JPH032950B2 - - Google Patents

Info

Publication number
JPH032950B2
JPH032950B2 JP57166105A JP16610582A JPH032950B2 JP H032950 B2 JPH032950 B2 JP H032950B2 JP 57166105 A JP57166105 A JP 57166105A JP 16610582 A JP16610582 A JP 16610582A JP H032950 B2 JPH032950 B2 JP H032950B2
Authority
JP
Japan
Prior art keywords
gas
titanium
titanium silicide
silicide film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57166105A
Other languages
Japanese (ja)
Other versions
JPS5956574A (en
Inventor
Yoshimi Shiotani
Mamoru Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16610582A priority Critical patent/JPS5956574A/en
Publication of JPS5956574A publication Critical patent/JPS5956574A/en
Publication of JPH032950B2 publication Critical patent/JPH032950B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体装置等の配線に用いるチタン・
シリサイド膜の形成方法に関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a titanium film used for wiring of semiconductor devices, etc.
The present invention relates to a method for forming a silicide film.

(b) 技術の背景 多層配線構造の半導体装置は、下層配線形成以
後、多くの高温熱処理工程を経て提供される。従
つて下層配線は高温熱処理に耐える材料で形成す
る必要があり、最近では高温熱処理に耐え、しか
も非常に低い抵抗率を有する高融点金属の珪化物
(シリサイド)が用いられ始めている。
(b) Background of the Technology Semiconductor devices with multilayer wiring structures are provided through many high-temperature heat treatment steps after formation of lower layer wiring. Therefore, the lower wiring needs to be formed of a material that can withstand high-temperature heat treatment, and recently, silicides of high-melting point metals that can withstand high-temperature heat treatment and have extremely low resistivity have begun to be used.

本発明は上記高融点金属シリサイドのうちのチ
タン・シリサイドに関するものである。
The present invention relates to titanium silicide among the above-mentioned high melting point metal silicides.

(c) 従来技術と問題点 従来半導体装置の下層配線に用いるチタン・シ
リサイド膜はチタン・ターゲツト及びシリコン・
ターゲツトからの同時スパツタ等スパツタリング
処理により形成していた。
(c) Conventional technology and problems The titanium silicide film used for the lower wiring of conventional semiconductor devices has a titanium target and a silicon target.
It was formed by a sputtering process such as simultaneous sputtering from a target.

しかし高純度のチタン・ターゲツトが得られな
いために、上記方法では高純度のチタン・シリサ
イド膜が得られず、特に膜中にナトリウム(Na)
等のイオンし易い元素や、ウラン(U)、トリウ
ム(Th)等の放射性元素が微量に含まれる。そ
してこれらが半導体装置に、表面リークによる直
流特性不良や放射線によるソフト・エラーを発生
せしめ半導体装置の信頼性を低下せしめるという
問題があつた。
However, because a high-purity titanium target cannot be obtained, a high-purity titanium silicide film cannot be obtained using the above method, and especially sodium (Na) in the film cannot be obtained.
It contains trace amounts of elements that easily form ions, such as ions, and radioactive elements such as uranium (U) and thorium (Th). These problems cause the semiconductor device to suffer from poor direct current characteristics due to surface leakage and soft errors due to radiation, reducing the reliability of the semiconductor device.

(b) 発明の目的 本発明は簡単な装置を用い容易に高純度のチタ
ン・シリサイド膜を形成する方法を提供するもの
であり、その目的とするところは上記問題点を除
去することにある。
(b) Purpose of the Invention The present invention provides a method for easily forming a highly pure titanium silicide film using a simple device, and its purpose is to eliminate the above-mentioned problems.

