JPH03294437A - Manufacture of metallic material having pore - Google Patents

Manufacture of metallic material having pore

Info

Publication number
JPH03294437A
JPH03294437A JP9503490A JP9503490A JPH03294437A JP H03294437 A JPH03294437 A JP H03294437A JP 9503490 A JP9503490 A JP 9503490A JP 9503490 A JP9503490 A JP 9503490A JP H03294437 A JPH03294437 A JP H03294437A
Authority
JP
Japan
Prior art keywords
metal
liquid phase
casting
stirring
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9503490A
Other languages
Japanese (ja)
Inventor
Akihiko Nanba
難波 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leotec KK
Original Assignee
Leotec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leotec KK filed Critical Leotec KK
Priority to JP9503490A priority Critical patent/JPH03294437A/en
Publication of JPH03294437A publication Critical patent/JPH03294437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To lighten a metallic material in weight and to improve its thermal insulating properties and noise reduction properties by finishing the working or casting of a slurried metal having a solid-liquid mixed phase in the state where the liquid phase remains and immanently dispersing fine pores formed by the solidification and shrinkage of the remaining liquid phase or the like into the substance of the solidified body. CONSTITUTION:Metallic molten metal 10 in a wide sense including alloys is fed to the pouring cup 1a of a stirring and cooling bath 2 and is cooled while stirring is executed by the rotation of a stirrer 4. Next, the above slurried metal 12 is continuously drained from a drain nozzle 3 and is subjected to working or casting, and the above working or casting is finished in the state where a liquid phase remains. Then, fine pores formed by the shrinkage of the above remaining liquid phase in accordance with its solidification and the reduction of gas solubility are inherently dispersed into the substance of the solidified body. In this way, a metallic material in which pores are largely dispersed is obtainable, by which the lightening of structures is permitted and the improvement of capacities such as thermal insulating properties and noise reduction properties can furthermore be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 科学技術の進歩、産業の発展に伴い新しい機能を有する
金属材料が求められ、金属材料の軽量化や断熱性、さら
には消音性等の改善の如きはその一例である。
[Detailed description of the invention] (Industrial application field) With the progress of science and technology and the development of industry, metal materials with new functions are required, and improvements such as weight reduction, heat insulation properties, and sound deadening properties of metal materials are required. is one example.

なかでも金属材料の軽量化については、地球環境保全に
つながる省エネルギーの観点からも各種装置の材料につ
いてとくに強く求められている。
Among these, there is a strong need to reduce the weight of metal materials, especially for materials used in various devices, from the perspective of energy conservation that contributes to global environmental conservation.

ここで金属材料の軽量化には鉄鋼からアルミニウムへと
いうような軽い金属への切替策もあるが価格、材質特性
等で必ずしも満足できる場合のみではない。
To reduce the weight of metal materials, switching from steel to aluminum, a lighter metal, is an option, but this is not always the case if the price, material properties, etc. are satisfactory.

また同じく金属材料の軽量化のためにセラミックス等の
比重の小さい物質を混合する粉末冶金の手法も知られて
いるが、−船釣に加工性に劣り用途は著しく制約される
Powder metallurgy techniques are also known in which materials with low specific gravity, such as ceramics, are mixed in order to reduce the weight of metal materials, but their use is severely limited due to poor processability.

そこで上記した金属材料の軽量化をはじめとして、断熱
性、消音性などの改善の要請に有利に応えることのでき
る、気孔を有する金属材料の製造法についての開発研究
の成果に関して以下に述べる。
The following describes the results of research and development on a method for manufacturing metal materials with pores that can advantageously meet the demands for improvements in heat insulation, sound deadening, etc., as well as weight reduction of the metal materials mentioned above.

(従来の技術) 一般に金属材料はその溶湯を鋳型内で静置又はこれに近
い状態で凝固させ、その後に加工が施されるのを常とす
るため極く一部の不均質部を除いて気孔の如きは殆ど内
在しない。
(Prior art) In general, metal materials are usually processed by leaving the molten metal in a mold or solidifying it in a similar state, and then processing it. There are almost no pores present.

