JPH03293301A - Reflecting mirror - Google Patents

Reflecting mirror

Info

Publication number
JPH03293301A
JPH03293301A JP9386690A JP9386690A JPH03293301A JP H03293301 A JPH03293301 A JP H03293301A JP 9386690 A JP9386690 A JP 9386690A JP 9386690 A JP9386690 A JP 9386690A JP H03293301 A JPH03293301 A JP H03293301A
Authority
JP
Japan
Prior art keywords
film
ring
reflecting mirror
shaped member
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9386690A
Other languages
Japanese (ja)
Inventor
Toshio Taguchi
田口 俊夫
Masanori Masumoto
雅典 益本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9386690A priority Critical patent/JPH03293301A/en
Publication of JPH03293301A publication Critical patent/JPH03293301A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the structure by fixing a reflecting film obtained by forming a metallic thin film of Al, Ag, etc., having high reflectivity on a plastic film to an annular or discoid member. CONSTITUTION:When an annular member 2 is forced in with its lower surface in contact with a film 1, the film 1 is firstly bent by the indented parts on the outer peripheral sides of the annular members 2 and 3 and pressed in, then the film 1 is forced in by the indented parts on the inner peripheral sides while keeping a contact surface with the protrusion of the member 2, and a tension corresponding to the inner peripheral recess of the member 3 is exerted on the film 1 over its whole periphery. When the member 2 is completely forced into the member 3, annular member fixing flanges 3a and 3c are fixed by a bolt 4, hence the tension exerted on the film 1 is kept, and the flatness of the film 1 is maintained. Since the plastic film 1 obtained by forming a high- reflectivity metallic thin film 1a on a base material by vapor deposition, etc., is used, the rough working, lapping, etc., of a reflecting mirror as in the conventional method are not needed, and an inexpensive mirror surface of simple structure is obtained in a short time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は各種光線の光路変更、宇宙の太陽光集光器等に
適用される反射鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a reflecting mirror that is used for changing the optical path of various types of light rays, for solar concentrators in space, and the like.

(従来の技術) 従来光線の光路変更等に用いられる反射鏡は、ガラス又
は金属等の研磨面に反射率の高い材料を単層又は多層に
蒸着等して製膜されていた。
(Prior Art) Conventionally, a reflecting mirror used for changing the optical path of a light beam has been formed by depositing a single layer or multiple layers of a material with high reflectance on a polished surface such as glass or metal.

第10図は従来の宇宙用太陽光集光器の反射鏡の例を示
し、母材20はCFRP表皮のみの単板構造とし、表面
にガラス加工層21を設けてあり、同加工層21の表面
は研磨されている。そしてこの研磨された表面のガラス
研磨面22にアルミ蒸着23を施して反射鏡としている
FIG. 10 shows an example of a reflector for a conventional space solar concentrator, in which the base material 20 has a single-plate structure with only a CFRP skin, and a glass processing layer 21 is provided on the surface. The surface is polished. Then, aluminum vapor deposition 23 is applied to the glass polished surface 22 of this polished surface to form a reflecting mirror.

また宇宙開発の進展に伴い、宇宙ステーション、宇宙往
還機等の開発が具体的に進みつつある。宇宙での活動の
エネルギー源として、地球から燃料をロケントで打ち上
げると、その費用が膨大なものとなるため、従来より宇
宙空間で太陽光を集光してエネルギー源として使用する
ための太陽光集光器の開発が進められている。
Furthermore, with the progress of space development, the development of space stations, space shuttles, etc. is progressing in concrete terms. Launching fuel from Earth as an energy source for activities in space would be extremely expensive, so conventional methods have been used to condense sunlight in space and use it as an energy source. Development of optical devices is progressing.

