JPH03293922A - Protective relay - Google Patents

Protective relay

Info

Publication number
JPH03293922A
JPH03293922A JP2095312A JP9531290A JPH03293922A JP H03293922 A JPH03293922 A JP H03293922A JP 2095312 A JP2095312 A JP 2095312A JP 9531290 A JP9531290 A JP 9531290A JP H03293922 A JPH03293922 A JP H03293922A
Authority
JP
Japan
Prior art keywords
phase
currents
current
inrush
magnitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2095312A
Other languages
Japanese (ja)
Inventor
Toyoki Ueda
豊樹 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2095312A priority Critical patent/JPH03293922A/en
Publication of JPH03293922A publication Critical patent/JPH03293922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To remove unnecessary operation in inrush currents by changing over a phase judgement system by discriminating inrush currents and currents in other quadrants. CONSTITUTION:The magnitude of currents is judged at every phase in the sections of judging means 11-13 for the magnitude of electric waves in the processing of the AND of three phase, phase is judged at every phase in the sections of phase judging means 14-16, the ANDs of the results of the judgements of currents and phase are taken at every phase, and the AND of three phase of the result is taken and output. A three-phase AND system is adopted as a changeover means 22 when the currents of either phase are larger than a set current value, and a three-phase synthetic method is adopted when the currents of either phase are not larger than that. Since the inrush currents of a load transformer are larger than reverse excitation currents, both can be discriminated by bringing the set current value of changeover to 10-20%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電力系統を保護するディジタル形の保護継電
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a digital protective relay for protecting a power system.

〔従来の技術〕[Conventional technology]

第2図は従来の処理方式のブロック図で、(1)〜(3
)は各相の電流の大きさを計算する手段、(4)〜(6
)は各相の電力を計算する手段で、(7)は3相の電流
を加算して合成する手段、(9)はその合成電流の大き
さを判定する手段、(8)は3相の電力を加算して合成
する手段、α俤はその合成電力で位相判定をする手段で
ある。
Figure 2 is a block diagram of the conventional processing method, showing (1) to (3)
) is a means of calculating the magnitude of the current in each phase, (4) to (6
) is a means for calculating the power of each phase, (7) is a means for adding and synthesizing the three-phase currents, (9) is a means for determining the magnitude of the combined current, and (8) is a means for calculating the three-phase current. A means for adding and synthesizing the powers, α-tou, is a means for determining the phase using the combined powers.

次に動作について説明する。この要素は、第3図の様に
、電力会社からの送電が一回線たり停止した場合でも他
の回線からまわりこんで送電線に電圧が発生するので、
それを防ぐためにネットワーク受電点の遮断器(24)
を開放するためのもので、その時にはネットワークトラ
ンス(23)が逆に励磁されtiが流出しているように
見えるので、その逆電力を検出しているものである。第
4図はスポットネットワークリレーの逆電力要素の位相
特性を示すものである。流出する電流の位相は、その送
1i線のケーブルのコンデンサ容量が小さい場合はネッ
トワークトランスの逆励磁電流だけとなり、流出方向の
遅れ電流が流れるので第4図の第3象限になり、ケーブ
ルのコンデンサ容量が大きい場合は流出方向の進み電流
が流れるので第4図の第4象限になる。負荷に力率改善
用のコンデンサが入っていて負荷電力が非常に小さくな
った場合には受電方向の進み電流が流れ、第4図の第2
象限になるが、この時進み90°の電流が流れても逆電
力要素が動作しないように3°の余裕を持った位相特性
としている。第4図の第3象限にくるネットワークトラ
ンスの逆励磁電流の位相であるが、3相平均すると遅れ
80°程度であるがトランスにより1相だけ遅れ90′
″になることもある。逆電力要素はこのような場合でも
動作できるように、3相の合成の電力で判定を行うよう
にしている。
Next, the operation will be explained. This element is caused by the fact that even if the power transmission from the electric power company stops on one line, voltage will be generated on the transmission line from other lines, as shown in Figure 3.
To prevent this, a circuit breaker (24) at the network power receiving point
At that time, the network transformer (23) is reversely excited and ti appears to be flowing out, so the reverse power is detected. FIG. 4 shows the phase characteristics of the reverse power elements of the spot network relay. If the capacitor capacity of the cable of the transmission 1i line is small, the phase of the outflowing current will be only the reverse excitation current of the network transformer, and since a lagging current flows in the outflow direction, the phase will be in the third quadrant of Figure 4, and the phase of the cable capacitor will be When the capacitance is large, a leading current flows in the outflow direction, resulting in the fourth quadrant of FIG. If the load contains a capacitor for power factor correction and the load power becomes very small, a leading current flows in the receiving direction, resulting in
Although this is a quadrant, the phase characteristics are designed to have a margin of 3° so that the reverse power element does not operate even if a current with an advance of 90° flows. The phase of the reverse excitation current of the network transformer in the third quadrant of Figure 4 is delayed by about 80 degrees on average for three phases, but there is a delay of 90 degrees by one phase due to the transformer.
''.In order for the reverse power element to operate even in such a case, the decision is made using the combined three-phase power.

