JPH03295303A - Array antenna system - Google Patents

Array antenna system

Info

Publication number
JPH03295303A
JPH03295303A JP9680990A JP9680990A JPH03295303A JP H03295303 A JPH03295303 A JP H03295303A JP 9680990 A JP9680990 A JP 9680990A JP 9680990 A JP9680990 A JP 9680990A JP H03295303 A JPH03295303 A JP H03295303A
Authority
JP
Japan
Prior art keywords
antenna
excitation
case
sintheta2
antenna elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9680990A
Other languages
Japanese (ja)
Other versions
JP2569887B2 (en
Inventor
Atsushi Saito
淳 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2096809A priority Critical patent/JP2569887B2/en
Publication of JPH03295303A publication Critical patent/JPH03295303A/en
Application granted granted Critical
Publication of JP2569887B2 publication Critical patent/JP2569887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To make complicated amplitude control unnecessary by providing an exciter to excite each element connected to each elements of an antenna element by constant excitation weighting. CONSTITUTION:The function of two beame is made capable of being controlled according to ON/OFF of the excitation of a phase shifter and the antenna elements 11 to 1n by sampling excitation amplitude by the binary code of '1', '-1' or the ternary code of '1', '0', '-1'. In this case, the excitation weight Wn is Wn=EnAntheta<jphin>. However, in the case of ¦an¦=0, either An=0 or An=-1, in the case of an>0, An=1, and in the case of an<0, An=-1, where an=cosx/lambda[(sintheta1.cosphi1-sintheta2.cosphi2)xn+(sintheta1-sinp hi1.sintheta2.sinphi2)yn], phin=-pi/lambda [(costheta1.cosphi1+sintheta2.cosphi2)xn+(sintheta1.sinphi1+sintheta2. sinphi2)yn], (theta1,phi1) and (theta2,phi2) are the desired directions of two beams of the antenna, (xn,yn) is each position of N-pieces of the antenna elements, En is the low side lobed weight of two desired beams of the antenna, and lambda is the wavelength of an electromagnetic wave. Thus, the complicated excitation amplitude control becomes unnecessary.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 このアレインテナ装置は通信、放送及び移動体の誘導に
使用されるアンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This array antenna device relates to an antenna used for communication, broadcasting, and guidance of moving objects.

〔従来の技術〕[Conventional technology]

第2図はアレイアンテナ装置の座標系を示す図であシ1
図において(11)〜(1N)は平面上に配列されたN
個のアンテナ素子、第3図はアレイアンテナ装置の構成
の一部を示す図であ、り、  (11)〜(1N)はN
個のアンテナ素子、(2;は上記N個のアンテナ素子(
11)〜(IN) K接続された励振器。
Figure 2 is a diagram showing the coordinate system of the array antenna device.
In the figure, (11) to (1N) are N arranged on a plane.
FIG. 3 is a diagram showing a part of the configuration of the array antenna device, where (11) to (1N) are N
antenna elements, (2; is the above N antenna elements (
11) ~ (IN) K-connected exciter.

第4図は従来のアレイアンテナ装置の励振ウェイトの例
を示す図であシ図において(a)はアンテナ素子(11
)〜(120)の位置及び最終励振振幅移相を示すもの
であシ、φ)はその場合の放射パターンを示す。
FIG. 4 is a diagram showing an example of excitation weights of a conventional array antenna device. In the figure, (a) shows an antenna element (11
) to (120) and the final excitation amplitude phase shift, and φ) indicates the radiation pattern in that case.