これに対し金属材料の溶融状態で、その浴中にガスを吹
込み、そのまま鋳型に鋳込んで気泡の内在する鋳塊を得
ようとする試みもあったが吹込んだガス気泡の大部分が
容易に浴中を浮上して離散し、またガス気泡はその浮上
中に合体してむしろ有害な大きな気泡を生成するので、
鋳塊内へ残存する気孔は少量でしかもその大きさのバラ
ツキが大きい。
On the other hand, there has been an attempt to obtain an ingot with bubbles by blowing gas into the bath while the metal material is in a molten state and casting it directly into a mold. Gas bubbles easily float up in the bath and become dispersed, and gas bubbles coalesce during floating to form large bubbles that are rather harmful.
The number of pores remaining in the ingot is small and their size varies widely.

一方、近年来とくにスラリー状金属の製造方法について
数多くの提案が見られるが、どの場合もスラリー状金属
の製造及び加工のプロセスにおいて積極的に気孔を内在
させるような構想は含まれていない。
On the other hand, in recent years, a number of proposals have been made regarding methods of manufacturing slurry metal, but none of them include the concept of actively incorporating pores in the manufacturing and processing process of slurry metal.

上述したような従来の技術によって製造される金属材料
は、ときとして一部の不均質部に気孔が含まれることは
あっても気孔を分散状態で内在させるものではなく、従
って積極的に微細孔を凝固体の実質中に分散内在させる
ことについての従来の技術は見出せないことに帰する。
Metal materials manufactured by the conventional techniques described above do not contain pores in a dispersed state, although they may sometimes contain pores in some heterogeneous parts, and therefore do not actively contain pores in a dispersed state. This is due to the fact that no conventional technology has been found for dispersing and incorporating it into the substance of a coagulated body.

(発明が解決しようとする課題) 金属(もちろん合金等を含む広義の意味)材料の軽量化
ないしは断熱性、さらには消音性などの改善の有利な達
成を目指して、凝固体の実質中に微細な気泡を分散状態
で内在させることに特色づけられる、気孔を有する金属
材料の製造方法を確立することがこの発明の目的である
(Problem to be Solved by the Invention) In order to advantageously achieve improvements such as weight reduction or insulation of metal (in a broad sense including alloys, etc.) material, as well as sound-deadening properties, fine particles are incorporated into the substance of the solidified body. It is an object of the present invention to establish a method for producing a metal material having pores, which is characterized by incorporating air bubbles in a dispersed state.

(課題を解決するための手段) この発明は金属をその液相中に固相が散在する状態で加
工又は鋳造成形し、液相が残存する状態で上記の加工又
は鋳造成形を終了させて、残存液相の凝固に伴う収縮な
らびにガス溶解度低下によって生じる微細孔を凝固体の
実質中に分散内在させることを特徴とする、気孔を有す
る金属材料の製造方法である。この場合において金属の
固相の散在した液相が、固相・液相共存領域における攪
拌の下での冷却中に、湯面上を覆うガス雰囲気の上記攪
拌に伴う巻き込みないしは固液共存相へのガス吹込みに
よる気泡を含むものであることが、とくに有効である。
(Means for Solving the Problems) This invention processes or casts a metal in a state in which a solid phase is scattered in its liquid phase, and finishes the above-mentioned processing or casting in a state in which the liquid phase remains, This is a method for producing a metal material having pores, which is characterized by dispersing and incorporating micropores in the substance of a solidified material, which are caused by shrinkage due to solidification of the remaining liquid phase and decrease in gas solubility. In this case, during cooling under stirring in the solid-liquid coexistence region, the liquid phase in which the solid phase of the metal is scattered is engulfed by the above-mentioned stirring of the gas atmosphere covering the surface of the hot water, or into the solid-liquid coexistence phase. It is particularly effective to include bubbles caused by gas injection.

この発明は以下に列記するような知見に由来するもので
ある。
This invention is derived from the findings listed below.