第12図に従来の宇宙太陽光集光器の概念図を示す。宇
宙用太陽光集光器の反射鏡24には、ロケット打上げ時
の重量が軽量であること、打上げ時にコンパクトに収納
できること、打上げ時の高負荷荷重で機械的な変形、損
傷を受けないこと、宇宙空間での集光性能が良いこと等
が要求される。特に集光性能向上の面では、凹面鏡の利
用が考えられている。このため材料、構造、製作技術の
総合的開発が必要であり、従来も各社で研究開発が進み
つつある。
Figure 12 shows a conceptual diagram of a conventional space solar concentrator. The reflector 24 of the solar light concentrator for space needs to have a light weight at the time of rocket launch, to be able to be stored compactly at the time of launch, and to not be mechanically deformed or damaged by the high load at the time of launch. Good light gathering performance in space is required. In particular, the use of concave mirrors is being considered to improve light collection performance. This requires comprehensive development of materials, structures, and manufacturing techniques, and research and development has been progressing at each company.

ところで太陽光集光器は太陽光25を反射鏡24で受熱
器26に入るように反射させて発電するものであるため
、受熱器26の受熱部寸法より小さい寸法の反射光を形
成する反射鏡であれば、必ずしも凹面の必要はなく、平
面鏡でもよい。凹面鏡は1枚毎の集光密度を太き(取れ
るため高温の受熱器を作動させるのに適しており、低温
の受熱器の場合は平面鏡でもよく、使用目的によって両
者とも実用できる。
By the way, since a solar light concentrator generates electricity by reflecting sunlight 25 with a reflecting mirror 24 so that it enters the heat receiver 26, a reflecting mirror that forms reflected light with dimensions smaller than the dimensions of the heat receiving part of the heat receiver 26 is used. If so, it is not necessarily necessary to have a concave surface, and a plane mirror may be used. Concave mirrors are suitable for operating high-temperature heat receivers because each mirror has a large condensing density.For low-temperature heat receivers, a flat mirror may be used, and both can be used depending on the purpose of use.

次に前記反射鏡24の1例を第11図について説明する
と、図中27は太陽熱により硬化する熱硬化性樹脂膜で
、その両面には〃材28.28が蒸着されている。29
は太陽光を透過するフィルムで、熱硬化性樹脂膜27と
外周部で支持材30によりシール固定されている。これ
を軌道上で2点鎖線で示すように熱硬化性樹脂膜27と
フィルム29間にキセノンガス31を加圧封入し、同樹
脂膜27とフィルム29をそれぞれ外側に膨らませ、樹
脂膜27が硬化した後に前記ガス31を抜き、凹面状の
反射鏡としている。
Next, an example of the reflecting mirror 24 will be explained with reference to FIG. 11. In the figure, 27 is a thermosetting resin film that is cured by solar heat, and materials 28 and 28 are vapor-deposited on both sides of the film. 29
is a film that transmits sunlight, and is sealed and fixed to the thermosetting resin film 27 and the outer periphery by a support material 30. On orbit, xenon gas 31 is pressurized and sealed between the thermosetting resin film 27 and the film 29 as shown by the two-dot chain line, and the resin film 27 and film 29 are respectively expanded outward, and the resin film 27 is cured. After that, the gas 31 is removed to form a concave reflecting mirror.

(発明が解決しようとする課題) 従来よりこの種の反射鏡の製作には、母材の加工、特に
反射面においては面精度を要求されるため、研磨仕上げ
を行い、更にバッチ方式で表面コーティングが施されて
いる。そのため製作時間が長くかかると共に、価格も高
価となっており、更に反射鏡が大きくなる程この傾向は
顕著になっていた。また使用中の反射率の劣化及び取扱
い時の破損等の際は新品と交換しなければならなかった
(Problem to be solved by the invention) Conventionally, manufacturing of this type of reflecting mirror requires processing of the base material, especially surface accuracy of the reflecting surface, so polishing is performed and then surface coating is performed in a batch method. is applied. Therefore, it takes a long time to manufacture and is expensive, and this tendency becomes more pronounced as the reflecting mirror becomes larger. In addition, if the reflectance deteriorates during use or is damaged during handling, it must be replaced with a new one.

