JPH0329444B2 - - Google Patents
Info
- Publication number
- JPH0329444B2 JPH0329444B2 JP62076881A JP7688187A JPH0329444B2 JP H0329444 B2 JPH0329444 B2 JP H0329444B2 JP 62076881 A JP62076881 A JP 62076881A JP 7688187 A JP7688187 A JP 7688187A JP H0329444 B2 JPH0329444 B2 JP H0329444B2
- Authority
- JP
- Japan
- Prior art keywords
- emulsion
- oil
- demulsification
- stirring
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000839 emulsion Substances 0.000 claims description 69
- 238000000034 method Methods 0.000 claims description 37
- 238000003756 stirring Methods 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 8
- 239000007764 o/w emulsion Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 description 30
- 239000012071 phase Substances 0.000 description 29
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 5
- 239000003995 emulsifying agent Substances 0.000 description 5
- 238000009775 high-speed stirring Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000010008 shearing Methods 0.000 description 5
- 239000008346 aqueous phase Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004945 emulsification Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 230000002250 progressing effect Effects 0.000 description 3
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 3
- 229930182490 saponin Natural products 0.000 description 3
- 150000007949 saponins Chemical class 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、水中油型エマルシヨン(以下O/W
型エマルシヨンという)の解乳化方法に関し、特
に(O/W)/O乳化型液膜による液状有機物分
離法の工業化の実現するのにに有効な解乳化方法
に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an oil-in-water emulsion (hereinafter referred to as O/W emulsion).
The present invention relates to a demulsification method for (referred to as an (O/W)/O emulsion type emulsion), and particularly to a demulsification method effective for realizing the industrialization of a liquid organic matter separation method using an (O/W)/O emulsion type liquid membrane.
(従来技術および解決しようとする問題点)
エマルシヨンの解乳化方法として、電気的、機
械的、熱的などの物理的解乳化方法および化学的
解乳化方法、およびこれらを組み合わせた方法が
従来から知られている。(Prior art and problems to be solved) Physical demulsification methods such as electrical, mechanical, and thermal demulsification methods, chemical demulsification methods, and combinations of these methods have been known as emulsion demulsification methods. It is being
しかし沈降、遠心分離、濾過などの機械的およ
び電気的な方法は、油中水(W/O)型エマルシ
ヨンには、比較的有効であるが、分散手滴径が一
般に小さいO/W型エマルシヨンに対しては満足
のゆく結果を得ることができない。また、化学的
方法は解乳化剤をエマルシヨンに加えて処理する
ものであるので、解乳化の後処理として解乳化剤
を除去する工程が不可欠となり、処理が複雑化す
る。 However, mechanical and electrical methods such as sedimentation, centrifugation, and filtration are relatively effective for water-in-oil (W/O) emulsions; cannot obtain satisfactory results. Furthermore, since the chemical method involves adding a demulsifier to the emulsion for treatment, a step of removing the demulsifier is essential as a post-demulsification treatment, which complicates the process.
さらに、熱的な方法は、エネルギー多消費型の
方法であり、これによつては、迅速な解乳化は望
めない。一方、(O/W/)O乳化型液膜による
液状有機物分離法の工業化を図るためにはO/W
型エマルシヨンの解乳化工程が不可欠であるが上
記の従来公知の方法は、いずれも大量のO/W型
エマルシヨンを迅速に処理するには不適当で、工
業的用途に適用できないという問題がある。 Furthermore, the thermal method is an energy-intensive method and does not allow rapid demulsification. On the other hand, in order to industrialize the liquid organic matter separation method using (O/W/)O emulsion type liquid membrane, O/W
Although a step of demulsifying the type emulsion is essential, the conventionally known methods described above are unsuitable for rapidly processing a large amount of O/W type emulsion and cannot be applied to industrial applications.
(問題を解決するための手段)
本発明は、上記事情に鑑みて構成されたもので
O/W型エマルシヨンを容易かつ迅速に解乳化す
ることができ、しかも工業的用途にも有効に適用
することができるO/W型エマルシヨンの解乳化
方法を提供することを目的としている。(Means for Solving the Problems) The present invention was constructed in view of the above circumstances, and can easily and quickly demulsify O/W emulsions, and can also be effectively applied to industrial applications. The object of the present invention is to provide a method for demulsifying an O/W type emulsion.