■製品金属材料の成品中に微細気孔を散在させる方法と
しては、該金属融体の液相中に固相が散在するスラリー
状金属について加圧成形又は鋳造成形を施す際、液相が
残存する状態で加圧又は鋳造を終了させて成形後に完全
凝固させることにより液相域の凝固収縮並びにガス溶解
度の低下に伴うガスからの気泡発生による微細気孔を内
在させ得ること、 ■気孔の量を増す手段として、固液共存のスラリー状金
属を製造する際における攪拌に当って湯面からの大気巻
込み現象がある事に着目し、大気の替わりに適切なガス
雰囲気とすることによって害のない気体の巻込みを生じ
させ、その直後にスラリー状にすることによってそのス
ラリー金属内に内在させそれを■に示すようにして加工
成形又は鋳造成形を施しあるいはその気泡をスラリー状
金属を−たん凝固させた後で加工成形して、多量の気孔
を内在させた成品を製造し得ること。
■A method for scattering fine pores in a product metal material is to apply pressure forming or casting to a slurry metal in which a solid phase is scattered in the liquid phase of the metal melt, and the liquid phase remains. By completing the pressurization or casting in a state where it is completely solidified after molding, it is possible to incorporate fine pores due to the solidification shrinkage in the liquid phase region and the generation of air bubbles from the gas due to the decrease in gas solubility. ■Increase the amount of pores. As a method, we focused on the phenomenon of air being entrained from the surface of the hot metal during stirring during the production of slurry-like metals in which solid and liquid coexist, and by creating an appropriate gas atmosphere instead of the atmosphere, we created a harmless gas. Immediately after that, by making it into a slurry form, it is made to remain in the slurry metal and processed or cast as shown in After that, it can be processed and molded to produce a product containing a large amount of pores.

■気孔の量をさらに増す手段として、■に示す方法にお
いてさらに溶湯中又はスラリー中にも適切なガスを吹込
むことによりその気泡をスラリー状金属内に内在させ、
それを■に示すようにして加工成形又は鋳造成形を施し
あるいはそのスラリー状金属を−たん凝固させた後加工
成形してさらに多量の気孔を内在させた成品を製造し得
ること。
■As a means to further increase the amount of pores, in the method shown in (■), by further blowing an appropriate gas into the molten metal or slurry, the air bubbles are made to be present in the slurry metal.
It is possible to produce a product having a larger number of pores by processing or casting it as shown in (2), or by solidifying the slurry metal and then processing and forming it.

(作 用) 金属融体中に溶存している気体が、該融体の温度降下に
よるガス溶解度の低下の下に液相から放出されようとす
るのを、液相中に散在する固相によって捕捉され得る状
態で、固液混相下における加工成形又は鋳造成形を終了
させることにより、またその後の凝固に伴う収縮による
微細孔として残留させることが基本の作用で、この固液
混相としての金属スラリーを生成させるための冷却過程
での攪拌操作の雰囲気から、または冷却攪拌中の金属ス
ラリー中への不活性ガスの如き無害ガスを混入させてそ
の分散による多量の気孔の残留を生じさせることがより
発展的な作用である。
(Function) The solid phase scattered in the liquid phase prevents the gas dissolved in the metal melt from being released from the liquid phase due to the decrease in gas solubility due to the temperature drop of the melt. The basic action is to finish processing or casting in a solid-liquid mixed phase in a state where it can be captured, and to leave it as micropores due to subsequent contraction due to solidification, and the metal slurry as a solid-liquid mixed phase It is more likely that a large amount of pores will remain due to the dispersion of a harmless gas such as an inert gas from the atmosphere of the stirring operation during the cooling process to generate the metal slurry or into the metal slurry during cooling and stirring. It is a developmental effect.

さて、第1図にこの発明の実施に用いる冷却攪拌槽の具
体的な構成を図解し、1は受湯槽、2は冷却攪拌槽、3
は排出ノズル、4は攪拌子、5はその駆動軸、6は攪拌
隙間であり、7は蓋、8は雰囲気ガス供給管、9は吹込
みガス供給管である。
Now, FIG. 1 illustrates the specific configuration of the cooling stirring tank used for carrying out the present invention, where 1 is a receiving tank, 2 is a cooling stirring tank, and 3 is a cooling stirring tank.
4 is a discharge nozzle, 4 is a stirrer, 5 is its drive shaft, 6 is a stirring gap, 7 is a lid, 8 is an atmospheric gas supply pipe, and 9 is a blown gas supply pipe.

