JPH03294448A - High chromium-nickel stock and its manufacture - Google Patents

High chromium-nickel stock and its manufacture

Info

Publication number
JPH03294448A
JPH03294448A JP9516090A JP9516090A JPH03294448A JP H03294448 A JPH03294448 A JP H03294448A JP 9516090 A JP9516090 A JP 9516090A JP 9516090 A JP9516090 A JP 9516090A JP H03294448 A JPH03294448 A JP H03294448A
Authority
JP
Japan
Prior art keywords
nickel
chromium
powder
ingot
stock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9516090A
Other languages
Japanese (ja)
Inventor
Toshiki Shimizu
要樹 清水
Takashi Sakaki
孝 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9516090A priority Critical patent/JPH03294448A/en
Priority to EP91303101A priority patent/EP0452079A1/en
Publication of JPH03294448A publication Critical patent/JPH03294448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain high chronium-nickel stock free from internal defects by subjecting an ingot formed by chromium powder and carbonyl nickel powder to hot working into the dual phase structure of a hard phase and a soft phase and regulating its grain size. CONSTITUTION:Chromium powder having >=99% purity and carbonyl nickel powder are used to manufacture an ingot having >=7g/cm<3> packing density. This ingot is packed into a capsule and is subjected to hot working treatment to obtain high chromium-nickel stock contg, by weight, <=0.5% components other than chromium and nickel, 50 to 90% chromium and the balance substantial nickel. The structure of this stock is formed of the dual phases of a hard phase and a soft phase. Furthermore, the grain size and working temp. of the raw material are controlled to regulate the grain size of the stock to <=50mum. In this way, the stock having a dense structure, excellent in workability and free from the generation of cracks or the like by the subsequent treatment can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高クロムニッケル素材およびその製造方法に関
するものである。更に、詳しくはクロム、ニッケル以外
の成分が0.5重量%以下である高クロムニッケル素材
およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high chromium nickel material and a method for producing the same. More specifically, the present invention relates to a high chromium nickel material containing 0.5% by weight or less of components other than chromium and nickel, and a method for producing the same.

[従来技術およびその問題点] 高クロムニッケル素材は各種ターゲツト材、耐摩耗用保
護材、スイッチング材、各種電極材あるいは溶射コーテ
ィング材料の分野で多く使用されている。
[Prior art and its problems] High chromium nickel materials are widely used in the fields of various target materials, wear-resistant protective materials, switching materials, various electrode materials, and thermal spray coating materials.

従来、高クロムニッケル材の製造方法は、大別して、溶
解・鋳造法と粉末冶金法が採用されている。この内、溶
解・鋳造法としては高周波誘導加熱やアーク溶解法等が
ある。例えばアーク溶解法は、一般に水冷モールドを用
いて不活性ガス中でアーク溶解してインゴットを製造す
る方法であるが、得られるインゴット組織は、第1図−
a(47Cr−N1素材)に示すようにデンドライト組
織が発達したもので、結晶粒も大きい。又、クロム原料
としてフェロクロムや低純度のクロム粉末を用いるので
、硬質相および軟質相以外に変形能を低下させる相が存
在し、得られたものは極めて脆く加工性に劣るので取扱
に注意を要し、このため鍛造や圧延加工が困難であり、
このインゴット内に存在する鋳造欠陥等の空隙が製品の
性質を劣化させていた。また、溶解後の冷却過程での割
れの問題もあり、大型のインゴット製造は困難であった
Conventionally, methods for manufacturing high chromium nickel materials are roughly divided into melting/casting methods and powder metallurgy methods. Among these, melting/casting methods include high frequency induction heating and arc melting methods. For example, the arc melting method is a method of producing an ingot by arc melting in an inert gas using a water-cooled mold.
As shown in a (47Cr-N1 material), the dendrite structure has developed and the crystal grains are large. In addition, since ferrochrome or low-purity chromium powder is used as the chromium raw material, there are phases other than the hard and soft phases that reduce deformability, and the resulting product is extremely brittle and has poor workability, so care must be taken when handling it. However, this makes forging and rolling difficult.
Voids such as casting defects existing within the ingot deteriorated the properties of the product. There was also the problem of cracking during the cooling process after melting, making it difficult to manufacture large ingots.

一方、粉末冶金法においても、クロムが高融点を持つ事
や蒸気圧が高い事から、通常の成型・焼結では緻密で割
れの無い焼結体を得る事が困難であり、熱間ブレス法を
採用しても、製品の大きさに制限があるうえ、生産性も
悪く、クロムの含有量が増加するほどこの傾向が強くな
る。このように、従来の製造方法によって製造された、
特に高クロムニッケル系材料は内部欠陥の存在により、
非常に脆く、切削加工やその他の取扱によって割れ易い
等の問題があり、また加工を施す場合には通常の熱間加
工等による加工は不可能であった。
On the other hand, even in the powder metallurgy method, it is difficult to obtain a dense and crack-free sintered body by normal molding and sintering because chromium has a high melting point and high vapor pressure, and hot pressing method Even if chromium is used, there are restrictions on the size of the product and productivity is poor, and this tendency becomes stronger as the chromium content increases. In this way, manufactured by conventional manufacturing methods,
In particular, high chromium nickel materials have internal defects.
It is very brittle and has problems such as being easily broken by cutting or other handling, and when processing is to be carried out, it is impossible to process it by normal hot working or the like.