本発明の解乳化方法は、水中油型エマルシヨン
の分散相を構成する油分にさらに付加的な油分を
上記エマルシヨンに加え、該エマルシヨンと添加
された油分との混合液内に高剪断応力場が形成さ
れるように上記混合液を撹拌することを特徴とす
る。 In the demulsification method of the present invention, an additional oil is added to the oil constituting the dispersed phase of the oil-in-water emulsion, and a high shear stress field is formed in the mixture of the emulsion and the added oil. The method is characterized in that the above-mentioned mixed liquid is stirred so as to be mixed.
本発明の方法は、エマルシヨンに関し、体積分
率の大きい液相が連続相になりやすい、および油
相と水相とからなる混合液が高い剪断応力場にあ
るときには、油相が連続相になりやすい、という
知見に基づいて研究を重ねた結果達成されたもの
である。 The method of the present invention relates to emulsions, in which a liquid phase with a large volume fraction tends to become a continuous phase, and when a liquid mixture consisting of an oil phase and an aqueous phase is in a high shear stress field, the oil phase becomes a continuous phase. This was achieved through repeated research based on the knowledge that it is easy to use.
そして、本発明の方法は、O/W型エマルシヨ
ンの解乳化に関し、上記知見から得られる予想を
遥かに越える効果を与えるものである。 The method of the present invention provides effects far exceeding expectations obtained from the above knowledge regarding demulsification of O/W emulsions.
本発明の方法によれば、解乳化処理を行うO/
W型エマルシヨンに、このエマルシヨンの油滴を
構成する油分と好ましくは、同質の油分が添加さ
れる。この場合、添加油の量は、エマルシヨンの
量と等量程度以上であることが、解乳化効率の面
で、好ましい。 According to the method of the present invention, O/
Preferably, an oil component of the same quality as the oil component constituting the oil droplets of this emulsion is added to the W-type emulsion. In this case, it is preferable that the amount of the added oil is approximately equal to or more than the amount of the emulsion in terms of demulsification efficiency.
つぎに、所定量の油分を添加した溶液を、ホモ
ジナイザー等の高速撹拌装置を用いて撹拌する。
この場合、油滴の破壊を生じさせて解乳化を効果
的に行うためには、エマルシヨンと添加油との混
合液に高い剪断力を加えることが必要となるが、
上記のようなホモジナイザーを使用する場合には
7000rpm程度以上の撹拌速度で運転することが好
ましい。 Next, the solution to which a predetermined amount of oil has been added is stirred using a high-speed stirring device such as a homogenizer.
In this case, it is necessary to apply a high shearing force to the mixture of the emulsion and added oil in order to break the oil droplets and effectively demulsify them.
When using a homogenizer like the one above,
It is preferable to operate at a stirring speed of about 7000 rpm or more.
高い剪断力を加える方法としては、高速機械的
撹拌法、超音波法、コロイドミル法、混合ポンプ
法、遠心乳化機法、混合ジエツト法等の任意の方
法を適宜選択して用いることができる。 As a method for applying high shearing force, any method such as a high-speed mechanical stirring method, an ultrasonic method, a colloid mill method, a mixing pump method, a centrifugal emulsifier method, a mixing jet method, etc. can be appropriately selected and used.
発明者らの研究によれば、エマルシヨンと添加
油との混合液を上記のように撹拌すると、撹拌初
期の段階では、エマルシヨン領域が拡大し、一見
乳化が進行するような状態となる。そして、次の
段階では、処理液中に連続相を成すような大きな
油滴が発生する。但し、これらの一連の変化は、
混合液に高い剪断力が加えられた後、短い時間内
に進行する。 According to the research conducted by the inventors, when a mixed liquid of an emulsion and added oil is stirred as described above, the emulsion region expands in the initial stage of stirring, resulting in a state where emulsification appears to be progressing. Then, in the next step, large oil droplets forming a continuous phase are generated in the processing liquid. However, these series of changes are
It proceeds within a short time after high shear forces are applied to the mixture.