(e) 発明の目的 即ち本発明は、プラズマ促進用不活性ガスと反
応促進用水素とよりなるキヤリアガス中におけ
る、四塩化チタン(TiCl4)と四水素化珪素
(SiH4)のプラズマ・化学気相反応、若しくは、
四塩化チタン(TiCl4)及びフオスフイン
(PH3)、アルシン(AsH3)、ジボラン(B2H6
等シリコンに導電性を付与する不純物の水素化物
と、四水素化珪素(SiH4)とのプラズマ化学気
相成長反応により、被処理基板上にチタン・シリ
サド膜、若しくは隣(P)、砒素(As)、硼素
(B)等前記導電性不純物を含んだチタン・シリ
サイド膜を成長せしめることを特徴とする。
(e) Purpose of the invention That is, the present invention is directed to the plasma/chemical vaporization of titanium tetrachloride (TiCl 4 ) and silicon tetrahydride (SiH 4 ) in a carrier gas consisting of an inert gas for plasma promotion and hydrogen for reaction promotion. phase reaction, or
Titanium tetrachloride (TiCl 4 ), phosphine (PH 3 ), arsine (AsH 3 ), diborane (B 2 H 6 )
Through a plasma chemical vapor deposition reaction between hydride, an impurity that imparts electrical conductivity to silicon, and silicon tetrahydride (SiH 4 ), a titanium/silicide film is formed on the substrate to be processed, or adjacent (P), arsenic ( The method is characterized in that a titanium silicide film containing the conductive impurities such as As) and boron (B) is grown.

(f) 発明の実施例 以下本発明の方法を一実施例について、プラズ
マ・化学気相成長装置の構造模式図を用いて詳細
に説明する。
(f) Embodiment of the Invention Hereinafter, one embodiment of the method of the present invention will be described in detail using a schematic structural diagram of a plasma/chemical vapor deposition apparatus.

本発明の方法には、例えば図に示すような構造
のプラズマ化学気相成長(CVD)装置を用いる。
The method of the present invention uses, for example, a plasma chemical vapor deposition (CVD) apparatus having a structure as shown in the figure.

同図において、1は反応室、2は真空排気口、
3は加熱装置、4は絶縁体、5は陽極、6は陰
極、7はガス流出口、8はガス導入管、9は被処
理基板、10はガス発生容器、11は恒温槽、
RFは高周波発振器、Gは接地、Vstはストツ
プ・バルブ、V1〜V5は流量調節バルブ、F1〜F5
は流量計、P1〜P5はガス供給管、PTは送気管を
示している。
In the figure, 1 is a reaction chamber, 2 is a vacuum exhaust port,
3 is a heating device, 4 is an insulator, 5 is an anode, 6 is a cathode, 7 is a gas outlet, 8 is a gas introduction tube, 9 is a substrate to be processed, 10 is a gas generation container, 11 is a constant temperature bath,
RF is a high frequency oscillator, G is ground, Vst is a stop valve, V 1 to V 5 are flow rate adjustment valves, F 1 to F 5
indicates a flowmeter, P 1 to P 5 indicate a gas supply pipe, and P T indicates an air supply pipe.

そしてガス発生容器10内に液状の四塩化チタ
ン(TiCl4)を入れ恒温槽11で20〜40〔℃〕程
度の所定の温度に保ち、ガス供給管P1から10〜
300〔c.c./分〕程度の所定流量のキヤリア・ガス例
えば水素(H2)を流入し該H2に乗せてTiCl4
スを送気管PTに送り込む。又ガス供給管P2から
5〜10〔c.c./分〕程度の所定流量の四水素化珪素
(モノシランSiH4)ガスを、ガス供給管P4から数
100〔c.c./分〕程度の所望流量の希釈(プラズマ促
進)用の例えばアルゴン(Ar)ガスを、ガス供
給管P5から所望量の反応促進用水素(H2)ガス
を、それぞれ送気管PTに送り込む。なお本発明
でシリサイドのシリコンを供給するためのガスと
して、四水素化珪素を用いるのは、このガスが常
温、常圧で気体の状態にあり、流量の制御が容易
であるので産業上実用的であるからである。
Then, liquid titanium tetrachloride (TiCl 4 ) is placed in the gas generation container 10 and kept at a predetermined temperature of about 20 to 40 [°C] in a constant temperature bath 11, and the gas supply pipes P1 to 10 to
A carrier gas such as hydrogen (H 2 ) is flowed in at a predetermined flow rate of about 300 [cc/min], and TiCl 4 gas is sent into the air pipe PT along with the H 2 . In addition, silicon tetrahydride (monosilane SiH 4 ) gas is supplied from the gas supply pipe P 2 at a predetermined flow rate of about 5 to 10 [cc/min] several times from the gas supply pipe P 4 .
For example, argon (Ar) gas for dilution (plasma promotion) at a desired flow rate of about 100 [cc/min] and a desired amount of hydrogen (H 2 ) gas for reaction promotion from the gas supply pipe P5 , respectively. Send it to T. In the present invention, silicon tetrahydride is used as a gas for supplying silicon for silicide because this gas is in a gaseous state at room temperature and pressure, and the flow rate can be easily controlled, making it industrially practical. This is because.