例えば、これら高クロムニッケル素材を線材に加工する
方法としては、クロム含有量が50重量%未満の融点が
低い素材に於いては溶解法が主である。しかし、クロム
含有量が50重量%以上のものは融点が高く溶解が困難
となり、例え線材として加工されてもクラックや内部欠
陥が残存し、組織的にも結晶の粗大化、線材の変形能が
劣るものしか得られない。又、粉末冶金法による線材加
工においても、上述のようにクロムが高融点を持つこと
、蒸気圧が高いことから、通常のスウエージング法で成
形・焼結したものから、緻密で割れの無い焼結線材を得
ることが困難であり、熱間ブレス、熱間等方静水圧いに
より得たインゴットを採用して熱間スウェージング・フ
ォージング・圧延を行なう場合が多い。しかし、熱間等
方静水圧ブレス法等ではクロム粉末とニッケル粉末間の
過剰な固相拡散が起こり、第1図−b(55Cr−Ni
素材)に示したように粒成長を起こして均質微細組織を
形成できず、軟質相内のクロム量が多くなり脆化しやす
く、線材化加工が困難になる。この傾向はクロムの含有
量が増加するほど強くなる。
For example, the main method for processing these high chromium nickel materials into wire rods is the melting method for materials with a low melting point and a chromium content of less than 50% by weight. However, those with a chromium content of 50% by weight or more have a high melting point and are difficult to melt, and even if they are processed into a wire, cracks and internal defects remain, and the crystal structure becomes coarser and the deformability of the wire decreases. You can only get something inferior. In addition, when processing wire rods using the powder metallurgy method, as mentioned above, chromium has a high melting point and high vapor pressure. It is difficult to obtain wire connection material, and ingots obtained by hot pressing or hot isostatic pressing are often used for hot swaging, forging, and rolling. However, in the hot isostatic pressing method etc., excessive solid phase diffusion occurs between the chromium powder and the nickel powder.
As shown in Material), grain growth occurs and a homogeneous microstructure cannot be formed, and the amount of chromium in the soft phase increases, making it easy to become brittle and difficult to process into wire rods. This tendency becomes stronger as the chromium content increases.

このように、従来の製造方法によって製造された、特に
高クロムニッケル素材では組織的に結晶が粗大化してお
り、素材の変形能を低下させる相が存在し、さらに内部
欠陥の存在により非常に脆くなっており変形能等が劣っ
ていた。
In this way, particularly in high-chromium nickel materials manufactured by conventional manufacturing methods, the crystals are coarsened structurally, there are phases that reduce the deformability of the material, and the material is extremely brittle due to the presence of internal defects. The deformability etc. were inferior.

[問題を解決するための手段] 本発明者等は、上述のような諸問題を解決するため鋭意
検討した結果、ある種の条件を満たす高クロムニッケル
素材は、内部欠陥がなく緻密な組織を有し加工性に優れ
かつ、その後の取扱においても割れ等を発生することが
なく工業的に使用可能なこれまでにない高クロムニッケ
ル素材であることを見出し本発明を完成した。
[Means for Solving the Problems] As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a high chromium nickel material that satisfies certain conditions has no internal defects and has a dense structure. The present invention has been completed based on the discovery that this is an unprecedented high-chromium nickel material that has excellent workability and can be used industrially without cracking during subsequent handling.

即ち、本発明は、クロム、ニッケル以外の成分が0.5
重量%以下で、かつクロムが50〜90重量%であり、
残部が実質的にニッケルからなる組成を有する高クロム
ニッケル素材であって、その組織が硬質相と軟質相の2
相からなり、かつ素材の結晶粒径が50μm以下である
高クロムニッケル素材及びその製造法に関するものであ
る。
That is, in the present invention, components other than chromium and nickel are 0.5
% by weight or less, and chromium is 50 to 90% by weight,
A high chromium nickel material with a composition in which the remainder essentially consists of nickel, and its structure consists of two phases: a hard phase and a soft phase.
The present invention relates to a high chromium nickel material having a crystal grain size of 50 μm or less, and a method for manufacturing the same.

次に、本発明の製造法について更に詳述する。Next, the manufacturing method of the present invention will be explained in more detail.

本発明の製造方法で用いる原料は、金属クロム、カルボ
ニルニッケルの混合粉末又は、クロム・ニッケル合金粉
末である。ここで用いる金属クロム粉末は99%以上の
純度のものが用いられる。
The raw material used in the production method of the present invention is a mixed powder of metal chromium, carbonyl nickel, or a chromium-nickel alloy powder. The metallic chromium powder used here has a purity of 99% or more.