従ってリレーの処理は、計算手段(11〜(3)で各相
の電流の大きさを計算し、合成手段(7)で3相分を加
算して合成し、判定手段イ9)で整定値以上かどうかの
判定を行う、そして計算手段(4)〜(6)で各相の電
力の大きさを計算し、合成手段(8)で3相分を加算し
て合成し、判定手段01で動作位相かどうかの判定を行
う、そし電流と位相のアンド条件で動作出力を出すよう
にいている。
Therefore, the processing of the relay is to calculate the magnitude of the current of each phase in the calculation means (11 to (3)), add and synthesize the three phases in the composition means (7), and set the setting value in the determination means (9). Then, calculating means (4) to (6) calculate the power of each phase, combining means (8) adds and combines the three phases, and determining means 01 calculates the magnitude of the power of each phase. It determines whether it is in the operating phase or not, and outputs the operating output based on the AND condition of current and phase.

〔発明が解決しようとするts、n〕[ts, n that the invention seeks to solve]

従来のスポットネットワークリレーは以上のように構成
されているので、負荷トランス投入時のインラッシュ電
流が流れた場合、動作することがあるという問題点があ
った。それは、負荷トランスのインラッシュ電流は受電
方向の遅れ電流が流れ第4図の第1象限になるが、イン
ラッシュ電流には第二高調波の電流が多く含まれ、3相
の合成をすると第5図のP AVllのように動作と復
帰を繰り返すような結果になるため、ディジタル形のリ
レーでは一定の周期で処理を行っているがために動作判
定の部分だけをひらってしまうことがあるからである。
Since the conventional spot network relay is configured as described above, there is a problem in that it may operate when an inrush current flows when the load transformer is turned on. The reason is that the inrush current of the load transformer has a delayed current in the power receiving direction, which is in the first quadrant of Figure 4, but the inrush current contains a lot of second harmonic current, and when three phases are combined, the second harmonic current is As shown in PAVll in Figure 5, the result is a repeating operation and return, so since digital relays perform processing at a constant cycle, only the operation judgment part may be displayed. It is from.

なお、第5図は、実際のインラッシュ波形からリレーで
行っている電力の計算を行った時の結果である。
Note that FIG. 5 shows the results of calculating the power in the relay from the actual inrush waveform.

この発明は上記のような課題を解決するためになされた
もので、従来のリレー特性はそのままで、負荷トランス
のインランシュ電流が流れても動作しないリレー特性を
得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to obtain a relay characteristic that does not operate even when an inrush current of a load transformer flows, while retaining the conventional relay characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

この発明による方式は、インラッシユiI流の特徴であ
る、11流値が大きいということと、位相が各相ごとに
異なり各相ごとにみれば動作位相のものや不動作位相の
ものがあるということを利用し、電流の大きさにより位
相判定方式を切り換えてインラッシュを流では動作しな
いようにしたものである。
The method according to the present invention has two characteristics: the 11 flow value is large, which is a characteristic of the inrush II flow, and the phase is different for each phase, and when looking at each phase, there are operating phase and non-operating phase. The phase determination method is switched depending on the magnitude of the current, so that the inrush does not operate with current.

