expansion
may be formed.
一方、第1及び第2外殻20a,20bの対向
する内面にはそれぞれ上記絞り部9,10の断熱
層の内周面3aに係合し且つ底9a,10aに着
座して、その底9a,10a同士を気密に接合す
る円筒形のデイスタンス部材21a,21bが一
体的に設けられており、これらデイスタンス部材
21a,21b及び底9a,10aの軸芯上に
は、第2外殻20b側から挿通されて、第1外殻
20aを貫通する取付ボルト22を案内するボル
ト案内穴23a,23b,23cが開口される。 On the other hand, the opposing inner surfaces of the first and second outer shells 20a and 20b engage with the inner circumferential surfaces 3a of the heat insulating layers of the constricted portions 9 and 10, respectively, and are seated on the bottoms 9a and 10a. , 10a are integrally provided, and a second outer shell 20b is disposed on the axes of these distance members 21a, 21b and the bottoms 9a, 10a. Bolt guide holes 23a, 23b, and 23c are opened to guide the mounting bolts 22 that are inserted from the side and pass through the first outer shell 20a.
さらに、これら分割された第1及び第2外殻2
0a,20bのフランジ継手20c,20dには
それぞれに周面に間隔をおいて第1及び第2外殻
20a,20b相互を接続するために、実施例に
あつては、内燃機関側4のフランジ継手部20c
に雌ねじ28が、排気ターボ過給機側6のフラン
ジ継手部20dにボルト穴29が設けられてい
る。30は接続ボルトである。 Furthermore, these divided first and second outer shells 2
In the embodiment, the flange joints 20c and 20d on the internal combustion engine side 4 are provided at the flange joints 20c and 20d on the internal combustion engine side 4 to connect the first and second outer shells 20a and 20b at intervals on the circumferential surface, respectively. Joint part 20c
A female thread 28 is provided in the exhaust turbo supercharger side 6, and a bolt hole 29 is provided in the flange joint portion 20d on the exhaust turbo supercharger side 6. 30 is a connecting bolt.
したがつて、接続ボルト30を雌ねじ28に螺
合すると、一体化された三層構造の排気管本体1
が得られる。31はパツキンリングであり、排気
ターボ過給機(図示せず)のタービン側フランジ
のボルトによつて上記排出管12のフランジ15
をパツキンリング31と第2外殻20bとで挾み
込むために設けられる。32はポートフランジで
これに上記流入管11の上端が固着される。した
がつてポートフランジ32は流入管11を内燃機
関側へ気密に接続するために設けられる。 Therefore, when the connecting bolt 30 is screwed into the female thread 28, the exhaust pipe main body 1 having an integrated three-layer structure is formed.
is obtained. 31 is a packing ring, which is attached to the flange 15 of the exhaust pipe 12 by a bolt on the turbine side flange of the exhaust turbo supercharger (not shown).
is provided to be sandwiched between the packing ring 31 and the second outer shell 20b. 32 is a port flange to which the upper end of the inflow pipe 11 is fixed. Therefore, the port flange 32 is provided for airtightly connecting the inlet pipe 11 to the internal combustion engine side.
尚、実施例における第1及び第2外殻20a,
20bは鋳鉄鋳造で成形され、第1及び第2内殻
2a,2b及び流入管11、排出管12は、ステ
ンレス等の耐熱・耐食金属鋼板で、断熱層3はA
2O3等のセラミツク積層繊維で構成される。 In addition, the first and second outer shells 20a,
20b is formed by cast iron casting, the first and second inner shells 2a, 2b, the inflow pipe 11, and the discharge pipe 12 are made of heat-resistant and corrosion-resistant metal steel plates such as stainless steel, and the heat insulating layer 3 is made of A
Composed of ceramic laminated fibers such as 2 O 3 .
次に作用を説明する。 Next, the action will be explained.
流入口5から静圧室8内に入り、脈動成分を除
かれた排気ガスは断熱層3によつてエネルギを失
うことなく排出口7から排気ターボ過給機(図示
せず)へ供給される。 Exhaust gas enters the static pressure chamber 8 from the inlet 5 and from which pulsating components are removed is supplied to the exhaust turbo supercharger (not shown) from the exhaust port 7 without losing energy through the heat insulating layer 3. .