クロム原料として99%未満の純度のクロムを用いると
、得られた素材中にクロム、ニッケル以外の成分が0.
5重量%を越えることにより硬質相および軟質相の2相
の他に不純物を主成分とする析出相が形成する。また、
ニッケル原料として後述のクロム・ニッケル合金を除く
カルボニルニッケル以外の例えば金属ニッケル粉末を用
いると、用いる粉末の微細化に限度があることから、焼
結反応が不十分となり欠陥素材化又は2相間の結合強度
低下が起こる。
If chromium with a purity of less than 99% is used as a chromium raw material, the resulting material will contain 0.0% of components other than chromium and nickel.
When the amount exceeds 5% by weight, a precipitated phase containing impurities as a main component is formed in addition to two phases, a hard phase and a soft phase. Also,
If a metal nickel powder other than carbonyl nickel (excluding the chromium-nickel alloy described below) is used as a nickel raw material, there is a limit to the fineness of the powder used, so the sintering reaction will be insufficient, resulting in defective material or bonding between two phases. A decrease in strength occurs.

また、原料として高クロムニッケル合金粉末を用いる方
法は、該クロムニッケル合金粉末の組織は軟質相と微細
に分散しているラメラ−状硬質相の2相より成るが、特
にその硬質相の間隔がlOμ會以上の合金粉末を用いる
と、カプセル内に充填したインゴットの加工性が乏しく
なり、熱間加工時に充分な延性が得られず、素材加工の
際に割れを生じる。そのため、ラメラ−状の硬質相間隔
がlOμ■以下の合金粉末を使用すると上記のような割
れは発生せず、素材変形能はさらに向上する。
In addition, in the method of using high chromium nickel alloy powder as a raw material, the structure of the chromium nickel alloy powder consists of two phases: a soft phase and a finely dispersed lamellar hard phase. If an alloy powder of 10μ or more is used, the workability of the ingot filled in the capsule will be poor, sufficient ductility will not be obtained during hot working, and cracks will occur during material processing. Therefore, if an alloy powder with a lamellar hard phase spacing of 10 μm or less is used, the above-mentioned cracks will not occur and the material deformability will be further improved.

この様な組織形状の合金粉末を得るためには、イナート
ガスアトマイズ法が最適な方法である。
Inert gas atomization is the most suitable method for obtaining alloy powder with such a structure.

又、これらの原料粉末の粒径は50μ−以下のものを用
いることが望ましい。この粒径が50μ■を越える粉末
を用いると、充分な組織変形能を持つ素材が得られず、
素材の熱間加工の際にクラック発生等の支障をきたす。
Further, it is desirable to use a particle size of these raw material powders of 50 μm or less. If a powder with a particle size exceeding 50μ■ is used, a material with sufficient tissue deformability cannot be obtained.
This causes problems such as cracks during hot processing of the material.

さらに、望ましくは該原料粉末粒径を20μ日以下にす
ることであり、このような原料粉末を用いると熱間加工
工程で硬質相の均一分散性が増し、加工特性が向上し、
耐摩耗性がさらに優れたものとなる。
Furthermore, it is desirable that the particle size of the raw material powder is 20 microns or less, and when such a raw material powder is used, the uniform dispersibility of the hard phase increases in the hot working process, improving the processing characteristics,
The wear resistance becomes even better.

次に、前記した原料粉末を必要に応じてアルコール、エ
チルエーテル、エチレングリコール等のバインダーを用
い、充分混合撹拌後、冷間等方静水圧プレス等により密
度7g/cm3以上のインゴットに成型し、該インゴッ
トを真空またはイナートガス中で加熱処理する。該イン
ゴットの密度が7g1c113未満であると、後工程の
熱間加工中、カプセルと該インゴット間に隙間が生じ、
カプセルと該インゴットの圧下率が異なり表面から亀裂
か起きる場合がある。又、加熱処理を省略すると該イン
ゴット内部は内部欠陥や2相間の拡散が不十分な部分が
存在することになり、熱間加工時、たとえば熱間スウェ
ージング工程中に破断することがある。
Next, the raw material powder described above is thoroughly mixed and stirred using a binder such as alcohol, ethyl ether, or ethylene glycol as necessary, and then molded into an ingot with a density of 7 g/cm3 or more by cold isostatic pressing or the like. The ingot is heat treated in vacuum or inert gas. If the density of the ingot is less than 7g1c113, a gap will occur between the capsule and the ingot during hot processing in the post-process,
The reduction ratio between the capsule and the ingot is different, and cracks may occur from the surface. Furthermore, if the heat treatment is omitted, internal defects or areas where diffusion between the two phases is insufficient will exist inside the ingot, which may lead to breakage during hot processing, for example, during the hot swaging step.