ここに溶湯lOを受湯口1aに連続的に供給し駆動軸5
に接続した攪拌子4と攪拌冷却槽2との攪拌隙間6を通
して連続的にスラリー状金属を製造する。このとき受湯
槽1内の湯面11は撹拌子4の回転に伴っ、て図のよう
な中凹みになるとともに場面11の流れには乱れが生じ
る。この乱れによって雰囲気ガスが巻き込まれる状態と
なっている。
Here, molten metal lO is continuously supplied to the inlet port 1a, and the drive shaft 5
Slurry metal is continuously produced through the stirring gap 6 between the stirrer 4 connected to the stirrer 4 and the stirring cooling tank 2. At this time, as the stirrer 4 rotates, the surface 11 of the hot water in the receiving tank 1 becomes concave as shown in the figure, and the flow of the hot water surface 11 becomes turbulent. This turbulence causes atmospheric gas to be drawn in.

そこで図示のように受湯槽1の上部に蓋7を設置し、こ
れを貫通する雰囲気ガス供給管7から無害のガス、例え
ば不活性ガスを送り込む、これにより受湯槽1内の雰囲
気を制御するとともにそのガスを湯面11の乱れを利用
して巻込ませる。
Therefore, as shown in the figure, a lid 7 is installed on the top of the molten metal receiving tank 1, and a harmless gas, such as an inert gas, is sent from the atmosphere gas supply pipe 7 passing through the lid 7, thereby controlling the atmosphere inside the molten metal receiving tank 1. The gas is drawn in by utilizing the turbulence of the hot water surface 11.

これと共に又はこれとは別に攪拌冷却槽2内に吹込ガス
供給管9を攪拌隙間6に開口するように設けてこのガス
吹込みによりスラリー状金属内に均一に気泡を生成させ
る。
Along with this or separately, a blowing gas supply pipe 9 is provided in the stirring cooling tank 2 so as to open into the stirring gap 6, and by blowing the gas, bubbles are uniformly generated in the slurry metal.

排出ノズル3から放出される金属スラリーは、金属液相
中に固相が散在する状態なのでこれを加工又は鋳造成形
し、そして液相が残存する状11″′?:上記加工又は
鋳造成形を終了させるのであり、かくしてこの残存液相
の凝固に伴う収縮とガス溶解度低下によって凝固体の実
質中に気孔を分散内在せるのである。
The metal slurry discharged from the discharge nozzle 3 has a solid phase scattered in the metal liquid phase, so it is processed or cast, and the liquid phase remains.11''?: The above processing or casting is completed. Thus, due to the contraction of the remaining liquid phase and the decrease in gas solubility as it solidifies, pores are dispersed within the substance of the solidified material.

(実施例) A ff1−10%Cu合金を、第1図に示した冷却攪
拌槽の受湯口1aに溶湯として供給し、撹拌子4の回転
速度を50Orpmで攪拌しながら冷却してA1合金ス
ラリー12を排出ノズル3から連続的に出した。
(Example) A ff1-10% Cu alloy was supplied as a molten metal to the inlet port 1a of the cooling stirring tank shown in Fig. 1, and cooled while stirring at a rotational speed of the stirrer 4 at 50 Orpm to form an A1 alloy slurry. 12 was continuously discharged from the discharge nozzle 3.

その際10a+*φのパイプ8からArガスを10Of
/分流し受湯槽1内をAr雰囲気とした。さらに攪拌冷
却槽2内に2−φのバイブ9からArガスを10117
分吹込んだ。
At that time, 10Of Ar gas is supplied from pipe 8 of 10a+*φ.
/The interior of the diverted molten metal receiving tank 1 was set to an Ar atmosphere. Furthermore, Ar gas is supplied to the stirring cooling tank 2 from the 2-φ vibrator 9 at 10117°C.
I injected a minute.

このようにして得られたAI1合金スラリー12をブロ
ック状に凝固させた試料16の断面の一部を第2図の模
式図に示すが、この試料16内には凝固収縮による微細
気孔17と、比較的大きい雰囲気ガス及び吹込ガスが気
泡として残存した気孔18が均一に分散していた。
A part of the cross section of a sample 16 obtained by solidifying the AI1 alloy slurry 12 obtained in this way into a block shape is shown in the schematic diagram of FIG. The pores 18 in which relatively large atmospheric gas and blown gas remained as bubbles were uniformly dispersed.