この段階で、撹拌を停止すると、エマルシヨン
領域と油分の連続相とに分離するが、エマルシヨ
ン領域は、本発明の操作を開始する前に比較して
大幅に減少する。即ち、解乳化が進行する。研究
結果によれば、この操作による解乳化効率は、98
%にも達する。 At this stage, when stirring is stopped, the emulsion region and the oil continuous phase separate, but the emulsion region is significantly reduced compared to before starting the operation of the present invention. That is, demulsification progresses. According to research results, the demulsification efficiency of this operation is 98
%.
なお、本発明の高速撹拌を行う前に一定の撹拌
処理を行つて、添加油と解乳化すべきエマルシヨ
ンとの均質な混合液をつくるようにすれば、解乳
化効率をさらに改善することができる。 Note that the demulsification efficiency can be further improved by performing a certain stirring process before performing the high-speed stirring of the present invention to create a homogeneous mixture of the added oil and the emulsion to be demulsified. .
また、本発明の最初の工程で使用する添加油と
して、解乳化によつて生じた油分を使用するのが
合理的、且つ経済的である。 Furthermore, it is rational and economical to use the oil produced by demulsification as the additive oil used in the first step of the present invention.
(発明の効果)
本発明は、従来とは全く異なる新たなO/W型
エマルシヨンの解乳化方法を提供したものであり
上記したように、解乳化のための特別の材料を必
要とせず、しかも高速撹拌という単純な機械的操
作を付加することにより容易に解乳化を達成する
ことができるものである。したがつて不当なコス
トの増大を招くことなく、容易にスケールアツプ
することが可能で、工業的用途に極めて有望であ
る。(Effects of the Invention) The present invention provides a new method for demulsifying an O/W type emulsion, which is completely different from conventional methods, and as described above, does not require any special materials for demulsification. Demulsification can be easily achieved by adding a simple mechanical operation of high-speed stirring. Therefore, it can be easily scaled up without causing an unreasonable increase in cost, and is extremely promising for industrial use.
本発明の解乳化方法は、たとえば、(O/
W)/O乳化型液膜による液状有機物分離の工業
的方法等に有効に適用することができる。 The demulsification method of the present invention includes, for example, (O/
It can be effectively applied to industrial methods of separating liquid organic substances using a W)/O emulsion type liquid film.
すなわち、大量のO/W型エマルシヨンを容易
且つ迅速に解乳化する方法が見出されていないこ
とが原因となつて実用化がされいない、(O/
W)/O乳化型液膜による液状有機物分離プロセ
スの工業的規模での実用化が可能となる。 In other words, it has not been put to practical use because no method has been found to easily and quickly demulsify a large amount of O/W emulsion.
The liquid organic matter separation process using the W)/O emulsion type liquid membrane can be put to practical use on an industrial scale.
(実施例の説明)
以下、本発明の実施例につき、図面を参照しつ
つ説明する。(Description of Examples) Examples of the present invention will be described below with reference to the drawings.
第1図を参照すれば、本発明の1実施例にかか
る解乳化方法のシステムフロー図がしめされてい
る。 Referring to FIG. 1, a system flow diagram of a demulsification method according to one embodiment of the present invention is shown.
本例の解乳化方法が適用されるO/W型エマル
シヨンは、本例の方法によつて、解乳化された油
分の一部とともに予混合器1に導入される。予混
合器1には、撹拌装置2が配置されており、これ
によつて、エマルシヨンは上記添加油とともに撹
拌され均質な混合液となる。 The O/W emulsion to which the demulsification method of this example is applied is introduced into the premixer 1 together with a portion of the oil component demulsified by the method of this example. A stirring device 2 is disposed in the premixer 1, whereby the emulsion is stirred together with the added oil to form a homogeneous liquid mixture.