次に、該インゴットをカプセルに充填するが、このカプ
セルの材質に制限はなく、該インゴツト材の熱膨張率に
近く、その後の熱間加工に耐え得る材質を選定すること
が好ましい。例えば、カプセル材質として金属を用いる
場合、ステンレス鋼や軟鋼等が一般的である。また、該
カプセルと該インゴット間に隙間が存在するとカプセル
外側よリスウエージングやフォージング等により圧力を
加える場合に、カプセルと該インゴットの加工伸びや変
形能が同一にならず、カプセルの破損や該インゴット変
形に必要な硬質相および軟質相聞の結合力が低下し、最
終的に割れや内部欠陥を生じてしまう。さらに、該カプ
セル充填後に、望ましくは真空やイナートガス中で封止
した方が該Cr−NIインゴット材の表面酸化を防止で
き、加工性が同上する。その後、熱間加工処理を行なう
が、般には熱間スウエージング、熱間フォージングまた
は熱間圧延法が用いられ、加工温度範囲として300〜
800℃、望ましくは600℃近辺にて加熱し、所定の
寸法まで加工することが望ましい。前記加工温度が30
0℃未満では該インゴットが破断しゃすく又800℃を
越えるとカプセルの成分が該インゴットに熱拡散され、
本発明成分以外の不純物が増加し、又、硬質相と軟質相
間に熱膨張係数の差による割れが生ずる。前記加工温度
範囲は300〜800℃が最も加工性に優れていること
は第2図より明らかである。第2図中のNo、1−No
、5は夫々クロム含有150.60.70.80.90
重Ik%、クロム、ニッケル以外の成分が0.5重量%
以下、残部が実施的にニッケルよりなる高クロムニッケ
ル素材の引張り試験時の最大引張り破壊歪、最大引張り
伸びの温度依存性を示している。同図から300〜80
0℃の温度範囲に最大歪、最大伸びを示し、塑性変形能
の大きいことが判る。
Next, the ingot is filled into a capsule. The material of the capsule is not limited, but it is preferable to select a material that has a coefficient of thermal expansion close to that of the ingot material and can withstand subsequent hot working. For example, when metal is used as the capsule material, stainless steel, mild steel, etc. are generally used. Furthermore, if there is a gap between the capsule and the ingot, when pressure is applied to the outside of the capsule by squirting or forging, the processing elongation and deformability of the capsule and the ingot will not be the same, resulting in damage to the capsule and damage to the ingot. The bonding strength between the hard phase and the soft phase necessary for ingot deformation decreases, eventually causing cracks and internal defects. Further, after filling the capsule, it is preferable to seal it in a vacuum or inert gas to prevent surface oxidation of the Cr-NI ingot material and improve workability. After that, hot processing is performed, and generally hot swaging, hot forging, or hot rolling is used, and the processing temperature range is 300 to 300°C.
It is desirable to heat it at 800° C., preferably around 600° C., and process it to predetermined dimensions. The processing temperature is 30
If the temperature is lower than 0°C, the ingot will break, and if the temperature exceeds 800°C, the components of the capsule will be thermally diffused into the ingot.
Impurities other than the components of the present invention increase, and cracks occur between the hard phase and the soft phase due to the difference in coefficient of thermal expansion. It is clear from FIG. 2 that the processing temperature range of 300 to 800° C. provides the best workability. No, 1-No in Figure 2
, 5 each contain chromium 150.60.70.80.90
Weight Ik%, components other than chromium and nickel 0.5% by weight
The following shows the temperature dependence of the maximum tensile strain at break and the maximum tensile elongation during a tensile test of a high chromium nickel material in which the remainder is essentially nickel. 300-80 from the same figure
It shows maximum strain and maximum elongation in the temperature range of 0°C, indicating high plastic deformability.

なお、これらの素材を用いて一般に知られている加工方
法、例えば、型鋳造、熱間圧延、穿孔、押し出し法、線
引法、深絞り、ロール成形、スウ工−ジング等により板
、管、線材、複雑な形状にまで加工することができる。
In addition, these materials can be used to form plates, pipes, Wire rods can be processed into complex shapes.

次に、このようにして作製された本発明の高クロムニッ
ケル素材の組成および組織に関して次に説明する。本発
明のクロムおよびニッケル組成について先ず説明する。
Next, the composition and structure of the high chromium nickel material of the present invention produced in this manner will be explained below. First, the chromium and nickel compositions of the present invention will be explained.

クロムは各種環境下における耐食性ならびに耐摩耗性に
優れた元素であるが、単体では加工性が乏しい。一方、
ニッケルは加工特性を向上させるに有効な元素である。
Chromium is an element with excellent corrosion resistance and wear resistance under various environments, but it has poor workability when used alone. on the other hand,
Nickel is an effective element for improving processing characteristics.

これらの2成分からなるりロムニッケル素材は、クロム
を主成分とする硬質相とニッケルを主成分とする軟質相
の2相組織を形成する。このクロムニッケル素材中の全
クロム含有量が50重量%未満であると耐食性、耐摩耗
性の低下がおこり、本発明の目的は達成しない。
A chromium-nickel material composed of these two components forms a two-phase structure of a hard phase mainly composed of chromium and a soft phase mainly composed of nickel. If the total chromium content in the chromium-nickel material is less than 50% by weight, corrosion resistance and wear resistance will deteriorate, and the object of the present invention will not be achieved.

また、全クロム含有量が90重量%を越えると素材の塑
性変形能が低下し、これを用いて他の材料への加工が困
難となり、内部欠陥や表面割れが発生することから、全
クロム含有量の範囲としては50〜90重量%であるこ
とが必要である。
In addition, if the total chromium content exceeds 90% by weight, the plastic deformability of the material will decrease, making it difficult to process into other materials and causing internal defects and surface cracks. The amount needs to be in the range of 50 to 90% by weight.