次に動作について説明する。−船釣に2方向に同時にビ
ームを形成するには、第2図の座標系を用いて、それら
の方向を(θ1.φ1)、(θ2.φ2)とすると各々
の方向にビームを形成する励振分布をベクトル加算して
与えられる。即ち、(θ1.φ1)方向にビームを形成
するにはアンテナ素子(11)〜(1N)のn番目に与
えるウェイトは・・・・・・ (1) ここで (”n + 7n )はn番目の素子の座標Enはra
y1or分布等のビーム形状を与える複素ウェイト 次K(θ2.φ2)方向にビームを形成するにはアンテ
ナ素子(11)〜(IN)のn番目に与えるウェイトは ・・−・・ (2) 従って(θ1.φ1)、(θ2.φ2)方向に同時にビ
ームを形成するには式fil、 +21より=W ”(θ’t(’hMθ2pφ2)+n(θ1.φ1)、
n”(92+$2)、n−En(e−行〔(―θ1−1
9帖−1sin9h )7B]+6−、lli〔(th
02邸φ2 )xn+(sinθ1虐φt)7n’l)
部分Ar1と移相を与える部分Φiとに分離して次の形
で表現される。
Next, the operation will be explained. - To form a beam in two directions at the same time when fishing on a boat, use the coordinate system shown in Figure 2, and let those directions be (θ1.φ1) and (θ2.φ2) to form a beam in each direction. It is given by vector addition of the excitation distribution. That is, to form a beam in the (θ1.φ1) direction, the weight given to the nth antenna element (11) to (1N) is... (1) Here, ("n + 7n) is n The coordinate En of the th element is ra
To form a beam in the complex weight order K (θ2.φ2) direction that gives a beam shape such as y1or distribution, the weight given to the nth antenna element (11) to (IN) is... (2) Therefore, To simultaneously form beams in the (θ1.φ1) and (θ2.φ2) directions, use the formula fil, +21 = W ”(θ't('hMθ2pφ2)+n(θ1.φ1),
n” (92+$2), n-En(e-row [(-θ1-1
9 jo-1sin9h )7B]+6-,lli[(th
02 residence φ2 ) xn + (sin θ1 torture φt) 7n'l)
It is separated into a portion Ar1 and a portion Φi that provides a phase shift and is expressed in the following form.

ここで an=cas÷CCmθ−φ1−−2cas’162)
Xq+(虐θ1蜘φ1−θ2虐φz)yn〕−=  t
s+π 4c、T〔(mθ1μsφ1噛θ2casf62 ) 
X B+(1θ1sknφ1−血θ2虐φ2)yn) 
 −=・ (3)従ってW(θ4.φ、)+(θ2.φ
2)、n  #′i振幅を与える従って従来のアレイア
ンテナ装置においては。
Here an=cas÷CCmθ-φ1--2cas'162)
XQ + (opposition θ1 sporse φ1 -θ2 opposition φz) YN] - = t
s+π 4c, T [(mθ1μsφ1 bit θ2casf62)
X B+(1θ1sknφ1−bloodθ2 tortureφ2)yn)
−=・ (3) Therefore, W(θ4.φ,)+(θ2.φ
2), giving an amplitude of n #'i, thus in a conventional array antenna device.

第3図の励振器(2)の機能として振幅及び移相を制御
が必要なため任意の2方向に切り換えるためには、その
つど移相器及び振幅制御器が必要となる。
As the function of the exciter (2) in FIG. 3 requires control of amplitude and phase shift, a phase shifter and an amplitude controller are required each time to switch between two arbitrary directions.

第4図はこの1例を示すものであシ(θ1.φ1)=(
3Q・、 so’) (θ2.φ2)=(60°、 9
G’)の場合でアンテナ素子数は20.Y軸上にQ、5
波長間隔で等間隔で配列した場合である。Fan = 
j である。
Figure 4 shows an example of this.(θ1.φ1)=(
3Q・, so') (θ2.φ2)=(60°, 9
In the case of G'), the number of antenna elements is 20. Q on the Y axis, 5
This is a case where the wavelengths are arranged at equal intervals. Fan =
It is j.

きめ細かな振幅の制御が必要なのが分る。It can be seen that fine-grained amplitude control is required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のアレイアンテナ装置は以上の様に構成されている
ので、可変移相器、可変減衰器が必要となシ構成が複雑
になる。また、受信アンテナとしては上記事項を考慮す
れば使用可能であるものの送信アンテナとして使用する
場合で特にアクティブフェイズドアレイと組み合わせた
場合は振幅の制御に制約があるため困難になっていた。
Since the conventional array antenna device is configured as described above, the configuration becomes complicated, requiring a variable phase shifter and a variable attenuator. Furthermore, although it can be used as a receiving antenna if the above considerations are taken into consideration, it is difficult to use it as a transmitting antenna, especially when combined with an active phased array, because of restrictions on amplitude control.

この発明は上記の様な課題を解決するためになされたも
ので、移相制御とアンテナ素子(11)〜(1N)の励
振を止めることによシ、2方向に同時にビームを形成す
るプレイアンテナ装置を得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and is a play antenna that forms beams in two directions simultaneously by controlling the phase shift and stopping the excitation of the antenna elements (11) to (1N). The purpose is to obtain equipment.