〔作用〕[Effect]

この発明における位相判定方式の切り換えは、インラッ
シュ電流を他の象限の電流と区別することにより行われ
、処理される。
Switching of the phase determination method in the present invention is performed and processed by distinguishing the inrush current from currents in other quadrants.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、Q呻は従来と同じ3相合成の3相合成処理
手段、(21)は3相アンドの3相アンド処理手段、O
L1〜0湯は各相の電流の大きさの判定をする大きさ判
定手段、041− Q19は各相の位相判定をする位相
判定手段、(22)は3相合成処理手段amと3相アン
ド処理手段(21)の処理の切り換えを行う切換手段で
ある。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, Q is the same three-phase synthesis processing means as before, (21) is the three-phase AND processing means, and O
L1 to 0 are magnitude determination means for determining the magnitude of the current of each phase, 041-Q19 is a phase determination means for determining the phase of each phase, and (22) is a three-phase synthesis processing means am and a three-phase AND This is a switching means for switching the processing of the processing means (21).

次に動作について説明する。まず、3相合成の処理は従
来と全く同じである0次に3相アンドの処理は、電流の
大きさ判定手段0D−0の部分で各相ごとに電流の大き
さを判定し、位相判定手段間〜OQの部分で各相ごとに
位相判定を行い、各相ごとに電流と位相の判定結果のア
ンドをとり、その結果の3相のアンドをとって出力をす
るものである。そして切換手段(22)は、電流の大き
さによって3相合成方式と3相アンド方式の切り換えを
するもので、いずれかの相の電流が設定電流値より大き
ければ3相アンド方式とし、そうでなければ3相合成方
式とする。この3相合成方式と3相アンド方式は、各相
の電流が同じよう変化していれば結果は同しとなり、第
4図の第2象限の力率改善用コンデンサや、第4象限の
ケーブルのコンデンサ容量は3相がバランスしているの
で、どちらの方式となっても問題ない。第3象限のネッ
トワークトランスの逆励磁電流はアンバランスであるこ
とは先に述べたが、この逆励lit流は定格電流の0.
1%〜7%と非常に小さく、負荷トランスのインラッシ
ュ電流はそれより大きいため、切り換えの設定電流値を
10〜20%にしておけばこの両者の区別は可能である
。インラッシュ電流は、第5図でもわかるように、相ご
とにみれば、1相は不動作位相のものがあり、3相とも
動作位相になることはないので各相ごとのアンド条件で
みれば必ず不動作となる。
Next, the operation will be explained. First, the 3-phase synthesis process is exactly the same as the conventional 0-order 3-phase AND process, in which the current size determination means 0D-0 determines the current size for each phase, and the phase is determined. The phase is determined for each phase in the section between the means and OQ, the current and phase determination results are ANDed for each phase, and the three phases are ANDed and output. The switching means (22) switches between the three-phase combination method and the three-phase AND method depending on the magnitude of the current; if the current of any phase is larger than the set current value, the three-phase AND method is used; If not, use the three-phase synthesis method. The three-phase combination method and the three-phase AND method will give the same result if the current in each phase changes in the same way. Since the capacitor capacitance of is balanced for the three phases, there is no problem with either method. As mentioned above, the reverse excitation current of the network transformer in the third quadrant is unbalanced, but this reverse excitation current is 0.00% of the rated current.
Since the inrush current of the load transformer is very small at 1% to 7% and larger, it is possible to distinguish between the two by setting the switching current value to 10 to 20%. As can be seen in Figure 5, when looking at the inrush current for each phase, one phase has an inactive phase, and none of the three phases are in an active phase, so when looking at the AND condition for each phase, It will definitely become inoperable.