つぎに、この混合液は、解乳化装置即ち撹拌槽
3に導入される。撹拌槽3には、第2図に示すよ
うに高速撹拌装置、本例では、株式会社日音医理
科器械製作所製、商標名「ヒストロン」として販
売されるホモジナイザー4が設置されており、こ
のホモジナイザー4には、混合液を撹拌するジエ
ネレータシヤフトとして通常の撹拌力を有する機
種名「NS−20TP型シヤフト」(以下、シヤフト
という)とこれよりも撹拌力の大きい改良型シ
ヤフトである「NS−35UG型シヤフト」(以下シ
ヤフトという)が選択的に取りつけられるよう
になつている。混合液は、このホモジナイザー4
によつて撹拌されて、高剪断応力状態となる。そ
して、この撹拌槽3での処理が終了した場合に
は、処理液は、沈降分離槽5に導入され、油相6
とエマルシヨン相7に分離される。そして油相6
の一部の油分は、再び予混合器2に戻される。 Next, this liquid mixture is introduced into a demulsifier, that is, a stirring tank 3. As shown in Fig. 2, the stirring tank 3 is equipped with a high-speed stirring device, in this example, a homogenizer 4 manufactured by Nichion Medical Instruments Manufacturing Co., Ltd. and sold under the trade name "Histron". 4 includes the model name "NS-20TP type shaft" (hereinafter referred to as "shaft") which has a normal stirring power as a generator shaft for stirring the mixed liquid, and the improved shaft "NS-20TP" which has a larger stirring power. 35UG type shaft (hereinafter referred to as the shaft) can be selectively installed. The mixed liquid is passed through this homogenizer 4.
, resulting in a state of high shear stress. When the treatment in the stirring tank 3 is completed, the treated liquid is introduced into the sedimentation separation tank 5, and the oil phase 6
and emulsion phase 7. and oil phase 6
A part of the oil is returned to the premixer 2 again.
上記解乳化操作において、処理液の状態変化に
ついて説明すると、予混合器1に導入された直後
においては、油相6とエマルシヨン相7とが第3
図aに示すように分離状態になつている。この場
合のエマルシヨン相7は、第3図bに示すように
分散相としての油滴8のまわりを水の連続相9が
取り巻くO/W型エマルシヨンである。 In the above demulsification operation, the change in the state of the treatment liquid will be explained. Immediately after being introduced into the premixer 1, the oil phase 6 and the emulsion phase 7 are in the third phase.
As shown in Figure a, they are in a separated state. The emulsion phase 7 in this case is an O/W type emulsion in which a continuous phase 9 of water surrounds oil droplets 8 as a dispersed phase, as shown in FIG. 3b.
この処理液を通常の撹拌装置で予混合して均質
な混合液とするか、あるいは、予混合することな
く処理液をそのまま、撹拌槽3に導入し、ホモジ
ナイザー4によつて高速撹拌すると、撹拌槽3内
の処理液は、第3図cに示すようにエマルシヨン
相7が一時的に増大し、一見乳化が進行している
かのように観察される。 This treatment liquid can be premixed with a normal stirring device to make a homogeneous mixture, or the treatment liquid can be introduced into the stirring tank 3 as it is without premixing and stirred at high speed by the homogenizer 4. In the treatment liquid in the tank 3, the emulsion phase 7 temporarily increases as shown in FIG. 3c, and at first glance it is observed that emulsification is progressing.
然しこの状態は、第3図dに示すようにエマル
シヨン相7にもともと存在する比較的小さい滴径
の油滴8と油相6を構成する添加油が撹拌されて
形成された比較的大きな滴径の油滴10との混在
状態である。 However, in this state, as shown in FIG. 3d, oil droplets 8 with a relatively small droplet size originally existing in the emulsion phase 7 and the oil droplets 8 with a relatively large droplet size formed by stirring the added oil constituting the oil phase 6. This is a mixed state with the oil droplets 10.
この状態は長くは続かず、高速撹拌を行うと殆
ど瞬時に、処理液において大きな力が発生すると
ともに一転して第3図eに示すようにエマルシヨ
ン相の中に大きな油の塊11が発生するかのよう
に観察され、様相が大きく変化する。 This state does not last long, and when high-speed stirring is performed, a large force is generated in the treated liquid almost instantly, and a large lump of oil 11 is generated in the emulsion phase, as shown in Figure 3e. It is observed as if, and the aspect changes greatly.
この油塊11は、第3図fに示すようにエマル
シヨン相に含まれる油滴8と共存している。 This oil mass 11 coexists with oil droplets 8 contained in the emulsion phase, as shown in FIG. 3f.
この状態で、撹拌操作を停止するか、沈降分離
槽5に処理液を導入すると、第3図gに示すよう
に油塊11は消滅してエマルシヨン相7の上に油
相6が生じる。 In this state, when the stirring operation is stopped or the treated liquid is introduced into the settling tank 5, the oil mass 11 disappears and an oil phase 6 is formed on top of the emulsion phase 7, as shown in FIG. 3g.