攪拌冷却槽2内に吹込みガスを供給するには図示のよう
な管端ノズルの替わりに先端にポーラスれんがを使用し
てもよい、この場合より微細な気孔を分散させることが
できる。
To supply the blown gas into the stirring cooling tank 2, a porous brick may be used at the tip instead of the tube end nozzle as shown in the figure. In this case, finer pores can be dispersed.

ここで攪拌冷却槽2内に吹込むガス流量を増減すること
によりスラリー状金属内の気孔の増減を調節することが
できる。なお図示例では機械的攪拌方式について図解し
たが、これにかえて電磁攪拌を行う場合もまったく同様
な方法で気泡を内在させたスラリー状金属が得られるの
は勿論である。
By increasing or decreasing the flow rate of the gas blown into the stirring cooling tank 2, it is possible to adjust the increase or decrease in the number of pores in the slurry metal. In the illustrated example, a mechanical stirring method is illustrated, but it goes without saying that when electromagnetic stirring is used instead, a slurry-like metal containing air bubbles can be obtained in exactly the same manner.

(発明の効果) 自動車を典型例とするような構造物の軽量化がエネルギ
ー消費量削減、地球環境保全の観点からも近年来強く要
求されているところであるが、この発明により気孔を多
く分散させた金属材料が得られ単位体積当りの重量を軽
減することで上記のような要請を容易に満たすことがで
きる。
(Effects of the invention) In recent years, there has been a strong demand for lighter structures, such as automobiles, from the viewpoint of reducing energy consumption and preserving the global environment. The above requirements can be easily met by obtaining a metallic material and reducing the weight per unit volume.

もちろん軽量化による強度低下が生じるが、比強度が増
加することは確認されているとおりであって構造物の軽
量化に寄与することになる。加えて気孔を内在させた金
属材料は、断熱性、消音性が改善される。
Of course, the strength decreases due to the weight reduction, but it has been confirmed that the specific strength increases, which contributes to the weight reduction of the structure. In addition, metal materials containing pores have improved heat insulation and sound deadening properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法に有利に用いることができる冷
却攪拌装置の説明図であり、 第2図はこの発明の方法で得られた試料ブロックの一部
についての試料断面図(スケッチ)である。 1・・・受湯槽 2撹拌冷却槽 4・・・攪拌子 6・・・攪拌隙間 8・・・パイプ 10・・・溶湯 12・・・スラリー状金属 14・・・冷却水出口 16・・・ブロック切出し試料 18・・・気孔 1a・・・受湯口 3・・・排出ノズル 5回転駆動軸 7・・・蓋 9・・・パイプ 11・・・湯面 13・・・冷却水人口 15・・・冷却チャンバー 17・・・微細気孔 第1図 第2図
FIG. 1 is an explanatory diagram of a cooling stirrer that can be advantageously used in the method of the present invention, and FIG. 2 is a sample cross-sectional view (sketch) of a part of the sample block obtained by the method of the present invention. be. 1... Receiving tank 2 Stirring cooling tank 4... Stirrer 6... Stirring gap 8... Pipe 10... Molten metal 12... Slurry metal 14... Cooling water outlet 16... Block cut sample 18...pore 1a...molten metal inlet 3...discharge nozzle 5 rotation drive shaft 7...lid 9...pipe 11...molten water surface 13...cooling water population 15...・Cooling chamber 17...Minute pores Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、金属をその液相中に固相が散在する状態で加工又は
鋳造成形し、液相が残存する状態で上記の加工又は鋳造
成形を終了させて、残存液相の凝固に伴う収縮ならびに
ガス溶解度低下によって生じる微細孔を凝固体の実質中
に分散内在させることを特徴とする、気孔を有する金属
材料の製造方法。 2、請求項1記載において金属の固相の散在した液相が
、固相・液相共存領域における撹拌の下での冷却の際、
湯面上を覆うガス雰囲気の上記撹拌に伴う巻き込みによ
る気泡を含むことからなる気孔を有する金属材料の製造
方法。 3、請求項第1項において、金属の面相の散在した液相
が、固相・液相共存領域における攪拌の下での冷却の際
、固液共存相中へのガス吹込みによる気泡を含むことか
らなる気孔を有する金属材料の製造方法。
[Claims] 1. Processing or casting the metal in a state where the solid phase is scattered in the liquid phase, and finishing the above processing or casting with the liquid phase remaining, to remove the remaining liquid phase. 1. A method for producing a metal material having pores, the method comprising dispersing and incorporating micropores generated by shrinkage due to solidification and reduction in gas solubility into the substance of a solidified material. 2. In claim 1, when the liquid phase in which the metal solid phase is interspersed is cooled under stirring in the solid phase/liquid phase coexistence region,
A method for manufacturing a metal material having pores that includes air bubbles caused by entrainment of the gas atmosphere covering the surface of the hot water due to the above-mentioned stirring. 3. In claim 1, the liquid phase in which the metal surface phase is scattered contains bubbles due to gas injection into the solid-liquid coexistence phase during cooling under stirring in the solid-liquid coexistence region. A method for producing a metal material having pores comprising:
JP9503490A 1990-04-12 1990-04-12 Manufacture of metallic material having pore Pending JPH03294437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9503490A JPH03294437A (en) 1990-04-12 1990-04-12 Manufacture of metallic material having pore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9503490A JPH03294437A (en) 1990-04-12 1990-04-12 Manufacture of metallic material having pore