本発明の素材では、結晶粒径が50μ腸以下であること
が必要である。高クロムニッケル素材の結晶粒径が50
μ麿を越えると、素材の組成変形能が充分得られず、熱
間加工の際にクラック発生等の支障をきたすのでその粒
径は50μ霞以下であることが必要であり、さらに好ま
しくは20μ−以下である。結晶粒径が20μ厘以下に
なると素材作製工程で硬質相の均一分散性が増すため、
加工特性向上および耐摩耗性がさらに優れる。
The material of the present invention needs to have a crystal grain size of 50 microns or less. The grain size of high chromium nickel material is 50
If the particle size exceeds μ, sufficient compositional deformability of the material will not be obtained and problems such as cracks will occur during hot working, so the grain size must be 50 μ or less, more preferably 20 μ. - less than or equal to When the crystal grain size is less than 20μ, the uniform dispersion of the hard phase increases during the material manufacturing process.
Improved machining characteristics and even better wear resistance.

このような結晶粒径の調節は、原料を50μ厘以下の粒
径のものを用いるか、前記した加工温度即ち、300〜
800℃の範囲で加熱することにより行なうことが出来
る。
Such adjustment of the crystal grain size can be achieved by using raw materials with a grain size of 50 μm or less, or by adjusting the processing temperature described above, that is, 300 to 300 μm.
This can be done by heating in the range of 800°C.

又、クロムニッケル以外の成分としてCs Mn。In addition, Cs and Mn are components other than chromium nickel.

Fes N等の総量が0.5重量%を越えると硬質相と
軟質相の他に不純物を主成分とする析出相が生じて素材
の変形能を低下させ、さらに局部的に耐食性が劣る部分
が表われる。そのためにクロムニッケル以外の成分の総
量は0.5重量%以下に抑制し、硬質相と軟質相の2相
組織とする必要がある。
If the total amount of Fes N, etc. exceeds 0.5% by weight, a precipitated phase mainly composed of impurities is generated in addition to the hard phase and the soft phase, reducing the deformability of the material and causing localized areas with poor corrosion resistance. appear. Therefore, it is necessary to suppress the total amount of components other than chromium nickel to 0.5% by weight or less, and to form a two-phase structure of a hard phase and a soft phase.

これは、素材の製造の際に高純度の原料を用いるなどし
て調節する。第1図−〇 (50Cr−Ni材)は本発
明による素材の組織を示しているが、上記で述べた特性
を全て満足していることが分かる。
This is controlled by using highly pure raw materials during the production of the material. Figure 1-〇 (50Cr-Ni material) shows the structure of the material according to the present invention, and it can be seen that it satisfies all of the characteristics described above.

[発明の効果] 本発明の素材は、塑性変形能に優れたものである。又、
比較的簡便な方法でこれを製造出来る[実施例コ 以下に実施例を示し、本発明を更に具体的に説明するが
、本発明はこれにより制限を受けるものではない。
[Effects of the Invention] The material of the present invention has excellent plastic deformability. or,
This can be produced by a relatively simple method [Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.

実施例1〜6 第−表に実施例1〜6で用いた各素材の原料粉末組成を
示す。原料粉末を第−表に示す組成に調整し、同表備考
に示した状態の粉末(混合粉末:金属クロム粉末とカル
ボニルニッケル粉末の混合粉末、合金粉末:高クロムニ
ッケル合金粉末)を、全体の2重ffi%のエチルアル
コールと混合し、密度7.5g/cm3となるように冷
間等方静水圧プレスにてインゴットを作製した。このイ
ンゴットを真空熱処理炉で1250℃、2時間焼結を行
い、次に、長さ125)、直径33)、厚み5ff11
1の鋼チューブ内に隙間が出来ないように充填した。そ
の後、アルゴンガス中で約15分間保持し、ついで、常
温中で10 ’mtnHgまで真空排気し、排気孔を溶
接しカプセルとした。
Examples 1 to 6 Table 1 shows the raw material powder composition of each material used in Examples 1 to 6. The raw material powder was adjusted to the composition shown in the table, and the powder (mixed powder: mixed powder of metal chromium powder and carbonyl nickel powder, alloy powder: high chromium nickel alloy powder) in the state shown in the notes in the table was added to the entire powder. The mixture was mixed with double ffi% ethyl alcohol, and an ingot was produced by cold isostatic pressing to a density of 7.5 g/cm3. This ingot was sintered at 1250°C for 2 hours in a vacuum heat treatment furnace, and then the ingot was sintered with a length of 125), a diameter of 33), and a thickness of 5ff11.
It was filled in the steel tube of No. 1 so that there were no gaps. Thereafter, it was kept in an argon gas atmosphere for about 15 minutes, then evacuated to 10'mtnHg at room temperature, and the exhaust hole was welded to form a capsule.