[課題を解決するための手段〕 この発明に係るアレイアンテナ装置は、励振振幅が式(
5)から分かる様に可の関数であることに着目し、励振
振幅ftl、 −1の2値でサンプリングするか1.O
,−1の3@でサンプリングすることに↓り、移相器及
びアンテナ素子(11)〜(IN)の励振のオン、オフ
のみで2ビーム形既ヲ制御可能にしたものである。
[Means for Solving the Problems] The array antenna device according to the present invention has an excitation amplitude of the formula (
As can be seen from 5), focusing on the fact that it is a function of 0, we can sample the excitation amplitude ftl with two values of −1 or 1. O
By sampling at 3@ of , -1, it is possible to control the two-beam shape only by turning on and off the excitation of the phase shifter and the antenna elements (11) to (IN).

〔作用〕[Effect]

この発明においては、送信時に2ビーム形成するのに移
相器の制御とアンテナ素子(11)〜(1N)励振のオ
ン、オフのみで可能となるため、複雑な振幅制御が不要
となシ、アクティブ7エイズドアレイにも適用が可能と
なった。
In this invention, two beams can be formed during transmission by simply controlling the phase shifter and turning on and off the excitation of the antenna elements (11) to (1N), so complex amplitude control is not required. It can now be applied to Active 7 aided arrays as well.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において(a)dアンテナ素子(11) 〜(I
N)の位置、最終的な励振振幅移相を示すものであシ。
In FIG. 1, (a) d antenna elements (11) to (I
N) position, which indicates the final excitation amplitude phase shift.

(b)はその場合の放射パターンを示す。(b) shows the radiation pattern in that case.

次に励振移相の与え方について説明する。式(初におい
て励振振幅は邸の関数であり!a、1≦1 であること
に注目して。
Next, how to apply excitation phase shift will be explained. (Note that in the beginning, the excitation amplitude is a function of !a, 1≦1.

aI) =Oの場合はAn=1 オたはAn=−1an
>00場合はAn= f an<Oの場合はAn=−1 jπ とすると−’ ”” eT  1 ” ejoで置き換
えられるため人+47においてEΩ以外に全て移相の制
御に直き侠えられる。さらに、  Enは固定的なウェ
イトでめるので、任意の方向に2ビーム形瓜するには、
移相のみ音制御すれば良いことが分る。
aI) If =O then An=1 or An=-1an
>00, An= f If an<O, An=-1 jπ, it is replaced by -' ``eT 1 '' ejo, so that everything except EΩ can be directly controlled by phase shift at +47. Furthermore, since En can be set using a fixed weight, in order to shape two beams in any direction,
It turns out that only the phase shift needs to be controlled by sound.

第1メにこの発明の一実施例を示すものであp。The first page shows an embodiment of the present invention.

(θ1.φ1) = (30’ 、 900) (θ2
.φ2)=(600900)の場合で、アンテナ巣子畝
は20.Y軸上に(L5改長間隔で等間隔で配列した場
合である。
(θ1.φ1) = (30', 900) (θ2
.. In the case of φ2)=(600900), the antenna nest ridge is 20. This is a case where they are arranged at equal intervals on the Y axis (at L5 revision intervals).

BHn==1トした。図から分かる様にサイドローフは
多少上がるものの所望の方向にビームが形成されている
のが分かる。
BHn==1. As can be seen from the figure, although the side loaf is slightly raised, it can be seen that the beam is formed in the desired direction.

以上はムΩの決定方法のうち特許請求の範囲の第1項に
対する説明であるが次に第(2)項について説明する。
The above is an explanation of the first claim of the method for determining μΩ, but next, the second item will be explained.

式(旬において励振振幅が(2)関数であることと、ア
クティブ7エイズドアレイ等においてはアクティブ素子
のオンオフが可能であることに層目して次の方法でAn
i決定する。
The following method is used to calculate An
i decide.

an=:Qの場合は An=9 an>QC)場合riAn=1 a n(Qの場合はAn=−1 とすると任意の方向に2ビーム全形成するのに。If an=:Q, An=9 an>QC) if riAn=1 a n (in case of Q, An=-1 Then, two beams can be formed in any direction.

移相制御と励振器出力のオンオフのみで制御可能である
ことが分る。
It can be seen that control is possible only by phase shift control and turning the exciter output on and off.

なお、上記実施例においては、アンテナ素子(11)〜
(1N)がリニアの場合について述べたがこれに限らず
平面上に任意の配列をしていても適用可能である。また
、上記実施例においてはアクティブフェイズドアレイの
例について述べたがパッシブフェイズドアレイ等その他
の場合についても有効なのは言うまでもない。
In addition, in the above embodiment, the antenna elements (11) to
Although the case where (1N) is linear has been described, the case is not limited to this, and the application is also applicable to any arbitrary arrangement on a plane. Further, in the above embodiments, an example of an active phased array has been described, but it goes without saying that the present invention is also effective for other cases such as a passive phased array.