更に第11図に示すような宇宙の太陽光集光器用反射鏡
は、ガス加圧供給、排気機能部を含むシール機能が支持
材30には必要であるため、支持材の構造が複雑となり
、かつ軌道上でガスの加圧封入及び樹脂硬化後のガス抜
き作業が必要となる。またガスボンベ、減圧弁等の組立
て、補助機器も地上より輸送する必要があり、打上げ時
の軽量化、収納性が不十分であった。
Furthermore, in the reflecting mirror for a space solar concentrator as shown in FIG. 11, the supporting member 30 requires a sealing function including gas pressurization supply and exhaust functions, so the structure of the supporting member is complicated. In addition, it is necessary to pressurize the gas in orbit and degas it after the resin has hardened. Additionally, gas cylinders, pressure reducing valves, and other assemblies and auxiliary equipment had to be transported from the ground, making it difficult to reduce the weight and store the space during launch.

本発明はAI、Ag等の反射率の大きい金属材料を蒸着
等した反射フィルムを用いることにより、前記従来の課
題を解決し得る反射鏡を提供せんとするものである。
The present invention aims to provide a reflective mirror that can solve the above-mentioned conventional problems by using a reflective film in which a metal material with a high reflectance such as AI or Ag is vapor-deposited.

(課題を解決するための手段) このため本発明は、A7. Ag等の反射率の大きい金
属薄膜をプラスチックフィルム上に1着、スパッタリン
グ、貼付は等で形成した反射フィルムをリング状又はデ
ィスク状部材に取付けてなるもので、これを課題解決の
ための手段とするものである。
(Means for solving the problem) Therefore, the present invention provides A7. This is a reflective film formed by sputtering, pasting, etc., on a plastic film with a metal thin film with a high reflectance such as Ag, and attached to a ring-shaped or disk-shaped member.This is a means to solve the problem. It is something to do.

また本発明は前記反射フィルムと、これと重ねられる透
明プラスチックフィルムとをシール部材を介してリング
状部材に取付け、この間に大気圧程度の気体を封入して
なるもので、これを課題解決のための手段とするもので
ある。
In addition, the present invention is made by attaching the reflective film and a transparent plastic film to be overlapped with the reflective film to a ring-shaped member via a sealing member, and filling the gap with gas at about atmospheric pressure. It is intended as a means of

(作用) 反射フィルムが挾持されることにより、反射フィルム全
面に均一な張力が付加されるため、反射フィルムはリン
グ状又はディスク状部材面で平面になる。
(Function) By sandwiching the reflective film, uniform tension is applied to the entire surface of the reflective film, so that the reflective film becomes flat on the surface of the ring-shaped or disk-shaped member.

更に大気圧中での挟持作業により形成された反射鏡の2
枚のフィルム間には、大気圧程度の気体が封入されるた
め、これを真空の宇宙空間にさらすと、内外の圧力差に
より前記2枚のフィルムはそれぞれ外側に膨らみ、透明
フィルム側から見ると薄膜を形成するフィルムは凹面状
になる。
Furthermore, two of the reflecting mirrors formed by the clamping operation under atmospheric pressure.
Gas at about atmospheric pressure is sealed between the two films, so when this is exposed to the vacuum of space, the two films swell outward due to the pressure difference between the inside and outside, and when viewed from the transparent film side, The film forming the thin film has a concave shape.

(実施例) 以下本発明を図面の実施例について説明すると、第1図
〜第8図は本発明の実施例を示す。
(Embodiments) The present invention will be described below with reference to embodiments of the drawings. FIGS. 1 to 8 show embodiments of the present invention.

先ず第1図〜第3図の第1実施例について説明すると、
1は薄いフィルムで片面にアルミ蒸着1aが施されてい
る。2,3はフィルム1の張力付加及び張力付加状態で
固定するリング状部材で、両リング状部材2.3の合せ
部分では一方が凸状、他方が凹状で、外周部の方が内周
部に比べて凹凸量が太き(、また両リング状部材2.3
の外周部には固定用のツバ3aが設けである。
First, the first embodiment shown in FIGS. 1 to 3 will be explained.
1 is a thin film with aluminum vapor deposition 1a applied on one side. 2 and 3 are ring-shaped members that apply tension to the film 1 and fix it in the tension-applied state, and in the mating portion of both ring-shaped members 2 and 3, one is convex and the other is concave, and the outer circumference is closer to the inner circumference. The amount of unevenness is thicker than that of (and both ring-shaped members 2.3
A fixing collar 3a is provided on the outer periphery of the holder.