次にカプセルを外部より750℃に加熱し、減面率50
%になるまで熱間圧延(11パス)加工し、徐冷し素材
を得た。この素材をさらに、800”Cで2時間保持し
た後600℃で圧延方向を90°変えて、減面率93%
まで加工した。得られた各々の素材の組織、変形能、耐
摩耗性及び耐食性の結果を第−表に示す。評価測定方法
は以下の方法で求めた。
Next, the capsule was heated to 750°C from the outside, and the area reduction rate was 50.
%, hot rolling (11 passes) was carried out to obtain a slowly cooled material. This material was further held at 800"C for 2 hours and rolled at 600"C with the rolling direction changed by 90°, resulting in an area reduction of 93%.
Processed to. Table 1 shows the results of the structure, deformability, wear resistance, and corrosion resistance of each material obtained. The evaluation measurement method was determined as follows.

組織測定:素材をパフ研磨し、シュウ酸で電解エツチン
グ処理した後、光学顕微鏡で組織観察を行った。
Structure measurement: After the material was puff-polished and electrolytically etched with oxalic acid, the structure was observed using an optical microscope.

変形能測定:素材の両端を固定し、中央に50kgfの
荷重をかけて素材の曲り角度を測定した。
Deformability measurement: Both ends of the material were fixed, a load of 50 kgf was applied to the center, and the bending angle of the material was measured.

耐摩耗性測定:硬度計により硬質相および軟質相の硬度
を測定し、硬度が硬い程、耐摩耗性に優れていると判断
した。
Wear resistance measurement: The hardness of the hard phase and soft phase was measured using a hardness meter, and it was determined that the harder the hardness, the better the wear resistance.

耐食性測定:腐食速度の測定は、各素材を研磨し、試験
前の重量を測定する。その後10%硝フッ酸、50℃お
よび30%苛性ソーダ、150”C溶液中に浸漬し、重
量変化より腐食速度を求めた。なお、苛性ソーダ溶液は
オートクレーブ中で浸漬試験を行った。
Corrosion resistance measurement: To measure the corrosion rate, each material is polished and weighed before testing. Thereafter, it was immersed in a solution of 10% nitric hydrofluoric acid at 50° C. and 30% caustic soda at 150"C, and the corrosion rate was determined from the change in weight. The immersion test for the caustic soda solution was conducted in an autoclave.

第−表から明らかなように本発明の素材は外観上、割れ
や欠陥は認められず、45°曲げ試験においても優れた
変形能を示した。又、組織的にも第3図−b(実施例1
の素材)から硬質相と軟質相の2相が均一に分散し、そ
の結晶粒径も50μ■以下であることが判る。又、硬度
測定の結果、耐摩耗性に優れ、強酸溶液および強アルカ
リ溶液に対しても優れた耐食性を有することが判る。
As is clear from Table 1, the material of the present invention showed no cracks or defects in appearance, and exhibited excellent deformability in the 45° bending test. Also, in terms of organization, Fig. 3-b (Example 1
It can be seen that the two phases, a hard phase and a soft phase, are uniformly dispersed from the material), and the crystal grain size is also 50 μm or less. Furthermore, the results of hardness measurements show that it has excellent wear resistance and excellent corrosion resistance against strong acid solutions and strong alkaline solutions.

比較例1〜11 第三表に示す原料を用いた以外は実施例と同様の方法で
各素材を製造した。同表備考に本発明との差異を示した
。比較例11は水アトマイズ法を用いて製造した合金粉
末を用いた例であり、粉末粒径は50μ■以下であるが
球状にならず鋭角な形状を有する粉末を用いた例である
Comparative Examples 1 to 11 Each material was manufactured in the same manner as in the example except that the raw materials shown in Table 3 were used. Differences from the present invention are shown in the notes in the same table. Comparative Example 11 is an example in which an alloy powder manufactured using a water atomization method was used, and the powder particle size was 50 μm or less, but the powder was not spherical but had an acute-angled shape.

これらの素材を実施例と同様の方法で測定し組織、変形
能、耐食性および耐摩耗性の結果を第三表に示す。
These materials were measured in the same manner as in the examples, and the results of structure, deformability, corrosion resistance, and abrasion resistance are shown in Table 3.

第三表から明らかなように比較例1−11の内、比較例
1〜3.7.10はクロム含有量が50〜90重量%、
不純物の総量065重量%以下で残部が実質的にニッケ
ルからなる化学組成より外れているため例えば比較例2
の素材の断面組織を第3図−aに示す様に、硬質相と軟
質相の2相以外に黒色の析出相が認められ3相となって
いる。又、表面にはミクロクラックが認められ、熱間加
工中に亀裂が生じた。比較例4〜6.9は原料粉末の粒
径が50μ露を越えており、又、比較例11は合金粉末
の作製方法が異なるため粒形が球状にならないことから
、結晶粒径が50μm以下とならず、変形能も劣ってお
り、素材表面に亀裂やミクロクラックが生じた。さらに
、耐摩耗性においても硬度にバラツキがあり、局部的に
摩耗が起きやすいことを示唆している。また、耐食性に
おいても組織が不均一であると、腐食性溶液中では2相
あるいは3相間に電位差が生じ耐食性に劣ることが判る
As is clear from Table 3, among Comparative Examples 1-11, Comparative Examples 1 to 3.7.10 have a chromium content of 50 to 90% by weight,
For example, Comparative Example 2 because the total amount of impurities is 065% by weight or less, which deviates from the chemical composition in which the remainder is substantially nickel.
As shown in FIG. 3-a, the cross-sectional structure of the material consists of three phases: a black precipitated phase is observed in addition to the two phases, a hard phase and a soft phase. Moreover, microcracks were observed on the surface, and cracks were generated during hot working. In Comparative Examples 4 to 6.9, the particle size of the raw material powder exceeds 50 μm, and in Comparative Example 11, the grain size is not spherical because the method for producing the alloy powder is different, so the crystal grain size is 50 μm or less. In addition, the deformability was poor, and cracks and microcracks occurred on the surface of the material. Furthermore, there are variations in hardness in terms of wear resistance, suggesting that wear tends to occur locally. In terms of corrosion resistance, it is also found that if the structure is non-uniform, a potential difference occurs between two or three phases in a corrosive solution, resulting in poor corrosion resistance.