なお、上記実施例ではインラッシュ電流の判別を電流の
大きさだけで行ったが、インラッシュ電流に多く含まれ
る第二高調波電流の含有率の割合を併せて判定してもよ
い。
In the above embodiment, the in-rush current was determined based only on the magnitude of the current, but the content ratio of the second harmonic current, which is largely included in the in-rush current, may also be determined.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば処理方式の切り換えの
みで従来のリレー特性は同等で、さらに負荷トランスの
インラッシュ電流での不要動作のないリレー特性を得ら
れる効果がある。
As described above, according to the present invention, the relay characteristics are equivalent to those of the conventional relay only by switching the processing method, and furthermore, the relay characteristics can be obtained without unnecessary operation due to the inrush current of the load transformer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
は従来の保護継電器を示すブロック図、第3図はスポッ
トネットワーク受電のスケルトン図、第4図は逆電力要
素の位相特性図、第5図はインラッシュ電流の波形とリ
レー内での電力演算結果そ示す図である。 図において、(至)は3相合成処理手段、(21)は3
相アンド処理手段、(21)は切換手段である。 なお、図中、同一符号は同一または相当部分を示す。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing a conventional protective relay, Fig. 3 is a skeleton diagram of spot network power reception, and Fig. 4 is a phase characteristic diagram of a reverse power element. , FIG. 5 is a diagram showing the waveform of the inrush current and the result of power calculation within the relay. In the figure, (to) is the three-phase synthesis processing means, and (21) is the three-phase synthesis processing means.
The phase AND processing means (21) is a switching means. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 複数回線から受電し、無停電受電を実現するスポットネ
ットワーク受電の保護を行う保護継電器において、小電
流域では3相合成方式により処理し、大電流域では3相
アンド方式で処理し、送電停止時の他回線からのまわり
、込み防止用しゃ断器の開放指令を出すことを特徴とす
る保護継電器。
A protective relay that receives power from multiple lines and protects spot network power reception that realizes uninterruptible power reception, uses a 3-phase combination method to process small current areas, and a 3-phase AND method to process large current areas, and when power transmission is stopped. A protective relay that is characterized by issuing a command to open a circuit breaker to prevent interference from other lines.
JP2095312A 1990-04-10 1990-04-10 Protective relay Pending JPH03293922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095312A JPH03293922A (en) 1990-04-10 1990-04-10 Protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2095312A JPH03293922A (en) 1990-04-10 1990-04-10 Protective relay

Publications (1)

Publication Number Publication Date
JPH03293922A true JPH03293922A (en) 1991-12-25

Family

ID=14134241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095312A Pending JPH03293922A (en) 1990-04-10 1990-04-10 Protective relay

Country Status (1)

Country Link
JP (1) JPH03293922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017947A (en) * 2012-07-06 2014-01-30 Toshiba Corp Network protector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017947A (en) * 2012-07-06 2014-01-30 Toshiba Corp Network protector

Similar Documents

Publication Publication Date Title
CA2057717C (en) Parallel inverter system
US4641042A (en) Power supply system and a control method thereof
WO2020110236A1 (en) Power control system
US3949272A (en) Ground-fault protective scheme for multiple-source electric distribution system
JPH03293922A (en) Protective relay
US3673425A (en) Directional current relay
JP3293277B2 (en) Active filter device
JP4153211B2 (en) Inverter device
JPS6318967A (en) Controller for cycloconverter
JP3564856B2 (en) Selection method of introduced bus voltage in system control
JPH06133534A (en) Semiconductor ac switch
JP2001231167A (en) Method and apparatus for opening and closing capacitor equipment for three-phase alternating-current power
KR920004850A (en) Phase detection circuit of 3-phase power supply
SU1737625A1 (en) Device for automatic turn-on of stand-by supply of consumers with motor load
SU1629942A1 (en) Three-phase power network
JP2857263B2 (en) Low-voltage uninterruptible switching device for transformer and method for switching and switching back
CA1311828C (en) Positive sequence distance relay for ac power transmission line protection
JP3079610B2 (en) Power supply unbalance countermeasure device
JP3666845B2 (en) Spot network power receiving equipment
JPH1189088A (en) Operation/control method of active filter
JPH09128072A (en) Method for controlling self-excited reactive power compensating device
JPH0746763A (en) Reactive power regulator
SU1169063A1 (en) Device for current protection against one-phase short circuit
JPS6011724Y2 (en) Uninterruptible power system
JPH0576144A (en) Low voltage uninterruptible switching method for transformer