Publications (1)

Publication Number Publication Date
JPH03294437A true JPH03294437A (en) 1991-12-25

Family

ID=14126803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9503490A Pending JPH03294437A (en) 1990-04-12 1990-04-12 Manufacture of metallic material having pore

Country Status (1)

Country Link
JP (1) JPH03294437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004367A1 (en) * 1999-07-09 2001-01-18 Hideo Nakajima Production method for porous metal body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004367A1 (en) * 1999-07-09 2001-01-18 Hideo Nakajima Production method for porous metal body
US7073558B1 (en) * 1999-07-09 2006-07-11 Hideo Nakajima Production method for porous metal body

Similar Documents

Publication Publication Date Title
Conde et al. Replication processing of highly porous materials
Chung et al. A study on semisolid processing of A356 aluminum alloy through vacuum-assisted electromagnetic stirring
JP4521714B2 (en) Method for producing materials reinforced with nanoparticles
CN101244451A (en) Method and apparatus for improving horizontal continuous casting billet quality by applying composite field
Grassi et al. The ablation casting process
Bihari et al. An overview on different processing parameters in particulate reinforced metal matrix composite fabricated by stir casting process
JP5242416B2 (en) Method for preparing a metal structure suitable for semi-molten metal processing
US20180133783A1 (en) Production method using a vacuum sand casting mould
CA2510831C (en) Controlled fluid flow mold and molten metal casting method for improved surface
CN1425520A (en) Alumium alloy low frequency electromagnetic semi-continuous casting method and device
JPH03294437A (en) Manufacture of metallic material having pore
CN102418010A (en) Cast aluminum alloy with pinholes removed and smelting method thereof
US20090250185A1 (en) Methods for casting stainless steel and articles prepared therefrom
JPH01180764A (en) Method for continuously casting high clean steel
JPS6261380B2 (en)
JP2002096157A (en) Method of casting minute total isometric system structure
RU2453742C1 (en) Method for production of aluminium-lead friction bearings
JP2008036702A (en) Casting mold for metal casting
El-Mahallawy et al. Casting Process Developments for Improving Quality
CN112620590A (en) Reflow soldering and air spraying plate manufacturing method
JPS62187556A (en) Continuous casting method
JPH0924445A (en) Method for concentrating solute on surface layer of cast slab in continuous casting
Li et al. Research on hot-top electromagnetic continuous casting of hollow billets
Matejka et al. Effect of Maximum Piston Velocity on Internal Homogeneity of AlSi9Cu3 (Fe) Alloy Processed by High-Pressure Die Casting
Lü et al. Microstructure and Properties of LPSO Phase Reinforced Mg Alloy Produced by Rheocasting