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明によれば、任意の2方向へのビー
ム形成が移相制御のみまたは移相制御とアクティブ素子
のオンオフによって実現できるため、複雑な励振振幅制
御用の減衰器、可変電力分配器等が不要になるとともに
、制御用の配線、メモリー等も省略できる。また、従来
のビーム走査移相計算と比較して量は約倍になるものの
同様の計算アルゴリズムにより移相計算が可能であり特
別のアルゴリズムが必要なく、移相器され有れば良いこ
とを考えると、既存のフェイズドアレイに簡ルな改修を
行えば容易に実現可能であり効果が大いに期待できる。
As described above, according to the present invention, beam formation in any two directions can be realized by phase shift control only or by phase shift control and turning on and off of active elements. In addition to eliminating the need for a distributor, control wiring, memory, etc. can also be omitted. In addition, although the amount is approximately twice as much as in conventional beam scanning phase shift calculations, phase shift calculations can be performed using the same calculation algorithm, and no special algorithm is required; all that is needed is a phase shifter. This can be easily achieved by making simple modifications to existing phased arrays, and the effects can be expected to be great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるアンテナ素子の位置
最終的な励振振幅移相、放射パターンを示す図、第2図
はアンテナ装置の座標系を示す図。 第3図はアレイアンテナ装置の構成の一部を示す図、第
4図は従来のアレイアンテナ装置のアンテナ素子(11
)〜(IN)の位置最終的な励振振幅移相、放射パター
ンを示す図である。 (11)〜(IN)II′iアンテナ素子、(2)は励
振器。 なお9図中、同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing the position, final excitation amplitude phase shift, and radiation pattern of an antenna element according to an embodiment of the present invention, and FIG. 2 is a diagram showing the coordinate system of the antenna device. FIG. 3 is a diagram showing a part of the configuration of the array antenna device, and FIG. 4 is a diagram showing the antenna elements (11
) to (IN), the final excitation amplitude phase shift, and the radiation pattern are shown. (11) to (IN)II'i antenna elements; (2) is an exciter. In addition, in FIG. 9, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)N個(Nは3以上の複数)のアンテナ素子と、上
記N個のアンテナ素子の各素子に接続された各素子を励
振ウェイトWn Wn=EnAn■^j^φ^n [ただし|a_n|=0の場合はAn=1またはAn=
−1のいずれか a_n>0の場合はAn=1 a_n<0の場合はAn=−1 a_n=cosx/λ・〔(sinθ1cosφ1−s
inθ2cosφ2)x_n+(sinθ1sinφ1
−sinθ2sinφ2)y_n〕φ_n=−x/λ〔
(sinθ1cosφ1+sinθ2cosφ2)x_
n+(sinθ1sinφ1+sinθ2sinφ2)
y_n〕(φ1、φ1)、(θ2、φ2)はアンテナの
所望の2つdのビーム方向 (x_n、y_n)はN個のアンテナ素子の各々の位置
Enはアンテナの所望の2つのビームの低サイドロープ
化ウェイト λは電波の波長] により励振する励振器とを具備するアレイアンテナ装置
(1) N antenna elements (N is a plurality of 3 or more) and each element connected to each element of the N antenna elements are excitation weight Wn Wn=EnAn■^^φ^n [However | If a_n|=0, An=1 or An=
-1 If a_n>0, An=1 If a_n<0, An=-1 a_n=cosx/λ・[(sinθ1cosφ1-s
inθ2cosφ2)x_n+(sinθ1sinφ1
-sinθ2sinφ2)y_n]φ_n=-x/λ[
(sinθ1cosφ1+sinθ2cosφ2)x_
n+(sinθ1sinφ1+sinθ2sinφ2)
y_n] (φ1, φ1), (θ2, φ2) are the desired two beam directions of the antenna (x_n, y_n) are the positions of each of the N antenna elements En are the desired two beam directions of the antenna Side rope weight λ is the wavelength of radio waves] An array antenna device comprising an exciter excited by:
(2)N個(Nは3以上の複数)のアンテナ素子と上記
N個のアンテナ素子の各素子に接続された各素子を励振
ウェイトWn Wn=EnAn■^j^φ^n [ただし|a_n|>0の場合はAn=1 |a_n|<0の場合はAn=−1 a_n=0の場合はA_n=0 a_n=cosx/λ・〔(sinθ1cosφ1−s
inθ2cosφ2)x_n+(sinθ1sinφ1
−sinθ2sinφ2)y_n〕φ_n=−x/λ〔
(sinθ1cosφ1+sinθ2cosφ2)x_
n+(sinθ1sinφ1+sinθ2sinφ2)
y_n〕(θ1、φ1)、(θ2、φ2)はアンテナの
所望の2ビームの方向 (x_n、y_n)はN個のアンテナ素子の各々の位置
E_nはアンテナの所望の2つのビームの低サイドロー
プ化ウェイト λは電波の波長] により励振する励振器とを具備するアレイアンテナ装置
(2) N antenna elements (N is a plurality of 3 or more) and each element connected to each element of the N antenna elements are excitation weights Wn Wn=EnAn■^^φ^n [However, |a_n An=1 if |>0 An=−1 if |a_n|<0 A_n=0 if a_n=0 a_n=cosx/λ・[(sinθ1cosφ1−s
inθ2cosφ2)x_n+(sinθ1sinφ1
-sinθ2sinφ2)y_n]φ_n=-x/λ[
(sinθ1cosφ1+sinθ2cosφ2)x_
n+(sinθ1sinφ1+sinθ2sinφ2)
y_n] (θ1, φ1), (θ2, φ2) are the directions of the desired two beams of the antenna (x_n, y_n) are the positions of each of the N antenna elements E_n are the low side lobes of the desired two beams of the antenna [0016] An array antenna device comprising: an exciter excited by a wavelength of a radio wave].
JP2096809A 1990-04-12 1990-04-12 Array antenna device Expired - Fee Related JP2569887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2096809A JP2569887B2 (en) 1990-04-12 1990-04-12 Array antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2096809A JP2569887B2 (en) 1990-04-12 1990-04-12 Array antenna device