比較例12〜15 第三表に示した原料を用い、同表備考に示した方法、条
件で素材を製造した。比較例12は溶解・鋳造法による
素材である。比較例13は原料粉末を冷間等方静水圧プ
レスにより充填密度7.5g/cIIl’としたインゴ
ットを形成し、熱処理の代わりに熱間等方静水圧プレス
(1200℃1.2ton−f*30分Ar中)を行い
、さらに、熱間加工したものである。
Comparative Examples 12 to 15 Using the raw materials shown in Table 3, materials were manufactured according to the method and conditions shown in the notes of the same table. Comparative Example 12 is a material produced by melting and casting. In Comparative Example 13, raw material powder was subjected to cold isostatic pressing to form an ingot with a packing density of 7.5 g/cIIl', and instead of heat treatment, hot isostatic pressing (1200°C 1.2 ton-f* (in Ar) for 30 minutes, and then hot worked.

比較例14は、インゴットの充填密度は7.5g/cI
I+3であるが、その後の熱処理を行わなかったものを
熱間加工した素材である。比較例15は該インゴットの
充填密度が8.5g/cm’であり、その後の熱処理を
行なったものを熱間加工した素材である。
In Comparative Example 14, the ingot packing density was 7.5 g/cI.
Although it is I+3, it is a hot-processed material that was not subjected to subsequent heat treatment. In Comparative Example 15, the ingot has a packing density of 8.5 g/cm', and is a material obtained by hot processing the ingot which has been subjected to subsequent heat treatment.

第三表に素材の特性として表面状態、変形能、組織及び
結晶粒径の結果を示す。測定は実施例と同様の方法で行
なった。比較例12で得た素材は、組織も第1図−aに
示したと同様に硬質相がデンドライト状に発達しており
、非常に加工が困難であり、割れや亀裂しやすい素材で
あった。比較例13て得た素材はインゴット充填密度が
7.5g/cIIl’になっているが、その後の熱処理
の代わりに熱間等方静水圧プレスを行った素材であり、
素材表面のクラックや内部欠陥は少ないが、高温下でプ
レスされているため結晶粒が成長し、変形能は劣るもの
であった。比較例14.15においても2相間の結合強
度不足や充填密度不足のため素材表面にミクロクラック
が生じ、内部欠陥も認められた。
Table 3 shows the results of surface condition, deformability, structure, and crystal grain size as material properties. Measurements were carried out in the same manner as in the examples. The material obtained in Comparative Example 12 had a structure in which the hard phase had developed into a dendrite shape, similar to that shown in FIG. The material obtained in Comparative Example 13 has an ingot packing density of 7.5 g/cIIl', but the material was subjected to hot isostatic pressing instead of subsequent heat treatment,
Although there were few cracks and internal defects on the surface of the material, the crystal grains grew because it was pressed at high temperatures, and its deformability was poor. In Comparative Examples 14 and 15, microcracks were generated on the material surface due to insufficient bonding strength between the two phases and insufficient packing density, and internal defects were also observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図−aは、従来法のアーク溶解法で得た47Cr−
Ni素材のインゴット組成を、第1図−すは、同じく粉
末冶金法により作製された55Cr−Ni素材の組織を
、又第1図−〇は本発明のクロムニッケル素材の断面組
織の構造を示す光学顕微鏡写真(1,000倍)、第2
図は、クロム含有量が50.60.70.80.90重
量%、不純物の総量が0.5重量%以下、残部が実質的
にニッケルよりなる素材の各温度に於ける引張り試験時
の最大引張り破壊歪、最大引張り伸びを示し、第3図(
a) (b)は比較例2及び実施例1の素材のSEX写
真(1,000倍)を示す。
Figure 1-a shows 47Cr- obtained by conventional arc melting method.
The ingot composition of the Ni material is shown in Figure 1. Figure 1 shows the structure of the 55Cr-Ni material also produced by the powder metallurgy method, and Figure 1-0 shows the cross-sectional structure of the chromium-nickel material of the present invention. Optical micrograph (1,000x), 2nd
The figure shows the maximum tensile strength at various temperatures for a material with a chromium content of 50.60.70.80.90% by weight, a total impurity of 0.5% by weight or less, and the remainder essentially nickel. The tensile fracture strain and maximum tensile elongation are shown in Figure 3 (
a) (b) shows SEX photographs (1,000x magnification) of the materials of Comparative Example 2 and Example 1.