更に詳細に説明すると、リング状部材2.3には第2図
及び第3図に示す如く外周部に等角で4個所、それぞれ
対応する位置に固定用ツバ3 a +30を有し、同固
定用ツバ3aには一方の固定用ツバ3cとの位置決めを
行うためのガイド部3a′が設けられている。そして組
立てに際しては、リング状部材3の上にアルミ蒸着1a
されたフィルム1を載せ、リング状部材2をガイド部3
a′と固定用ツバ3cでガイドさせながら、リング状部
材3に押込み、フィルム1を若干押込んだ時点で固定用
ボルト4を取付け、更にこのボルト4を締め込むことに
より、フィルム1に任意の張力を付加すると共に保持し
、フィルム1の平面度を維持する。
More specifically, as shown in FIGS. 2 and 3, the ring-shaped member 2.3 has four fixing flanges 3a+30 at corresponding positions on the outer periphery at equal angles. The collar 3a is provided with a guide portion 3a' for positioning with one of the fixing collars 3c. When assembling, aluminum vapor deposition 1a is applied on the ring-shaped member 3.
Place the film 1 that has been
a' and the fixing collar 3c, push it into the ring-shaped member 3, and when the film 1 is pushed in a little, attach the fixing bolt 4, and further tighten this bolt 4 to attach the desired shape to the film 1. Tension is applied and maintained to maintain the flatness of the film 1.

次に作用を説明する。リング状部材2の下面がフィルム
1に接して押込みが開始されると、フィルム1は先ず両
リング状部材2,3の外周側の凹凸部により折り曲げら
れながら押込まれ、次に内周側の凹凸部によりフィルム
1はリング状部材2の凸部へ接触面を保ちながら押し込
まれ、フィルム1にはリング状部材3の内周側口量分の
張力が全周にわたって付加される。リング状部材2,3
が完全に押し込まれると、リング状部材固定用ツバ3a
と3Cをボルト4により固定し、フィルム1に働く張力
を保ち、フィルム1の平面度を維持する。
Next, the effect will be explained. When the lower surface of the ring-shaped member 2 comes into contact with the film 1 and pushing starts, the film 1 is first bent and pushed in by the uneven parts on the outer circumferential side of both ring-shaped members 2 and 3, and then the film 1 is pushed in by the uneven parts on the inner circumferential side. The film 1 is pushed into the convex portion of the ring-shaped member 2 while maintaining the contact surface, and a tension equal to the amount of the inner peripheral side of the ring-shaped member 3 is applied to the film 1 over the entire circumference. Ring-shaped members 2, 3
When it is completely pushed in, the ring-shaped member fixing collar 3a
and 3C are fixed with bolts 4 to maintain the tension acting on the film 1 and maintain the flatness of the film 1.

次に第4図及び第5図について本発明の第2実施例を説
明すると、1は薄いフィルムで、片面にアルミ蒸着1a
が施されている。また8は透明フィルム、9,10はリ
ング状部材、6は0リングであり、同リング状部材9.
10は共にリング外周部にアーム9a、10aを有し、
ヒンジで接続されており、同アーム9a、10aに対向
する外周部にはリング状部材9.10を固定するクラン
プ部9b、10bを有している。また両リング状部材9
,10間には0リング6によるシールが可能なようにリ
ング状部材10に溝を設けている。
Next, a second embodiment of the present invention will be explained with reference to FIGS.
is applied. Further, 8 is a transparent film, 9 and 10 are ring-shaped members, 6 is an O-ring, and the same ring-shaped member 9.
10 both have arms 9a and 10a on the outer periphery of the ring,
It is connected by a hinge, and has clamp parts 9b and 10b on the outer periphery facing the arms 9a and 10a for fixing ring-shaped members 9 and 10. Also, both ring-shaped members 9
, 10, a groove is provided in the ring-shaped member 10 so that a seal can be formed by an O-ring 6.