この場合油相6の領域は、解乳化操作をする前
の第3図aの油相6よりも明らかに広がつており
解乳化が進行していることが判明する。 In this case, the area of the oil phase 6 is clearly wider than the oil phase 6 in FIG. 3a before the demulsification operation, and it is clear that the demulsification is progressing.
以下の前半部分において、このような手順で行
つた解乳化操作の結果について説明する。第4図
には、本例の解乳化方法を用いたO/W型エマル
シヨンの油滴の滴径分布を示している。これによ
れば、エマルシヨンAは、比較的小さい平均滴径
を有し、エマルシヨンBは、大きい平均滴径を有
する。エマルシヨンAは、比較的安定であり、エ
マルシヨンBは相対的に不安定である。 In the first half of the following, the results of the demulsification operation performed by such a procedure will be explained. FIG. 4 shows the droplet size distribution of oil droplets in an O/W emulsion using the demulsification method of this example. According to this, emulsion A has a relatively small average droplet size, and emulsion B has a large average droplet size. Emulsion A is relatively stable and emulsion B is relatively unstable.
エマルシヨンAは、上記のホモジナイザー4を
用いてすなわち、高剪断応力場において乳化させ
たものであり、エマルシヨンBは、通常の撹拌槽
を用いて比較的低速(約600rpm)で撹拌して形
成したものである。 Emulsion A was emulsified using the homogenizer 4 described above, that is, in a high shear stress field, and emulsion B was formed by stirring at a relatively low speed (approximately 600 rpm) using an ordinary stirring tank. It is.
いずれも水相には、乳化剤としてサポニンが加
えられており、油分としてイソオクタンを水相と
同体積だけ用いられている。水相中のサポニンの
濃度は、エマルシヨンAでは、0.1重量%、エマ
ルシヨンBでは、0.2重量%である。 In both cases, saponin is added to the aqueous phase as an emulsifier, and isooctane is used as the oil in the same volume as the aqueous phase. The concentration of saponin in the aqueous phase is 0.1% by weight for emulsion A and 0.2% by weight for emulsion B.
第5図は、エマルシヨンAに関し、解乳化効率
と添加油としてイソオクタンの割合との関係を示
している。撹拌槽3におけるホモジナイザー4の
撹拌速度は、20000rpmであり、予混合器1にお
ける予混合はおこなつていない。混合液の全体積
は、100cm3である。第5図によれば、添加油の量
は、原料O/W型エマルシヨンの量と略同量以上
である場合には、略50%の高い解乳化効率が得ら
れる。 FIG. 5 shows the relationship between demulsification efficiency and the proportion of isooctane as added oil for emulsion A. The stirring speed of the homogenizer 4 in the stirring tank 3 was 20000 rpm, and no premixing was performed in the premixer 1. The total volume of the mixture is 100 cm3 . According to FIG. 5, when the amount of added oil is approximately the same amount or more as the amount of the raw O/W type emulsion, a high demulsification efficiency of approximately 50% can be obtained.
さらに、添加油の割合が多いほど効果的に解乳
化が進むこととなる。 Furthermore, the higher the proportion of added oil, the more effectively demulsification will proceed.
尚、解乳化効率Yは、下式で与えられる。(第
6図参照)
Y=(VOW−VOW′)/(VOW−VW)
(ここで、VOW=処理前のO/W型エマルシヨ
ン体積分率
VOW′=処理後のO/W型エマルシヨン体積分
率
VW=O/W型エマルシヨンの水相体積分率)
第7図を参照すれば、エマルシヨンAに関し、
撹拌槽3におけるホモジナイザー4の回転数と解
乳化効率Yとの関係がしめされている。 In addition, the demulsification efficiency Y is given by the following formula. (See Figure 6) Y = (V OW - V OW ') / (V OW - V W ) (Here, V OW = O/W emulsion volume fraction before treatment V OW ' = O after treatment /W-type emulsion volume fraction V W =water phase volume fraction of O/W-type emulsion) With reference to FIG. 7, regarding emulsion A,
The relationship between the rotation speed of the homogenizer 4 in the stirring tank 3 and the demulsification efficiency Y is shown.