そしてこれらのガスを該送気管PT内で混合せ
しめながら反応室1に配設されている陰極6が具
備するガス導入管8及びガス流出口7を介して反
応室1内に送り込み、真空排気口2から所定の排
気を行つて、該反応室1内を0.1〜2〔Torr〕程
度の所定圧力を有する前記混合ガス雰囲気に保
つ。そしてこの状態で主面に電極コンタクト窓を
有する絶縁膜が配設された半導体基板等の被処理
基板9を400〜500〔℃〕に昇温し、陽極−陰極・
間に例えば13.56〔MHz〕の高周波を印加して両極
間に所望強度のプラズマを発生させ、雰囲気中の
TiCl4とSiH4を気相化学反応させて、被処理基板
9上に所望の厚さのチタン・シリサイド
(TixSiy)膜を形成する。例えばx=1,y=2
を例にすると、 2SiH4+TiCl4→TiSi2+4HCl+2H2 なる反応式により、チタン・シリサイド膜が形成
される。実際にはこの例だけでなく、2x≦yを
満たすTixSiyが形成されていると考えられる。
本実施例においては、その成膜速度は300〜400
Å/minで、2000Åの厚さのチタン・シリサイド
膜が形成された。
These gases are mixed in the air supply pipe P T and sent into the reaction chamber 1 through the gas inlet pipe 8 and gas outlet 7 provided in the cathode 6 disposed in the reaction chamber 1, and are evacuated. A predetermined exhaust gas is performed from the port 2 to maintain the interior of the reaction chamber 1 in the mixed gas atmosphere having a predetermined pressure of about 0.1 to 2 Torr. In this state, the temperature of the substrate 9 to be processed, such as a semiconductor substrate, on which an insulating film having an electrode contact window is disposed on the main surface is raised to 400 to 500 [°C], and the anode-cathode
For example, a high frequency of 13.56 [MHz] is applied between the two poles to generate a plasma of a desired intensity between the two poles, and the atmosphere is
A titanium silicide (TixSiy) film having a desired thickness is formed on the substrate 9 to be processed by causing a gas phase chemical reaction between TiCl 4 and SiH 4 . For example x=1, y=2
For example, a titanium silicide film is formed by the reaction formula: 2SiH 4 +TiCl 4 →TiSi 2 +4HCl + 2H 2 . Actually, it is considered that TixSiy satisfying 2x≦y is formed in addition to this example.
In this example, the film formation rate was 300 to 400
A titanium silicide film with a thickness of 2000 Å was formed at a rate of Å/min.

本発明の第二の実施例としては、以上の第一の
実施例における条件の他に、ガス供給管P3から
SiH4の1/10程度の例えばフオスフイン(PH3
を送気管PTに送り込む。なおこの例では雰囲気
ガス中にPH3が混合されているので該チタン・シ
リサイド膜はりん(P)ドープのチタン・シリサ
イド(Tix SiyPz)膜となる。
In the second embodiment of the present invention, in addition to the conditions in the first embodiment, from the gas supply pipe P3
For example, phosphine (PH 3 ), which is about 1/10 of SiH 4
into the air pipe P T. In this example, since PH 3 is mixed in the atmospheric gas, the titanium silicide film becomes a phosphorus (P)-doped titanium silicide (Tix SiyPz) film.

(g) 発明の効果 本発明の方法によれば、上記実施例に示したよ
うに極めて簡単な装置で容易に、しかも400〜500
℃程度の低温においてチタン・シリサイド膜を形
成することができる。
(g) Effects of the Invention According to the method of the present invention, as shown in the above embodiments, it is possible to easily produce 400 to 500
A titanium silicide film can be formed at a low temperature of about °C.