Claims (1)

【特許請求の範囲】 1)クロム、ニッケル以外の成分が0.5重量%以下で
、かつクロムが50〜90重量%であり、残部が実質的
にニッケルからなる組成を有する高クロムニッケル素材
であって、その組織が硬質相と軟質相の2相からなり、
かつ素材の結晶粒径が50μm以下である高クロムニッ
ケル素材。 2)純度99%以上のクロム粉末とカルボニルニッケル
粉末を用いて充填密度が7g/cm^3以上のインゴッ
トとし、該インゴットを真空又は不活性ガス中で加熱し
た後、熱間加工処理を行ない、クロム、ニッケル以外の
成分が0.5重量%以下で、かつクロムが50〜90重
量%であり、残部が実質的にニッケルからなる組成を有
する高クロムニッケル素材であって、その組織が硬質相
と軟質相の2相からなり、かつ素材の結晶粒径が50μ
m以下である高クロムニッケル素材の製造方法。 3)高クロムニッケル合金粉末を原料粉末として用いる
特許請求の範囲第2)項記載の製造方法。
[Scope of Claims] 1) A high chromium nickel material having a composition in which components other than chromium and nickel are 0.5% by weight or less, chromium is 50 to 90% by weight, and the balance is substantially nickel. The structure consists of two phases, a hard phase and a soft phase,
A high chromium nickel material with a crystal grain size of 50 μm or less. 2) Use chromium powder and carbonyl nickel powder with a purity of 99% or more to form an ingot with a packing density of 7 g/cm^3 or more, heat the ingot in a vacuum or inert gas, and then perform hot processing, A high chromium nickel material having a composition in which components other than chromium and nickel are 0.5% by weight or less, chromium is 50 to 90% by weight, and the remainder is substantially nickel, and its structure is a hard phase. The crystal grain size of the material is 50μ.
A method for manufacturing a high chromium nickel material having a chromium-nickel content of less than m. 3) The manufacturing method according to claim 2), which uses high chromium nickel alloy powder as the raw material powder.
JP9516090A 1990-04-12 1990-04-12 High chromium-nickel stock and its manufacture Pending JPH03294448A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9516090A JPH03294448A (en) 1990-04-12 1990-04-12 High chromium-nickel stock and its manufacture
EP91303101A EP0452079A1 (en) 1990-04-12 1991-04-09 High chromium-nickel material and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9516090A JPH03294448A (en) 1990-04-12 1990-04-12 High chromium-nickel stock and its manufacture

Publications (1)

Publication Number Publication Date
JPH03294448A true JPH03294448A (en) 1991-12-25

Family

ID=14130027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9516090A Pending JPH03294448A (en) 1990-04-12 1990-04-12 High chromium-nickel stock and its manufacture

Country Status (1)

Country Link
JP (1) JPH03294448A (en)

Similar Documents

Publication Publication Date Title
JPH0637696B2 (en) Method for manufacturing high-strength, heat-resistant aluminum-based alloy material
JPH07504711A (en) Alloy of molybdenum, rhenium and tungsten
JPH0118979B2 (en)
US3562024A (en) Cobalt-nickel base alloys containing chromium and molybdenum
JPH03104832A (en) Gamma-titanium-aluminum alloy modified with chrome and silicon and its manufacture
US7442225B2 (en) High strength high toughness Mo alloy worked material and method for production thereof
CN115233042A (en) Co-based Co-Fe-Ni-Al eutectic entropy alloy resistant to high-temperature oxidation and preparation method and application thereof
JPS5823461B2 (en) high performance bearing steel
KR100409193B1 (en) High strength, low thermal expansion alloy wire and manufacturing method thereof
WO2019004273A1 (en) Metal member
JP5070617B2 (en) Tantalum-silicon alloy and products containing the same and method of manufacturing the same
JPH03294448A (en) High chromium-nickel stock and its manufacture
EP0452079A1 (en) High chromium-nickel material and process for producing the same
JPS62224602A (en) Production of sintered aluminum alloy forging
JPH0445242A (en) High chromium-nickel wire rod and its manufacture
JPH02225639A (en) New chromium-nickel sintered body and its manufacture
JPH0452255A (en) Production of high chromium nickel wire for coating
EP4159360A1 (en) Cobalt-based alloy product and method for producing cobalt-based alloy product
KR950003051B1 (en) Heat-resistant nickel forging alloy
Klopp et al. Ductility and strength of dilute tungsten-rhenium alloys
JPH09228008A (en) Iron-chromium-aluminium steel tube excellent in high temperature shape stability
JPH08318301A (en) Manufacture of rolled ferritic alloy sheet
JPS59116356A (en) Molybdenum alloy
JP2024080356A (en) Low thermal expansion alloy with excellent mechanical properties and method for producing same
WO2024123229A1 (en) Nickel-based alloy