この場合の添加油(イソオクタン)と原料O/
W型エマルシヨンの体積割合は、1対1で混合液
の全体積は、100cm3である。 In this case, the added oil (isooctane) and the raw material O/
The volume ratio of the W-type emulsion was 1:1, and the total volume of the mixed liquid was 100 cm 3 .
これによれば、回転数が略7000rpmから効果が
現れ始め、略15000rpmで50%の解乳化効率が得
られる。 According to this, the effect begins to appear at a rotation speed of approximately 7000 rpm, and a demulsification efficiency of 50% is obtained at approximately 15000 rpm.
また、エマルシヨンBについて、原料O/W型
エマルシヨンと同体積の添加油(イソオクタン)
を用い、約20000rpmで解乳化を行つたところ、
約95%の解乳化効率が得られた。 For emulsion B, the same volume of added oil (isooctane) as the raw O/W type emulsion was added.
When demulsification was carried out at approximately 20,000 rpm using
A demulsification efficiency of about 95% was obtained.
この結果、滴径の大きいエマルジヨンの方が高
い解乳化効率が得られることが判明する。 As a result, it has been found that emulsions with larger droplet diameters provide higher demulsification efficiency.
さらに、撹拌槽3におけるホモジナイザー4と
して、より高い剪断力を処理液に加えることがで
きる改良型シヤフトすなわちシヤフトを用い、
20000rpm、原料O/W型エマルシヨンと添加油
の体積が等しい条件でエマルシヨンAを解乳化し
たところ解乳化効率は約90%であつた。 Furthermore, as the homogenizer 4 in the stirring tank 3, an improved shaft that can apply higher shearing force to the processing liquid is used,
When emulsion A was demulsified at 20,000 rpm and the volumes of the raw O/W type emulsion and the added oil were equal, the demulsification efficiency was about 90%.
シヤフトを用いて同一の条件で解乳化を行つ
た場合には、第5図に示されるように解乳化効率
は、約50%であるので、処理液に加えられる剪断
力が高い程解乳化効率が高くなることが判明す
る。 When demulsification is carried out under the same conditions using a shaft, the demulsification efficiency is approximately 50% as shown in Figure 5, so the higher the shearing force applied to the treatment liquid, the higher the demulsification efficiency. turns out to be higher.
なお、シヤフトとシヤフトの撹拌能力の差
について説明すれば、ホモジナイザー4にシヤフ
トを取りつけて乳化を行つた場合には、O/W
型エマルシヨンの平均滴径は、約2μmであつた
が、シヤフトを用いた場合には、約1μmであつ
た。したがつて、シヤフトの方が撹拌能力が高
く、より高い剪断力を与えることができることが
判明する。 In addition, to explain the difference in stirring ability between the shaft and the shaft, when emulsification is performed with the shaft attached to the homogenizer 4, the O/W
The average droplet size of the mold emulsion was about 2 μm, while when a shaft was used it was about 1 μm. Therefore, it turns out that the shaft has a higher stirring ability and can apply a higher shearing force.
以下に第1図に示すシステムフローにしたがつ
て定常な連続的解乳化を行つた実施例についての
べる。 An example in which steady and continuous demulsification was performed according to the system flow shown in FIG. 1 will be described below.
第8図には、撹拌槽3における処理液の平均滞
留時間と解乳化効率の関係が示されている。この
実施例においては、原料O/W型エマルシヨンと
して第4図に示したエマルシヨンBを用いその流
量と添加油(イソオクタン)の流量は等しく、ま
た予混合器1で予混合をおこなつた。撹拌槽3の
中の有効な体積は、5cm3であり、ホモジナイザー
4には、シヤフトを取りつけた。そしてこの場
合の撹拌速度は、20000rpmであつた。流量の調
節は、撹拌槽3と沈降分離槽5の間に取りつけた
バルブによつて行つた。 FIG. 8 shows the relationship between the average residence time of the treatment liquid in the stirring tank 3 and the demulsification efficiency. In this example, emulsion B shown in FIG. 4 was used as the raw material O/W type emulsion, the flow rate of the emulsion B was equal to that of the added oil (iso-octane), and premixing was performed in the premixer 1. The effective volume in the stirring tank 3 was 5 cm 3 , and the homogenizer 4 was equipped with a shaft. The stirring speed in this case was 20,000 rpm. The flow rate was controlled by a valve installed between the stirring tank 3 and the settling tank 5.