又本発明の方法は上記の説明したように、チタ
ンの母材としてNaや放射性元素等をも除去して、
極めて高純度に精製することが可能な四塩化チタ
ン(TiCl4)が用いられる。従つて形成されたチ
タン・シリサイド膜は極めて高純度になり、アニ
ール処理を行うことにより2×10-5〔Ω・cm〕程
度の極めて低い抵抗率を有するチタン・シリサイ
ド膜が得られる。そして該チタン・シリサイド膜
にはNaや放射性元素が含まれることはない。
In addition, as explained above, the method of the present invention also removes Na and radioactive elements as a base material of titanium.
Titanium tetrachloride (TiCl 4 ), which can be purified to extremely high purity, is used. Therefore, the titanium silicide film formed has extremely high purity, and by annealing, a titanium silicide film having an extremely low resistivity of about 2×10 −5 [Ω·cm] can be obtained. The titanium silicide film does not contain Na or radioactive elements.

更に又本発明の方法に於ては、四塩化チタン
(TiCl4)ガスと四水素化珪素(モノシランSiH4
ガスの混合比率を変えることによりチタン(Ti)
とシリコン(Si)が種々な比率で結合したチタ
ン・シリサイド(TixSiy)膜を形成することが
できる。
Furthermore, in the method of the present invention, titanium tetrachloride (TiCl 4 ) gas and silicon tetrahydride (monosilane SiH 4 ) are used.
Titanium (Ti) by changing the gas mixture ratio
It is possible to form titanium silicide (TixSiy) films in which titanium and silicon (Si) are combined in various ratios.

そして又上記実施例に示したフオスフイン
(PH3)に限らずアルシン(AsH3)、シボラン
(B2H6)等、n型、P型いずれか望ましい導電型
のドーピング・ガスを添加することにより、更に
膜抵抗を低くし、且つ半導体基板に対するコンタ
クト抵抗を低下せしめることが出来る。
Furthermore, by adding a doping gas of a desirable conductivity type, either n-type or p-type, such as not only phosphine (PH 3 ) shown in the above embodiment, but also arsine (AsH 3 ), siborane (B 2 H 6 ), etc. Furthermore, it is possible to lower the film resistance and the contact resistance to the semiconductor substrate.

以上説明したように本発明によれば、電流リー
クの原因になるナトリウムや、ソフトエラーの原
因になる放射性元素を含まず、抵抗率及び半導体
基板に対するコンタクト抵抗の低いチタン・シリ
サイド膜を、基板に形成されている半導体素子等
の性能を劣化せしめることのない400〜500℃程度
の低温において形成することができる。従つて本
発明は半導体装置の性能及び信頼性の向上に対し
て極めて有効である。
As explained above, according to the present invention, a titanium silicide film that does not contain sodium, which causes current leaks, or radioactive elements, which causes soft errors, and has low resistivity and contact resistance with the semiconductor substrate, is applied to the substrate. It can be formed at a low temperature of about 400 to 500° C. without deteriorating the performance of the semiconductor element etc. being formed. Therefore, the present invention is extremely effective in improving the performance and reliability of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の方法の一実施例に用いたプラズマ
化学気相成長装置の構造模式図である。 図に於て、1は反応室、2は真空排気口、3は
加熱装置、4は絶縁体、5は陽極、6は陰極、7
はガス流入口、8はガス導入管、9は被処理基
板、10はガス発生容器、11は恒温槽、RFは
高周波発振器、Gは接地、Vstはストツプ・バル
ブ、V1〜V5は流量調節バルブ、F1〜F5は流量
計、P1〜P5はガス供給管、PTは送気管を示す。
The figure is a schematic structural diagram of a plasma chemical vapor deposition apparatus used in an embodiment of the method of the present invention. In the figure, 1 is a reaction chamber, 2 is a vacuum exhaust port, 3 is a heating device, 4 is an insulator, 5 is an anode, 6 is a cathode, and 7
is a gas inlet, 8 is a gas introduction pipe, 9 is a substrate to be processed, 10 is a gas generation container, 11 is a constant temperature chamber, RF is a high frequency oscillator, G is ground, Vst is a stop valve, V 1 to V 5 are flow rates Control valves, F 1 to F 5 are flow meters, P 1 to P 5 are gas supply pipes, and PT is an air supply pipe.