内殻2a,2bはフランジ継手部2c,2d及
びデイスタンス部材21a,21bによつて外殻
に対して支持されるから圧力変動時にあつても変
形を阻止されるが、大きな圧力変動や内殻2a,
2bの熱膨張が発生した場合は流入管11及び排
出管12の各たわみ部13,16がたわんで外殻
20a,20bに対して相対移動を許すので、内
殻2a,2bと流入管11及び排出管12との接
続部分に無理がかからず、それらの接続状態を一
定に保つ。 The inner shells 2a, 2b are supported by the flange joints 2c, 2d and the distance members 21a, 21b against the outer shell, so they are prevented from deforming even during pressure fluctuations. 2a,
When thermal expansion occurs in the inner shells 2a, 2b, the flexible portions 13, 16 of the inlet pipe 11 and the outlet pipe 12 bend and allow relative movement with respect to the outer shells 20a, 20b. To maintain a constant state of connection without putting stress on a connection part with a discharge pipe 12.
したがつて、いかなる状態にあつてもガスシー
ル性が損なわれることがなく信頼性が高い静圧形
排気管が得られる。 Therefore, it is possible to obtain a highly reliable hydrostatic exhaust pipe whose gas sealing properties are not impaired under any conditions.
尚、実施例では接続ボルト30の締め込みによ
り、内殻2a,2bのフランジ継手部2c,2d
を外殻20a,20bのフランジ継手部20c,
20dでインロー嵌合し、挾み込むように説明し
たが、内殻2a,2bのフランジ継手部2c,2
dを外方へ延出し、延出したフランジ継手部2
c,2dを接続ボルト30で共締めするようにす
ることも当然可能である。 In the embodiment, by tightening the connection bolt 30, the flange joints 2c, 2d of the inner shells 2a, 2b are tightened.
The flange joints 20c of the outer shells 20a, 20b,
20d was explained as being fitted with a spigot and being inserted, but the flange joints 2c, 2 of the inner shells 2a, 2b
d extends outward and the extended flange joint part 2
Of course, it is also possible to fasten c and 2d together with the connecting bolt 30.
[考案の効果]
以上説明したことから明らかなように、この考
案によれば内殻及び断熱層の組みたて及び保守管
理を容易にし、且つ接合された排気管本体の圧力
変動及び熱膨張に対して十分なガスシール性と高
剛性を得ることができる。[Effects of the invention] As is clear from the above explanation, this invention facilitates the assembly and maintenance of the inner shell and the heat insulating layer, and also reduces pressure fluctuations and thermal expansion of the joined exhaust pipe body. However, sufficient gas sealing properties and high rigidity can be obtained.
第1図はこの考案の好適一実施例を示す部分破
断正面図、第2図及び第3図は第1図の要部詳細
断面図、第4図及び第5図は従来の排気管構造を
示す概略図である。
図中、1は排気管本体、2は内殻、2c及び2
dは内殻のフランジ継手部、5は流通口としての
流入口、7は流通口としての排出口、11はたわ
み管としての流入管、12はたわみ管としての排
出管、13及び16はたわみ部、20は外殻、2
0c及び20dは外殻のフランジ継手部である。
Fig. 1 is a partially cutaway front view showing a preferred embodiment of this invention, Figs. 2 and 3 are detailed cross-sectional views of main parts of Fig. 1, and Figs. 4 and 5 show a conventional exhaust pipe structure. FIG. In the figure, 1 is the exhaust pipe body, 2 is the inner shell, 2c and 2
d is a flange joint of the inner shell, 5 is an inlet as a flow port, 7 is an outlet as a flow port, 11 is an inflow pipe as a flexible pipe, 12 is a discharge pipe as a flexible pipe, 13 and 16 are flexible pipes. part, 20 is the outer shell, 2
0c and 20d are flange joints of the outer shell.