なお、本実施例以降の解乳化効率Zは、下式で
与えられる。 In addition, the demulsification efficiency Z after this example is given by the following formula.
Z=(QOW−QOW 1)/(QOW−QW)
(ここで、QOW=予混合器1に入るO/W型エ
マルシヨンの体積流量
QOW 1=沈降分離槽5から流出するO/W型エ
マルシヨンすなわち処理水の体積流量
QW=予混合器1に入るO/W型エマルシヨン
中の水の体積流量)
第8図は、連続解乳化によつて約95%の高い解
乳化効率が実現されること、さらに、約0.06秒と
いう極めて短い処理液の平均滞留時間にも関わら
ず高い解乳化効率が得られると云うことを示して
いる。すなわち、極めて迅速に効果的な連続解乳
化が可能であることを示している。 Z = (Q OW - Q OW 1 ) / (Q OW - Q W ) (where, Q OW = volumetric flow rate of the O/W type emulsion entering the premixer 1 Q OW 1 = flowing out from the settling tank 5 Figure 8 shows a high demulsification rate of about 95% due to continuous demulsification . This shows that high demulsification efficiency can be achieved, and that high demulsification efficiency can be obtained despite the extremely short average residence time of the treatment liquid of approximately 0.06 seconds. In other words, this shows that extremely rapid and effective continuous demulsification is possible.
第9図は、O/W型エマルシヨンの作成に使用
した乳化剤でるサポニンの水溶液の濃度と解乳化
効率の関係を示す。 FIG. 9 shows the relationship between the concentration of an aqueous solution of saponin as an emulsifier used to create an O/W emulsion and demulsification efficiency.
本実施例に用いたO/W型エマルシヨンは、第
4図のエマルシヨンBと同様に通常の撹拌槽を用
いて作成した。また、連続解乳化操作の条件は、
第8図を得た実施例の中のそれと同じであり、撹
拌槽3の平均滞留時間は、0.1秒であつた。第9
図から乳化剤の濃度を少なくすることよつて解乳
化効率を高めることができることが判明する。 The O/W type emulsion used in this example was prepared using an ordinary stirring tank in the same manner as emulsion B in FIG. In addition, the conditions for continuous demulsification operation are as follows:
This was the same as that in the example in which FIG. 8 was obtained, and the average residence time in the stirring tank 3 was 0.1 seconds. 9th
It is clear from the figure that the demulsification efficiency can be increased by reducing the concentration of the emulsifier.
第1図は、本発明の1実施例に係る解乳化工程
のフローを示す概略図、第2図は、撹拌槽の概略
図、第3図は、解乳化における処理液の状態を示
す説明図、第4図は、滴径分布を示すグラフ、第
5図は、添加油の割合と、解乳化効率を示すグラ
フ、第6図は、処理前と、処理後の液の状態を示
す説明図、第7図は、解乳化効率と、撹拌槽にお
けるホモジナイザーの回転数との関係を示すグラ
フ、第8図は、本発明の他の実施例にかかる解乳
化における解乳化効率の変化を示すグラフ、第9
図を乳化剤が解乳化効率に与える影響度を示すグ
ラフである。
1……予混合器、2……撹拌装置、3……撹拌
槽、4……ホモジナイザー、5……沈降分離槽、
6……油相、7……エマルシヨン相、8……油
滴、9……水相、10……油滴、11……油塊。
Fig. 1 is a schematic diagram showing the flow of the demulsification process according to an embodiment of the present invention, Fig. 2 is a schematic diagram of a stirring tank, and Fig. 3 is an explanatory diagram showing the state of the processing liquid during demulsification. , Figure 4 is a graph showing the droplet size distribution, Figure 5 is a graph showing the ratio of added oil and demulsification efficiency, and Figure 6 is an explanatory diagram showing the state of the liquid before and after treatment. , FIG. 7 is a graph showing the relationship between demulsification efficiency and the rotation speed of the homogenizer in the stirring tank, and FIG. 8 is a graph showing changes in demulsification efficiency in demulsification according to another example of the present invention. , No. 9
This figure is a graph showing the degree of influence of an emulsifier on demulsification efficiency. 1... Premixer, 2... Stirring device, 3... Stirring tank, 4... Homogenizer, 5... Sedimentation separation tank,
6... Oil phase, 7... Emulsion phase, 8... Oil droplets, 9... Water phase, 10... Oil droplets, 11... Oil lumps.