Claims (1)

【特許請求の範囲】 1 不活性ガスと水素とよりなるキヤリアガス中
における、四塩化チタンと四水素化珪素のプラズ
マ・化学気相反応により、被処理基板上にチタ
ン・シリサイドを成長せしめることを特徴とする
チタン・シリサイド膜の形成方法。 2 不活性ガスと水素とよりなるキヤリアガス中
における、四塩化チタン及びシリコンに導電性を
付与する不純物の水素化物と四水素化珪素とのプ
ラズマ・化学気相成長反応により、被処理基板上
に前記導電性不純物を含んだチン・シリサイドを
成長せしめることを特徴とするチタン・シリサイ
ド膜の形成方法。
[Claims] 1. A method characterized by growing titanium silicide on a substrate to be processed through a plasma/chemical vapor phase reaction of titanium tetrachloride and silicon tetrahydride in a carrier gas consisting of an inert gas and hydrogen. A method for forming a titanium silicide film. 2 A plasma/chemical vapor deposition reaction between silicon tetrahydride and titanium tetrachloride and an impurity hydride that imparts conductivity to silicon in a carrier gas consisting of an inert gas and hydrogen causes the above-mentioned to be deposited on the substrate to be processed. A method for forming a titanium silicide film characterized by growing tin silicide containing conductive impurities.
JP16610582A 1982-09-24 1982-09-24 Formation of titanium silicide film Granted JPS5956574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16610582A JPS5956574A (en) 1982-09-24 1982-09-24 Formation of titanium silicide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16610582A JPS5956574A (en) 1982-09-24 1982-09-24 Formation of titanium silicide film

Publications (2)

Publication Number Publication Date
JPS5956574A JPS5956574A (en) 1984-04-02
JPH032950B2 true JPH032950B2 (en) 1991-01-17

Family

ID=15825102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16610582A Granted JPS5956574A (en) 1982-09-24 1982-09-24 Formation of titanium silicide film

Country Status (1)

Country Link
JP (1) JPS5956574A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557943A (en) * 1983-10-31 1985-12-10 Advanced Semiconductor Materials America, Inc. Metal-silicide deposition using plasma-enhanced chemical vapor deposition
FR2623014B1 (en) * 1987-11-09 1990-03-23 France Etat METHOD FOR THE SELECTIVE DEPOSITION OF A REFRACTORY METAL SILICIDE ON SILICON AREAS
US5167986A (en) * 1988-04-15 1992-12-01 Gordon Roy G Titanium silicide-coated glass windows

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100126A (en) * 1980-01-08 1981-08-11 Konishiroku Photo Ind Co Ltd Manufacture of amorphous silicon
JPS5767016A (en) * 1980-10-09 1982-04-23 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin silicon film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100126A (en) * 1980-01-08 1981-08-11 Konishiroku Photo Ind Co Ltd Manufacture of amorphous silicon
JPS5767016A (en) * 1980-10-09 1982-04-23 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin silicon film

Also Published As

Publication number Publication date
JPS5956574A (en) 1984-04-02

Similar Documents

Publication Publication Date Title
EP0076426B1 (en) Multiple chamber deposition and isolation system and method
US4492716A (en) Method of making non-crystalline semiconductor layer
JP3356531B2 (en) Method for forming boron-containing polysilicon film
US4501769A (en) Method for selective deposition of layer structures consisting of silicides of HMP metals on silicon substrates and products so-formed
JPS6122622A (en) Method and device for producing photovoltaic power panel
JPH0576548B2 (en)
US6313017B1 (en) Plasma enhanced CVD process for rapidly growing semiconductor films
Donahue et al. Low Temperature Silicon Epitaxy Deposited by Very Low Pressure Chemical Vapor Deposition: I. Kinetics
JPH08973B2 (en) Deposited film formation method
EP0539948B1 (en) Apparatus for forming metal film and process for forming metal film
JPH0127570B2 (en)
JPH032950B2 (en)
US3565704A (en) Aluminum nitride films and processes for producing the same
JPH0639688B2 (en) Method of forming silicon thin film
JPS6364903B2 (en)
JPH04298023A (en) Manufacture of single crystal silicon thin film
JPH079059B2 (en) Method for producing carbon thin film
JPS62163314A (en) Thin-film multilayer structure and forming method thereof
JP2649221B2 (en) Deposition film formation method
JPS63196082A (en) Manufacture of solar cell
JPS6017077A (en) Vapor growth method of high-melting point metal or high-melting point metallic silicide
JP2000058460A (en) Silicon thin-film manufacturing method
JPS61250173A (en) Method for growing tungsten silicide film
JPS5916326A (en) Manufacture of thin film
JPS587865A (en) Forming method for compound layer electrically stable with metal and silicon