Claims (1)
内殻を断熱層を介して収容する鋳鉄製厚肉外殻
とを同一平面で2分割し、内殻にその分割面に
沿つてフランジ継手部を形成すると共に、外殻
にその分割面に沿つて内殻のフランジ継手部を
インロー的に嵌合してボルト締結により挟圧す
る厚肉のフランジ継手部を形成し、内殻と外殻
の排気ガスの流通口に上記断熱層を貫通させて
伸縮自在なたわみ管を掛渡して設けたことを特
徴とする静圧形排気管。 (2) 上記流通口が排気ガスの流入口である上記実
用新案登録請求の範囲第1項記載の静圧形排気
管。 (3) 上記流通口が排気ガスの排出口である上記実
用新案登録請求の範囲第1項記載の静圧形排気
管。[Claims for Utility Model Registration] (1) A steel plate inner shell that substantially partitions a static pressure chamber and a cast iron thick outer shell that houses the inner shell through a heat insulating layer are divided into two on the same plane. Then, a flange joint part of the inner shell is formed along the dividing surface of the inner shell, and a flange joint part of the inner shell is fitted to the outer shell along the dividing surface in a spigot manner and clamped by bolting. 1. A static pressure exhaust pipe characterized in that a flange joint is formed, and a stretchable flexible pipe is provided by passing through the heat insulating layer and extending between the exhaust gas flow ports of the inner shell and the outer shell. (2) The hydrostatic exhaust pipe according to claim 1, wherein the flow port is an inlet for exhaust gas. (3) The hydrostatic exhaust pipe according to claim 1, wherein the flow port is an exhaust gas discharge port.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987070191U JPH0329537Y2 (en) | 1987-05-13 | 1987-05-13 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987070191U JPH0329537Y2 (en) | 1987-05-13 | 1987-05-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63183316U JPS63183316U (en) | 1988-11-25 |
JPH0329537Y2 true JPH0329537Y2 (en) | 1991-06-24 |
Family
ID=30911599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1987070191U Expired JPH0329537Y2 (en) | 1987-05-13 | 1987-05-13 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0329537Y2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56154518U (en) * | 1980-04-19 | 1981-11-18 | ||
JPS6032336Y2 (en) * | 1980-04-26 | 1985-09-27 | ダイハツ工業株式会社 | Outer cover device for exhaust gas purification device in internal combustion engine |
-
1987
- 1987-05-13 JP JP1987070191U patent/JPH0329537Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS63183316U (en) | 1988-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4644747A (en) | Low-stress shielded exhaust passage assemblies | |
KR101639345B1 (en) | Exhaust-Gas Turbocharger | |
US4854417A (en) | Exhaust muffler for an internal combustion engine | |
CA2184793A1 (en) | Exhaust gas diffuser interface | |
US6467449B2 (en) | Composite intake manifold assembly for an internal combustion engine and method for producing same | |
US6739301B2 (en) | Composite intake manifold assembly for an internal combustion engine and method for producing same | |
US6199530B1 (en) | Composite intake manifold assembly for an internal combustion engine and method for producing same | |
JPH07691Y2 (en) | EGR valve mounting structure for internal combustion engine | |
US5729975A (en) | Semi-airgap manifold formation | |
JPH0329537Y2 (en) | ||
JP2002339815A (en) | Intake air surge tank of internal combustion engine | |
US6234131B1 (en) | Composite intake manifold assembly for an internal combustion engine and method for producing same | |
KR920007667B1 (en) | Exhaust gas line for a super charged multi-cylinder pistion internal combustion engine | |
US20050005888A1 (en) | Composite intake manifold assembly for an internal combustion engine and method for producing same | |
US6234130B1 (en) | Composite intake manifold assembly for an internal combustion engine and method for producing same | |
JP3006394B2 (en) | Exhaust manifold of internal combustion engine | |
JP3790980B2 (en) | Intake manifold | |
JPS6224777Y2 (en) | ||
JPH0610152Y2 (en) | Static pressure type exhaust pipe | |
JPS647214Y2 (en) | ||
KR200146749Y1 (en) | E.g.r. tube | |
KR20010040388A (en) | Multiple pipe comprising an envelope | |
JPH0610153Y2 (en) | Static pressure type exhaust pipe | |
JPS647215Y2 (en) | ||
JPH0622112Y2 (en) | Exhaust manifold |