次に組立てに際しては、先ずリング状部材9を開き、リ
ング状部材10上にアルミ蒸着1aLだフィルム1を置
き、次にリング状部材10の0リング溝位置に合せてO
リング6をアルミ蒸着フィルム1上に置き、透明フィル
ム8を更に0リング6の上に置いてリング状部材9を閉
じ、リング状部材10と固定する。そしてこの作業を宇
宙ステーション等の大気圧程度の状況下で行うことによ
り、アルミ蒸着1aされたフィルム1と透明フィルム8
間には、大気圧程度の気体がOリング6で封じ込められ
る。この組立てられた反射鏡を集光器設置場所の高真空
状態の宇宙空間に持ち出すと、フィルム1,8間の気体
と宇宙空間との圧力差により、各フィルムは第4図の2
点鎖線で示すように、宇宙空間に向けて膨らみ、凹面鏡
ができる。
Next, when assembling, first open the ring-shaped member 9, place the aluminum vapor-deposited 1aL film 1 on the ring-shaped member 10, and then align it with the O-ring groove position of the ring-shaped member 10.
The ring 6 is placed on the aluminum vapor-deposited film 1, the transparent film 8 is further placed on the O-ring 6, the ring-shaped member 9 is closed, and the ring-shaped member 10 is fixed. Then, by performing this work under atmospheric pressure conditions such as on a space station, the aluminum vapor-deposited film 1 and the transparent film 8 are combined.
In between, gas at about atmospheric pressure is sealed by an O-ring 6. When this assembled reflector is taken out to outer space where the condenser is installed in a high vacuum state, each film is moved to
As shown by the dotted chain line, it bulges out into space, creating a concave mirror.

次に第6図〜第8図は本発明の第3実施例を示し、第2
実施例に対し、組立ての容易化と高精度化を図ったもの
である。この第3実施例において第2実施例と構成上具
なる点は、リング状部材1112.13の如く3個とし
、中央のリング状部材12は上下とも0リング6用の溝
を有し、この0リング用溝部が上下のリング状部材11
゜13に入り込むよう突出14させである点である。
Next, FIGS. 6 to 8 show a third embodiment of the present invention, and a second embodiment of the present invention is shown in FIGS.
This embodiment is designed to simplify assembly and improve precision compared to the embodiment. This third embodiment differs in structure from the second embodiment in that there are three ring-shaped members 1112 and 13, and the central ring-shaped member 12 has grooves for the O-ring 6 on both the upper and lower sides. Ring-shaped member 11 with upper and lower O-ring grooves
The point is that the protrusion 14 is inserted so as to enter the angle 13 degrees.

また第7図で見られるように、上下のリング状部材11
.13の外周部はくさび状15とし、これに対応するく
さび状の半割れクランプ用リング7により固定、締め付
けをするようにした点である。そしてこれらにより2枚
のフィルム1.8が単独に取付けられ、また中央のリン
グ状部材12の上下のリング状部材11.13への突出
14部により、フィルム1.8に張力を付与することが
でき、フィルム面の均一化を図ることができる。また上
下のリング状部材11.13のほぼ全周をリング7でク
ランプでき、シール性及びフィルム面精度が向上できる
。なお、lla、 12aはそれぞれヒンジで接続され
たアームである。
Also, as seen in FIG. 7, the upper and lower ring-shaped members 11
.. The outer periphery of 13 is wedge-shaped 15, and is fixed and tightened by a corresponding wedge-shaped half-split clamp ring 7. With these, the two films 1.8 are individually attached, and tension can be applied to the film 1.8 by the projections 14 of the central ring-shaped member 12 to the upper and lower ring-shaped members 11.13. This makes it possible to make the film surface uniform. Further, almost the entire circumference of the upper and lower ring-shaped members 11 and 13 can be clamped by the ring 7, and sealing performance and film surface accuracy can be improved. Note that lla and 12a are arms connected by hinges.

集光器では反射鏡24で反射した光が受熱部内に入射す
ればよいため、第9図に示すように、反射鏡24の曲率
は一定でなくても所定の範囲内であれば良い。つまり製
作時には受熱器26の受熱部分に反射光32が入射する
最大の曲率(第9図実線)とし、内部ガスが若干リーク
しても図中点線で示す曲率までは良好な集光性を保つこ
とができるようになっている。
In the condenser, the light reflected by the reflecting mirror 24 only needs to enter the heat receiving section, so the curvature of the reflecting mirror 24 does not need to be constant as long as it is within a predetermined range, as shown in FIG. In other words, during manufacturing, the maximum curvature (solid line in Figure 9) at which the reflected light 32 enters the heat receiving part of the heat receiver 26 is selected, and even if the internal gas leaks a little, good light convergence is maintained up to the curvature shown by the dotted line in the figure. It is now possible to do so.

そこで本発明では、このシール性を良くするために、第
6図〜第8図に示すように、フィルム1及び8を固定す
る際に均一に張力を付加することにより、フィルム1,
8のシール面のシワの発生を防ぐと共に平面化させ、ま
た上下のリング状部材11.13の外周部をくさび状1
5とし、これに対応するくさび状の半割れクランプ用リ
ング7で上下のリング状部材11.13の全周を均一に
締め込めるようにしたことにより、Oリング6の変形を
均一化することができる。
Therefore, in the present invention, in order to improve this sealing property, as shown in FIGS. 6 to 8, tension is applied uniformly when fixing the films 1 and 8.
8 to prevent the occurrence of wrinkles on the sealing surface and flatten the sealing surface.
5, and by making it possible to uniformly tighten the entire circumference of the upper and lower ring-shaped members 11 and 13 with the corresponding wedge-shaped half-split clamp ring 7, the deformation of the O-ring 6 can be made uniform. can.

(発明の効果) 以上の如く本発明は、母材に反射率の大きい金属薄膜を
蒸着等で形成したプラスチックフィルムを用いるように
したので、従来の反射鏡のように荒加工、研磨加工の必
要はなく、直接反射面に製膜でき、構造も簡単であるた
め安価に得られ、かつ短納期に鏡面が得られる。また反
射フィルムを取付けるリング状部材は一度製作すれば長
年にわたって使用でき、使用時の反射率の劣化、又は鏡
面の損傷等が生じた際には製膜されたフィルムを取り替
えるだけでよく、非常にメンテナンス性が良い。特に宇
宙用太陽光集光器の反射鏡のように、無重力状態におい
ては外力の作用もなく、常に平面度が保たれ、かつロケ
ットやシャトルへの収納も非常にコンパクトとなるため
、本発明の反射鏡は極めて有効である。
(Effects of the Invention) As described above, the present invention uses a plastic film in which a metal thin film with a high reflectance is formed by vapor deposition on the base material, so rough processing and polishing are not required unlike conventional reflecting mirrors. The film can be directly formed on the reflective surface, the structure is simple, it can be obtained at low cost, and a mirror surface can be obtained in a short delivery time. In addition, once the ring-shaped member to which the reflective film is attached can be manufactured, it can be used for many years, and if the reflectance deteriorates during use or the mirror surface is damaged, all you need to do is replace the film. Easy to maintain. In particular, like the reflector of a space solar concentrator, in zero gravity there is no external force, flatness is always maintained, and the present invention can be stored very compactly in a rocket or shuttle. Reflectors are extremely effective.

また本発明は、反射鏡に用いた反射フィルムと透明フィ
ルムとの間に気体を封じ込めるだけで、宇宙空間との差
圧により簡単に所定の曲率半径の凹面状の反射鏡を高精
度、かつコンパクトに製作できる。また反射鏡の組立て
時や使用時において、何らかの飛翔体等による損傷が生
じた場合には、フィルムを張り替えるだけで簡単に、し
かも安価に修復できる。また宇宙太陽光集光器用反射鏡
として用いる場合の打上げ時には、反射フィルムと透明
フィルムの2種のフィルムはそれぞれロール状とするこ
とで、衝撃力にも耐え、反射鏡組立て用リング状部材の
内側にフィルムロールを収納することにより、コンパク
トに収納が可能となる。
In addition, the present invention can easily create a concave reflector with a predetermined radius of curvature with high precision and compactness by simply sealing gas between the reflective film and the transparent film used in the reflector, and by using the differential pressure with outer space. can be manufactured. Furthermore, if the reflector is damaged by a flying object or the like during assembly or use, it can be easily and inexpensively repaired by simply replacing the film. In addition, during launch when used as a reflector for a space solar concentrator, the two types of films, the reflective film and the transparent film, are rolled into rolls to withstand impact forces and to be placed inside the ring-shaped member for assembling the reflector. By storing the film roll in, compact storage becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る反射鏡の側断面図、
第2図は同平面図、第3図は第2回のA−A拡大断面図
、第4図は本発明の第2実施例に係る反射鏡の側断面図
、第5図は第4図のB−B断面図、第6図は本発明の第
3実施例に係る反射鏡の側断面図、第7図は第6図のC
〜C断面図、第8図は第6図のD−D矢視図、第9図は
反射鏡の曲率の説明図、第10図は従来の反射鏡の1例
を示す側断面図、第11図は従来の宇宙太陽光集光器用
反射鏡の側断面図、第12図は同反射鏡を集合させた太
陽光集光器の斜視図である。 図の主要部分の説明 フィルム アルミ蒸着 9、10. lL12.13 0リング 透明フィルム リング状部材 第2ヌ 第9図 第11図 第12図
FIG. 1 is a side sectional view of a reflecting mirror according to a first embodiment of the present invention;
2 is a plan view of the same, FIG. 3 is a second enlarged sectional view taken along line A-A, FIG. 4 is a side sectional view of a reflecting mirror according to a second embodiment of the present invention, and FIG. 6 is a side sectional view of a reflecting mirror according to the third embodiment of the present invention, and FIG. 7 is a sectional view taken along line C in FIG. 6.
~C sectional view, FIG. 8 is a view taken along the line D-D in FIG. 6, FIG. 9 is an explanatory diagram of the curvature of the reflecting mirror, and FIG. FIG. 11 is a side sectional view of a conventional reflecting mirror for a space solar concentrator, and FIG. 12 is a perspective view of a solar concentrator in which the same reflecting mirrors are assembled. Description of main parts of the figure Film aluminum vapor deposition 9, 10. lL12.13 0-ring Transparent film ring-shaped member 2nd page Figure 9 Figure 11 Figure 12

Claims (2)

【特許請求の範囲】[Claims] (1)Al、Ag等の反射率の大きい金属薄膜をプラス
チックフィルム上に蒸着、スパッタリング、貼付け等で
形成した反射フィルムをリング状又はディスク状部材に
取付けたことを特徴とする反射鏡。
(1) A reflective mirror characterized in that a reflective film formed by depositing, sputtering, pasting, etc. a thin metal film of high reflectance such as Al or Ag on a plastic film is attached to a ring-shaped or disk-shaped member.
(2)請求項1記載の反射鏡において、前記反射フィル
ムと、これと重ねられる透明プラスチックフィルムとを
シール部材を介してリング状部材に取付け、同両フィル
ム間に大気圧程度の気体を封入したことを特徴とする反
射鏡。
(2) In the reflective mirror according to claim 1, the reflective film and a transparent plastic film overlaid thereon are attached to a ring-shaped member via a sealing member, and gas at about atmospheric pressure is sealed between the two films. A reflective mirror characterized by:
JP9386690A 1990-04-11 1990-04-11 Reflecting mirror Pending JPH03293301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9386690A JPH03293301A (en) 1990-04-11 1990-04-11 Reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9386690A JPH03293301A (en) 1990-04-11 1990-04-11 Reflecting mirror

Publications (1)

Publication Number Publication Date
JPH03293301A true JPH03293301A (en) 1991-12-25

Family

ID=14094372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9386690A Pending JPH03293301A (en) 1990-04-11 1990-04-11 Reflecting mirror

Country Status (1)

Country Link
JP (1) JPH03293301A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057551A1 (en) * 2007-11-02 2009-05-07 Konica Minolta Opto, Inc. Optical element
WO2014122991A1 (en) 2013-02-05 2014-08-14 富士フイルム株式会社 Reflecting mirror for solar light collection
WO2014129290A1 (en) 2013-02-21 2014-08-28 富士フイルム株式会社 Sunlight-collecting reflective mirror
JP2018136373A (en) * 2017-02-20 2018-08-30 徹 奥田 Reflector and holding tool used therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654401A (en) * 1979-09-25 1981-05-14 Bertrand Reymont Sunbeam collecting device having parabolic reflective surface element
JPS60150006A (en) * 1984-01-17 1985-08-07 Mitsui Toatsu Chem Inc Light condenser
JPS61159613A (en) * 1985-01-07 1986-07-19 Kokuritsu Kogai Kenkyusho Reflecting curved mirror

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654401A (en) * 1979-09-25 1981-05-14 Bertrand Reymont Sunbeam collecting device having parabolic reflective surface element
JPS60150006A (en) * 1984-01-17 1985-08-07 Mitsui Toatsu Chem Inc Light condenser
JPS61159613A (en) * 1985-01-07 1986-07-19 Kokuritsu Kogai Kenkyusho Reflecting curved mirror

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057551A1 (en) * 2007-11-02 2009-05-07 Konica Minolta Opto, Inc. Optical element
JPWO2009057551A1 (en) * 2007-11-02 2011-03-10 コニカミノルタオプト株式会社 Optical element
US8477413B2 (en) 2007-11-02 2013-07-02 Konica Minolta Opto, Inc. Optical element
WO2014122991A1 (en) 2013-02-05 2014-08-14 富士フイルム株式会社 Reflecting mirror for solar light collection
WO2014129290A1 (en) 2013-02-21 2014-08-28 富士フイルム株式会社 Sunlight-collecting reflective mirror
JP2018136373A (en) * 2017-02-20 2018-08-30 徹 奥田 Reflector and holding tool used therefor

Similar Documents

Publication Publication Date Title
US4035065A (en) Lightweight reflector assembly
US4487196A (en) Focusing solar collector and method for manufacturing same
US9006560B2 (en) Solar receiver
US4033676A (en) Pressure-shaped reflector apparatus
US4635071A (en) Electromagnetic radiation reflector structure
US5956191A (en) Light weight reflector facet
US4553531A (en) Solar radiation collector
FR2689091A1 (en) Self=supporting vaulted and collapsible panel - made from thin layer of plastic, e.g. with metallised surface, tensioned by thin elastic metal slats, e.g. of beryllium-copper alloy
JPH03293301A (en) Reflecting mirror
US5751503A (en) Light-weight reflector facet
US20150184895A1 (en) Solar receiver
US4483323A (en) Tensioning device for a stretched membrane collector
Vukobratovich et al. Optimum shapes for lightweighted mirrors
US5237337A (en) Method and apparatus for manufacturing and erecting concave metallic membrane type reflectors
WO2015095424A1 (en) Solar receiver
US20050037224A1 (en) Curved surfaces, particularly reflectors, and methods of forming same
Archer High-performance parabolic antenna reflectors
CN104570176A (en) Inflatable membrane reflector, and assembly tool and assembly method thereof
Murphy Technical and cost benefits of lightweight, stretched-membrane heliostats
JPH07209508A (en) Reflecting mirror for cosmic beam-condensing unit and production thereof
JPH01220902A (en) Structure of antenna
Piszczor et al. An update on the development of a line-focus refractive concentrator array
JPS60150006A (en) Light condenser
Romanofsky Optical Array versus monolithic telescope ground station cost assessment
JP2942158B2 (en) Lightweight double-sided mirror