Claims (1)
分にさらに付加的な油分を上記エマルシヨンに加
え、該エマルシヨンと加えられた油分との混合液
内に高剪断応力場が形成されるように該混合液を
撹拌することを特徴とする水中油型エマルシヨン
の解乳化方法。1 Adding an additional oil to the oil constituting the dispersed phase of the oil-in-water emulsion to the emulsion, and creating a high shear stress field in the mixture of the emulsion and the added oil. A method for demulsifying an oil-in-water emulsion, characterized by stirring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7688187A JPS6438104A (en) | 1987-03-30 | 1987-03-30 | Deemulsification of oil in water type emulsion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7688187A JPS6438104A (en) | 1987-03-30 | 1987-03-30 | Deemulsification of oil in water type emulsion |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6438104A JPS6438104A (en) | 1989-02-08 |
JPH0329444B2 true JPH0329444B2 (en) | 1991-04-24 |
Family
ID=13617976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7688187A Granted JPS6438104A (en) | 1987-03-30 | 1987-03-30 | Deemulsification of oil in water type emulsion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6438104A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1245231C (en) * | 2003-08-27 | 2006-03-15 | 中国石油化工股份有限公司 | Method and device for breaking oil water emulsion using combined action of forward current and countercurrent flow ultrasonic wave |
US8192627B2 (en) | 2010-08-06 | 2012-06-05 | Icm, Inc. | Bio-oil recovery methods |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5058861A (en) * | 1973-09-22 | 1975-05-21 |
-
1987
- 1987-03-30 JP JP7688187A patent/JPS6438104A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5058861A (en) * | 1973-09-22 | 1975-05-21 |
Also Published As
Publication number | Publication date |
---|---|
JPS6438104A (en) | 1989-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dezhi et al. | Demulsification of water-in-oil emulsion by wetting coalescence materials in stirred-and packed-columns | |
Rosly et al. | Stability of emulsion liquid membrane using bifunctional diluent and blended nonionic surfactant for phenol removal | |
Langevin et al. | Crude oil emulsion properties and their application to heavy oil transportation | |
Krebs et al. | Separation kinetics of an oil-in-water emulsion under enhanced gravity | |
Abed et al. | Oil emulsions and the different recent demulsification techniques in the petroleum industry-A review | |
US3410794A (en) | Separating hydrocarbons with liquid membranes | |
Preziosi et al. | Phase inversion emulsification | |
Nour et al. | Stability investigation of water-in-crude oil emulsion | |
Jusoh et al. | Stability of water-in-oil emulsion in liquid membrane prospect | |
US3928194A (en) | Emulsion breaking method | |
EP0403091A3 (en) | Emulsification method and apparatus | |
Ni et al. | Effect of operating variables and monomers on the formation of polyurea microcapsules | |
Kumar et al. | Role of operating process parameters on stability performance of green emulsion liquid membrane based on rice bran oil | |
JPH0329444B2 (en) | ||
Marino | Phase inversion temperature emulsification: from batch to continuous process | |
USRE27888E (en) | Separating hydrocarbons with liquid membranes | |
Gandomkar et al. | Improvement of chemical demulsifier performance using silica nanoparticles | |
US4125461A (en) | Demulsification by centrifugation followed by strong shearing | |
DE69811903T2 (en) | METHOD FOR PREPARING CONCENTRATED AND CALIBRATED EMULSIONS OR. EMULSIONS FROM BITUMEN IN A PHASE OF INCREASED VISCOSITY | |
Iritani et al. | Formation of gel emulsions by filtration-consolidation of O/W emulsions | |
Goswami et al. | Permeation of benzene through liquid surfactant membranes | |
Krishna et al. | Effect of emulsion breakage on selectivity in the separation of hydrocarbon mixtures using aqueous surfactant membranes | |
Goswami et al. | Permeation of hydrocarbons through liquid surfactant membranes and formation of liquid crystalline structures | |
Schubert et al. | Mechanical emulsification | |
Zhang et al. | Effect of operation variables and monomers on the properties of polyamide microcapsules |