Publications (2)

Publication Number Publication Date
JPH03295303A true JPH03295303A (en) 1991-12-26
JP2569887B2 JP2569887B2 (en) 1997-01-08

Family

ID=14174932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096809A Expired - Fee Related JP2569887B2 (en) 1990-04-12 1990-04-12 Array antenna device

Country Status (1)

Country Link
JP (1) JP2569887B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172036A (en) * 1982-04-02 1983-10-08 Nippon Telegr & Teleph Corp <Ntt> Directivity controlling system for multibeam communication
JPH01120906A (en) * 1987-11-05 1989-05-12 Nec Corp Two-dimension phased array antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172036A (en) * 1982-04-02 1983-10-08 Nippon Telegr & Teleph Corp <Ntt> Directivity controlling system for multibeam communication
JPH01120906A (en) * 1987-11-05 1989-05-12 Nec Corp Two-dimension phased array antenna

Also Published As

Publication number Publication date
JP2569887B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
EP0312588B1 (en) Multifunction active array
US4277787A (en) Charge transfer device phased array beamsteering and multibeam beamformer
EP0397916B1 (en) Distributed planar array beam steering control with aircraft roll compensation
Srinivasareddy et al. Sector beam synthesis in linear antenna arrays using social group optimization algorithm
US4045800A (en) Phase steered subarray antenna
Petrolati et al. A lossless beam-forming network for linear arrays based on overlapped sub-arrays
US6661375B2 (en) Beam steering in sub-arrayed antennae
US8400356B2 (en) Directive spatial interference beam control
JPS5931884B2 (en) radiant antenna system
US20050012655A1 (en) Electronically agile multi-beam antenna system
TW200304712A (en) Smart antenna for portable devices
Liu et al. Transmit-receive beamforming for distributed phased-MIMO radar system
US4072956A (en) Multifrequency array using common phasors
US5146230A (en) Electromagnetic beam system with switchable active transmit/receive modules
US5706012A (en) Radar system method using virtual interferometry
JP3061504B2 (en) Array antenna
JPH03295303A (en) Array antenna system
Bhamre et al. Constrained waveform designing for MIMO radar using Jaya optimization
US5128682A (en) Directional transmit/receive system for electromagnetic radiation with reduced switching
JP4515897B2 (en) Array antenna and its placement method
JPH0793533B2 (en) Array antenna
Kashin et al. Synthesis of multibeam directivity patterns to improve performance of radar stations with an active phased antenna array
JP4241638B2 (en) Antenna apparatus and array antenna beam control method
Ross et al. Continuous beam steering and null tracking with a fixed multiple-beam antenna array system
Chiba et al. Null beam forming by phase control of selected elements in phased‐array antennas

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees