JPH03292578A - Fingerprint reading device - Google Patents

Fingerprint reading device

Info

Publication number
JPH03292578A
JPH03292578A JP2096697A JP9669790A JPH03292578A JP H03292578 A JPH03292578 A JP H03292578A JP 2096697 A JP2096697 A JP 2096697A JP 9669790 A JP9669790 A JP 9669790A JP H03292578 A JPH03292578 A JP H03292578A
Authority
JP
Japan
Prior art keywords
fingerprint
fingerprint detection
lens
light
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2096697A
Other languages
Japanese (ja)
Inventor
Koji Kawasaki
川崎 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2096697A priority Critical patent/JPH03292578A/en
Publication of JPH03292578A publication Critical patent/JPH03292578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)

Abstract

PURPOSE:To obtain a fingerprint picture faithful to an actual fingerprint by providing an optical correcting member to correct a component parallel to the optical axis of the whole optical path length from a fingerprint detecting plane to the main point of a lens so as to be approximately equal to the optical path length on the optical axis between a fingerprint detecting member and the lens. CONSTITUTION:A correcting prism 8 makes all the light reflected at the any spot of a fingerprint detecting plane 2 trace equal distance and reach a main point K of the front side of a lens 11. All the light reflected at the fingerprint plane 2 reaches the main point K of the lens 11 with equal optical path length with passing through the correcting prism 8. Accordingly, actual fingerprints on the fingerprint detecting plane 2 are image-formed as a fingerprint picture on a CCD light receiving plane 12 at an equal magnification without relation with parts and the generation of magnification difference in the fingerprint picture is prevented. Thus, the fingerprint picture faithful to the actual fingerprints can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は指紋読取装置に係り、詳しくはクレジットカ
ード等において登録者を識別するためにその指紋を指紋
画像として読み取る指紋読取装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fingerprint reading device, and more specifically, to a fingerprint reading device that reads a fingerprint as a fingerprint image in order to identify a registrant on a credit card or the like. .

〔従来の技術〕[Conventional technology]

従来の指紋読取装置としては実開昭63−99960号
公報に記載のものがある。第13図に示すように、この
指紋読取装置は三角柱状の指紋検出プリズム21の1平
面を指紋検出面22とし、その指紋検出面22の裏面に
図示しない光源から光を所定角度で入射させ、反射され
た光を、指紋検出面22に対し傾けて配置したレンズ2
3を介してCCD受光面24上に結像させるようになっ
ている。
A conventional fingerprint reading device is described in Japanese Utility Model Application No. 63-99960. As shown in FIG. 13, this fingerprint reading device uses one plane of a triangular prism-shaped fingerprint detection prism 21 as a fingerprint detection surface 22, and allows light to be incident on the back surface of the fingerprint detection surface 22 at a predetermined angle from a light source (not shown). A lens 2 arranged to tilt the reflected light with respect to the fingerprint detection surface 22
3, the image is formed on the CCD light receiving surface 24.

そして、上記した指紋検出面22に指先を接触させると
、指紋の凸部のみが指紋検出面22に密着し、凹部と指
紋検出面22との間には空気が介在する。その結果、指
紋検出面22の裏面に入射した光は空気が介在している
箇所のみが全反射して、前記CCD受光面24上に指紋
画像として結像する。そして、このようにして得られた
指紋画像を予め記憶された指紋画像とパターンマツチン
グし、一致するか否か(本人か否か)を判定している。
Then, when a fingertip is brought into contact with the fingerprint detection surface 22 described above, only the convex portion of the fingerprint comes into close contact with the fingerprint detection surface 22, and air is interposed between the concave portion and the fingerprint detection surface 22. As a result, the light incident on the back surface of the fingerprint detection surface 22 is totally reflected only at the portion where air is present, and is imaged on the CCD light receiving surface 24 as a fingerprint image. Then, pattern matching is performed on the fingerprint image obtained in this manner with a fingerprint image stored in advance, and it is determined whether or not there is a match (whether or not the fingerprint image is the real person's identity).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記した指紋読取装置においては、指紋
検出面22に対してレンズ23を傾けて配置しているこ
とから、指紋検出面の反射箇所に応じてレンズ23まで
の光路長が変動し、それに伴って指紋画像の倍率が変動
してしまう。即ち、第13図において指紋検出面22の
A点からレンズ23の前側主点Kまでの距離をa、レン
ズ23の後側主点に′からCCD受光面24までの距離
をbとすると、このA点での倍率mは、m = b /
 a となる。
However, in the fingerprint reading device described above, since the lens 23 is arranged at an angle with respect to the fingerprint detection surface 22, the optical path length to the lens 23 varies depending on the reflection location on the fingerprint detection surface. The magnification of the fingerprint image changes. That is, in FIG. 13, if the distance from point A of the fingerprint detection surface 22 to the front principal point K of the lens 23 is a, and the distance from the rear principal point ' of the lens 23 to the CCD light receiving surface 24 is b, then this The magnification m at point A is m = b /
It becomes a.

又、レンズ23の焦点距離をfとすると、レンズの一般
式より、 1/f−(1/a)+ (1/b) 、’、m= f / (a −f ) と表される。
Further, if the focal length of the lens 23 is f, then from the general formula of the lens, it is expressed as 1/f-(1/a)+(1/b),', m=f/(a-f).

又、上記したA点よりレンズ23と反対側(説明の便宜
上、負側とする)にΔSずれた点をB点とし、B点から
レンズ23の前側主点Kまでの距離をao  レンズ2
3の後側主点に′からCCD受光面24までの距離をb
′ とすると、このB点での倍率m°は、 m’ =b’ /a’ =f/ (a’ −f)となり
、ここで、 a’ =a+ΔS cosθであるので、m’=f/(
a+Δ5cosθ−f) となる。
Also, a point shifted by ΔS from the above-mentioned point A to the side opposite to the lens 23 (for convenience of explanation, it is referred to as the negative side) is defined as a point B, and the distance from the point B to the front principal point K of the lens 23 is ao Lens 2
The distance from ' to the rear principal point of 3 to the CCD light receiving surface 24 is b.
', then the magnification m° at point B is m' = b' / a' = f/ (a' - f), where a' = a + ΔS cos θ, so m' = f/ (
a+Δ5cosθ−f).

よって、A点での倍率mに対しB点での倍率mは小さく
なる。そして、このような倍率差が生じると、指紋登録
時と指紋照合時の検出位置が異なる場合、例えば、A点
で指紋を登録しB点で指紋を照合した場合等には、パタ
ーンマツチングの際に一致する画素数が減少して照合率
が低下してしまう。その結果、同一指紋であるにも拘ら
ず異なる指紋であると判定される虞がある。
Therefore, the magnification m at point B is smaller than the magnification m at point A. When such a difference in magnification occurs, if the detection positions at the time of fingerprint registration and fingerprint comparison are different, for example, when a fingerprint is registered at point A and compared at point B, pattern matching will be affected. In this case, the number of matching pixels decreases and the matching rate decreases. As a result, there is a possibility that even though the fingerprints are the same, they may be determined to be different fingerprints.

本発明の目的は、倍率差の発生を防止して実際の指紋に
忠実な指紋画像を得ることができる指紋読取装置を提供
することにある。
An object of the present invention is to provide a fingerprint reading device that can prevent magnification differences and obtain a fingerprint image that is faithful to an actual fingerprint.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、透明なる指紋検出部材に指紋検出面を形成し
、同指紋検出面上に指先を接触させた状態で指紋検出面
の裏面に光源から光を照射し、同指紋検出面から反射さ
れた光をレンズを介して撮像素子上に指紋画像として結
像させてなる指紋読取装置において、前記指紋検出部材
とレンズとの間に、前記指紋検出面からレンズの主点ま
での全ての光路長の光軸に平行な成分を同光軸上の光路
長とほぼ等しくなるように補正する光学補正部材を配設
した指紋読取装置を要旨とするものである。
The present invention forms a fingerprint detection surface on a transparent fingerprint detection member, irradiates light from a light source to the back side of the fingerprint detection surface with the fingertip in contact with the fingerprint detection surface, and reflects light from the fingerprint detection surface. In a fingerprint reading device in which light is formed as a fingerprint image on an image sensor through a lens, the entire optical path length from the fingerprint detection surface to the principal point of the lens is provided between the fingerprint detection member and the lens. The gist of the fingerprint reading device is to provide an optical correction member that corrects the component parallel to the optical axis of the optical axis so that it is approximately equal to the optical path length on the same optical axis.

〔作用〕[Effect]

指紋検出面上に指先を接触させてその指紋検出面の裏面
に光源から光を照射すると、その光は指紋検出面に反射
され光学補正部材にて屈折された後に、レンズを介して
撮像素子上に結像する。このとき指紋検出面の指紋が密
着していない箇所のみが光を全反射することから、撮像
素子上には指紋の凹凸に応じた指紋画像が結像する。
When a fingertip is brought into contact with the fingerprint detection surface and light is irradiated from a light source to the back side of the fingerprint detection surface, the light is reflected by the fingerprint detection surface, refracted by the optical correction member, and then directed onto the image sensor through the lens. image is formed. At this time, only the portions of the fingerprint detection surface where the fingerprint is not in close contact totally reflect the light, so that a fingerprint image corresponding to the unevenness of the fingerprint is formed on the image sensor.

上記したように指紋検出面で反射された光は光学補正部
材にて屈折され、レンズの主点に到達するまでの光路長
の光軸に平行な成分は同光軸上の光路長にほぼ等しくな
るように補正される。従って、指紋検出面上の実際の指
紋は、その部位に関係なく全て等しい倍率で撮像素子上
に指紋画像として結像し、指紋画像中の倍率差の発生が
防止される。
As mentioned above, the light reflected on the fingerprint detection surface is refracted by the optical correction member, and the component of the optical path length parallel to the optical axis until reaching the principal point of the lens is approximately equal to the optical path length on the same optical axis. It will be corrected so that Therefore, all actual fingerprints on the fingerprint detection surface are imaged as fingerprint images on the image sensor at the same magnification regardless of their locations, and magnification differences in the fingerprint images are prevented from occurring.

〔実施例〕〔Example〕

以下、この発明を具体化した一実施例を第1〜12図に
従って説明する。
An embodiment embodying the present invention will be described below with reference to FIGS. 1 to 12.

第1図は本実施例の指紋読取装置の概略的な構成を示す
図である。この図に示すように、本実施例の指紋読取装
置は三角柱状をなす指紋検出部材としての指紋検出プリ
ズム1の1平面を指紋検出面2としている。又、指紋検
出プリズム1の指紋検出面2以外の2平面を受光面3及
び投光面4とし、受光面3には半透明状の拡散板5が当
接するように配設されている。又、拡散板5には所定間
隔をおいて光源7が対向配置され、この光源7は縦方向
と横方向に整列した多数のLED6によって構成されて
いる。本実施例の指紋読取装置においては、前記拡散板
5の厚みが指紋検出面2に近い側はど厚く設定されてい
る。
FIG. 1 is a diagram showing a schematic configuration of a fingerprint reading device of this embodiment. As shown in this figure, in the fingerprint reading device of this embodiment, one plane of a fingerprint detection prism 1 as a triangular prism-shaped fingerprint detection member is used as a fingerprint detection surface 2. Further, two planes of the fingerprint detection prism 1 other than the fingerprint detection surface 2 are used as a light receiving surface 3 and a light projecting surface 4, and a translucent diffuser plate 5 is arranged so as to be in contact with the light receiving surface 3. Further, a light source 7 is arranged facing the diffuser plate 5 at a predetermined interval, and the light source 7 is constituted by a large number of LEDs 6 arranged in the vertical and horizontal directions. In the fingerprint reading device of this embodiment, the thickness of the diffusion plate 5 is set to be thicker on the side closer to the fingerprint detection surface 2.

又、指紋検出プリズム1の投光面4側には三角柱状をな
す光学補正部材としての補正プリズム8の1頂点が当接
している。補正プリズム8は、その当接した頂点の片側
の平面を受光面9とするとともに、頂点と相対向する平
面を投光面10としている。補正プリズム8の投光面I
Oには所定間隔をおいて相対向するようにレンズ11が
配設され、レンズ11の反対側には撮像素子としてのC
CD素子の受光面12が配設されている。
Further, one vertex of a correction prism 8 serving as a triangular prism-shaped optical correction member is in contact with the light projection surface 4 side of the fingerprint detection prism 1. The correction prism 8 has a light-receiving surface 9 as a plane on one side of the apex with which it abuts, and a light-projecting surface 10 as a plane facing the apex. Light projection surface I of correction prism 8
A lens 11 is disposed at O so as to face each other at a predetermined interval, and on the opposite side of lens 11 is C as an image sensor.
A light receiving surface 12 of the CD element is provided.

そして、光源7のLED6から照射される光は拡散板5
にて拡散された後に、指紋検出プリズム1内に採り入れ
られて指紋検出面2に入射する。
The light emitted from the LED 6 of the light source 7 is transmitted to the diffuser plate 5.
After being diffused in the fingerprint detection prism 1, the light is introduced into the fingerprint detection surface 2.

さらに、その光は指紋検出面2の裏面で反射されて指紋
検出プリズム1の外部に導かれ、補正プリズム8内に採
り入れられて屈折した後に、レンズ11を介してCCD
受光面12上に結像される。
Furthermore, the light is reflected on the back surface of the fingerprint detection surface 2 and guided to the outside of the fingerprint detection prism 1, and then introduced into the correction prism 8 and refracted, and then transmitted through the lens 11 to the CCD.
An image is formed on the light receiving surface 12.

上記した補正プリズム8は、指紋検出面2のいずれの箇
所で反射された光でも全て等しい距離(以下、光路長と
いう)を辿ってレンズ11の前側の主点Kに到達させる
ためのものである。但し、ここで言う光路長はレンズ1
1の中心を通過する光軸Xに平行な成分の総和を指す。
The above-mentioned correction prism 8 is for making all the light reflected from any part of the fingerprint detection surface 2 follow the same distance (hereinafter referred to as optical path length) to reach the principal point K on the front side of the lens 11. . However, the optical path length mentioned here is lens 1.
1 refers to the sum of components parallel to the optical axis X passing through the center of the optical axis.

即ち、光軸X上を通過する光については指紋検出面2か
らレンズ11の前側主点Kまでの実際の光路長が適用さ
れ、光軸X以外を通過する光についてはその先軸Xに対
して平行な成分の総和が光路長として適用される。換言
すれば、指紋検出面2で反射された全ての光が等しい光
路長でレンズ11の主点Kに到達するように、補正プリ
ズム8の形状や姿勢等が設定されている。
In other words, the actual optical path length from the fingerprint detection surface 2 to the front principal point K of the lens 11 is applied to the light passing on the optical axis The sum of the parallel components is applied as the optical path length. In other words, the shape, posture, etc. of the correction prism 8 are set so that all the light reflected by the fingerprint detection surface 2 reaches the principal point K of the lens 11 with the same optical path length.

次に、このように構成した指紋読取装置の作用を説明す
る。
Next, the operation of the fingerprint reading device configured as described above will be explained.

光源7のLED6から光が照射されると、その光は拡散
板5にて拡散された後に指紋検出プリズムlの指紋検出
面2の裏面側に入射して同指紋検出面2で反射される。
When light is emitted from the LED 6 of the light source 7, the light is diffused by the diffusion plate 5, enters the back side of the fingerprint detection surface 2 of the fingerprint detection prism l, and is reflected by the fingerprint detection surface 2.

さらに、その光は補正プリズム8内を通過して屈折した
後に、レンズ11を介してCCD受光面12上に結像さ
れる。
Furthermore, after passing through the correction prism 8 and being refracted, the light is imaged on the CCD light receiving surface 12 via the lens 11.

従って、指紋検出面2に指先13を当接させると指紋の
凸部のみが指紋検出面2に密着し、凹部と指紋検出面2
との間には空気が介在する。その結果、指紋検出面2の
裏面に入射した光は空気が介在している箇所のみが全反
射し、その光はレンズ11を介してCCD受光面12に
指紋画像として結像する。そして、このCCD受光面1
2と接続された処理装置14により得られた指紋画像を
予め登録された指紋画像とパターンマツチングし、一致
するか否か(本人か否か)を判定することができる。
Therefore, when the fingertip 13 is brought into contact with the fingerprint detection surface 2, only the convex portions of the fingerprint come into close contact with the fingerprint detection surface 2, and the concave portions and the fingerprint detection surface 2
There is air between them. As a result, the light incident on the back surface of the fingerprint detection surface 2 is totally reflected only at the portion where there is air, and the light is imaged on the CCD light receiving surface 12 via the lens 11 as a fingerprint image. And this CCD light receiving surface 1
The fingerprint image obtained by the processing device 14 connected to 2 can be pattern-matched with a fingerprint image registered in advance, and it can be determined whether there is a match (whether the fingerprint image is the real person's identity).

又、上記したように指紋検出面2で反射された全ての光
は、補正プリズム8を通過することで等しい光路長でレ
ンズ11の主点Kに到達する。従って、指紋検出面2上
の実際の指紋は、その部位に関係な(全て等しい倍率で
CCD受光面12上に指紋画像として結像し、指紋画像
中の倍率差の発生が防止される。
Further, as described above, all the light reflected by the fingerprint detection surface 2 passes through the correction prism 8 and reaches the principal point K of the lens 11 with the same optical path length. Therefore, the actual fingerprint on the fingerprint detection surface 2 is imaged as a fingerprint image on the CCD light-receiving surface 12 at the same magnification (all images related to its location), thereby preventing the occurrence of magnification differences in the fingerprint image.

一方、上記したようにLED6からの光は指紋検出面2
の裏面側から斜めに入射することから、指紋検出面2の
光源7に近い箇所はど入射光量が多くなる。しかしなが
ら、本実施例の指紋検出装置においては拡散板5の厚み
が指紋検出面2に近い側はど厚く設定されているため、
指紋検出面2側はど拡散板5の透過率が低くなり指紋検
出面2に到達する光量が制限される。よって、指紋検出
面2に到達する光量は均一化され、その指紋検出面2に
反射されてCCD受光面12に結像する指紋画像の明る
さも均一化される。
On the other hand, as mentioned above, the light from the LED 6 is transmitted to the fingerprint detection surface 2.
Since the light is incident obliquely from the back surface side, the amount of light incident on the fingerprint detection surface 2 near the light source 7 is large. However, in the fingerprint detection device of this embodiment, since the thickness of the diffusion plate 5 is set to be thicker on the side closer to the fingerprint detection surface 2,
On the side of the fingerprint detection surface 2, the transmittance of the diffusion plate 5 becomes low, and the amount of light reaching the fingerprint detection surface 2 is limited. Therefore, the amount of light reaching the fingerprint detection surface 2 is made uniform, and the brightness of the fingerprint image reflected from the fingerprint detection surface 2 and imaged on the CCD light receiving surface 12 is also made uniform.

第11図は本実施例の指紋読取装置によって得られた指
紋画像をパターンマツチングのためにNTSC方式等の
映像信号に変換した状態を示す。
FIG. 11 shows a state in which a fingerprint image obtained by the fingerprint reading device of this embodiment is converted into a video signal of the NTSC system or the like for pattern matching.

又、第12図は平坦な拡散板を用いたり拡散板を用いな
かったりした場合の指紋読取装置による映像信号を示す
。尚、これらの図において横軸は指紋検出面上の位置変
位(例えば、第1図においては左右方向の位置変位)を
示す。
Further, FIG. 12 shows a video signal from a fingerprint reading device when a flat diffuser plate is used or when no diffuser plate is used. In these figures, the horizontal axis indicates positional displacement on the fingerprint detection surface (for example, positional displacement in the left-right direction in FIG. 1).

第12図においては指紋画像の明るさにむらが生じてい
るため、その指紋画像を変換した映像信号に傾きが生じ
る。従って、映像信号を2値化閾値により2値化したと
きに、本来指紋の凹凸を表しているはずの映像信号の一
部(第12図におけるT部分)が消失して忠実な信号を
得ることができない。これに対して本実施例の指紋読取
装置においては指紋画像の明るさが均一なため、その指
紋画像を変換した映像信号も平坦になり、映像信号を2
値化しても指紋の凹凸を表している映像信号の消失が防
止される。
In FIG. 12, since the brightness of the fingerprint image is uneven, the video signal obtained by converting the fingerprint image is tilted. Therefore, when the video signal is binarized using the binarization threshold, a part of the video signal that should originally represent the unevenness of the fingerprint (T part in FIG. 12) disappears, and a faithful signal is obtained. I can't. On the other hand, in the fingerprint reading device of this embodiment, since the brightness of the fingerprint image is uniform, the video signal converted from the fingerprint image is also flat, and the video signal is divided into two.
Even if it is converted into a value, the video signal representing the unevenness of the fingerprint is prevented from disappearing.

次に、本実施例の指紋読取装置の具体的な仕様、例えば
、指紋検出プリズムlと補正プリズム8の形状や相対的
な位置等を決定するための手順を記載する。
Next, a procedure for determining the specific specifications of the fingerprint reading device of this embodiment, such as the shapes and relative positions of the fingerprint detection prism 1 and the correction prism 8, will be described.

まず、指紋検出面2の部位に応じたCOD受光面12上
の指紋画像の倍率を第2図に基づいて計算する。尚、第
2図において指紋検出プリズム1の頂点をA、B、Cと
し、補正プリズム8の頂点をり、E、Fとする。又、指
紋検出面2の中心をG点(0,O)として、このG点を
座標の原点位置(0,O)とする。さらに、G点で反射
される光を光軸Xとし、レンズ11とCCD受光面12
はこの光軸Xに対し垂直に配設されているものとする。
First, the magnification of the fingerprint image on the COD light-receiving surface 12 according to the part of the fingerprint detection surface 2 is calculated based on FIG. In FIG. 2, the vertices of the fingerprint detection prism 1 are designated as A, B, and C, and the vertices of the correction prism 8 are designated as E and F. Further, the center of the fingerprint detection surface 2 is set as point G (0, O), and this point G is set as the origin position of the coordinates (0, O). Furthermore, the light reflected at point G is defined as the optical axis X, and the lens 11 and the CCD light receiving surface 12
is arranged perpendicularly to this optical axis X.

又、指紋検出面2上においてG点より光源側にΔSずれ
た点をQ点とし、G点よりレンズ11側にΔSずれた点
を8点とする。又、AC=BC=L、DE=DF=R,
CD=X、m=中心倍率、NU=CCD受光面12の検
出長/2、指紋検出プリズム1の屈折率=n1、補正プ
リズム8の屈折率=n2とする。さらに、G点での光線
の反射角度を67、Q点での光線の反射角度をθ14+
S点での光線の反射角度をθ1.′ とする。以上の条
件の時、第2図の各点は以下のように表わされる。
Further, on the fingerprint detection surface 2, a point shifted by ΔS toward the light source from point G is defined as point Q, and points shifted by ΔS toward the lens 11 from point G are defined as 8 points. Also, AC=BC=L, DE=DF=R,
CD=X, m=center magnification, NU=detection length of CCD light receiving surface 12/2, refractive index of fingerprint detection prism 1=n1, and refractive index of correction prism 8=n2. Furthermore, the reflection angle of the ray at point G is 67, and the reflection angle of the ray at Q point is θ14+
Let the reflection angle of the ray at point S be θ1. ′. Under the above conditions, each point in FIG. 2 is expressed as follows.

まず、指紋検出プリズム1のG点で反射された光が指紋
検出プリズム1外に出射される位置であるH点の座標を
求めると、 H(Hx、Hy) Hx=Lsinξo/ [tanξ。
First, the coordinates of point H, which is the position where the light reflected at point G of fingerprint detection prism 1 is emitted to the outside of fingerprint detection prism 1, are determined as follows: H(Hx, Hy) Hx=Lsinξo/[tanξ.

+tan(π/2−θ、)) HV −−tan (π/ 2−θ、)Hxとなる。+tan(π/2-θ,)) HV --tan (π/2-θ,)Hx.

又、補正プリズムの頂点り、E、Fの座標は次のように
なる。
Also, the coordinates of the apex, E, and F of the correction prism are as follows.

D (Dx、Dy) D x =Xsin (π/ 2−ξ0)Dy=Xco
s(π/2−ξo)Dx −Lcos(π/2−ξO) E (Ex、Ey) y軸に対するDEの傾き:α α=jan(ξ0−01) DEのy軸との交点:β β=Dy−jan(ξ。−θ、)Dx 求める点E (Ex、Ey)は、 (Ex−Dx)”+ (EV−Dy) 2=R”より、
Ex= [−ν+r丁「−T7丁石 /2 (l+α2) シフ2αβ−2Dx−2αDy δ=Dx2″+β”−2D Vβ+Dy2−R2EV=
αEx+β ここで、補正プリズム8での光線の入射位置である点I
及び出射位置である点Jは次のようになる。
D (Dx, Dy) D x = Xsin (π/ 2-ξ0) Dy = Xco
s(π/2-ξo)Dx -Lcos(π/2-ξO) E (Ex, Ey) Inclination of DE with respect to the y-axis: α α=jan(ξ0-01) Intersection of DE with the y-axis: β β =Dy-jan(ξ.-θ,)Dx The desired point E (Ex, Ey) is, from (Ex-Dx)"+ (EV-Dy) 2=R",
Ex= [-ν+r ding "-T7 ding stone/2 (l+α2) Schiff 2αβ-2Dx-2αDy δ=Dx2"+β"-2D Vβ+Dy2-R2EV=
αEx+β Here, point I which is the incident position of the light beam on the correction prism 8
And point J, which is the emission position, is as follows.

I  (Ix、Iy) θ1−θ、−ξ0 θ2=sin−’ (n 1 sinθ1)1点はDE
とHIの交点であるので、 Iy=jan(ξ0−θ、)Ix+Dy−jan(ξ、
−〇、)Dx 及び、 I V =−jan (π/ 2−θ、−θ2)IX+
Hy+tan(π/2−θ、−θ2)HX の2つの式が成り立つ。よって、 I x = (Hy +tan (π/ 2−θ、−θ
2)HX+Ey+tan(ξ0−θ、) Ex) / 
[tan(ξ0−θ、) +tan (π/2−θ、−
62))I y =−tan (π/ 2−θ、−θ2
)IX+HV+tan(π/2−θ、−θt)Hx J (Jx、Jy) θ3=01+θ2 θ、=3i1−’ (sinθa/n2)μm=π/2
−θ、−θ2+θ3−θ4J点はIJとEJの交点であ
るので、 J V=−jan (μ+) J x+ I y+ja
n (μm) I x 及び1 、Jy=jan(ψ1+ξ。−θ、)Jx+Eytan
 (ψ1+ξ0−θ、)Ex の2式が成り立つ。よって、 J x= [1y+tan (μt) I x−Ey+
tan(ξ。−θ、+ψ+)Ex) / (tan (ξ0−θ、+ψl) +jan(μm)) J y=−tan (μ+) J x+ I y+ j
an (μ+) I X 又、使用レンズ11と中心倍率mから指紋検出面2とレ
ンズ11の前側主点にとの距離(lf)は、1 t= 
f (1+m) / mである。又、両プリズム1,8
内での距離は、空気中の距離のI / n(nはプリズ
ムの屈折率)となるので、JK=Ilで主点には、 K (Kx、Ky) θ5=π−ψ1−ψ2−θ4 θe=sin 1 (n 2 sinθ5)μ2=μm
+θ6−θ。
I (Ix, Iy) θ1-θ, -ξ0 θ2=sin-' (n 1 sinθ1) 1 point is DE
Since it is the intersection of and HI, Iy=jan(ξ0-θ,)Ix+Dy-jan(ξ,
-〇,)Dx and I V =-jan (π/2-θ, -θ2)IX+
The following two equations hold true: Hy+tan(π/2−θ, −θ2)HX. Therefore, I x = (Hy + tan (π/ 2-θ, -θ
2) HX+Ey+tan(ξ0-θ,) Ex) /
[tan (ξ0-θ,) +tan (π/2-θ, -
62)) I y = -tan (π/2-θ, -θ2
) IX+HV+tan(π/2-θ,-θt)Hx J (Jx, Jy) θ3=01+θ2 θ,=3i1-' (sinθa/n2) μm=π/2
-θ, -θ2+θ3-θ4J points are the intersections of IJ and EJ, so J V=-jan (μ+) J x+ I y+ja
n (μm) I x and 1, Jy=jan(ψ1+ξ.-θ,) Jx+Eytan
Two equations (ψ1+ξ0-θ,)Ex hold true. Therefore, J x= [1y+tan (μt) I x−Ey+
tan (ξ.-θ, +ψ+)Ex) / (tan (ξ0-θ, +ψl) +jan (μm)) J y=-tan (μ+) J x+ I y+ j
an (μ+) I
f(1+m)/m. Also, both prisms 1 and 8
The distance in the air is I/n (n is the refractive index of the prism), so JK = Il and the principal point is K (Kx, Ky) θ5 = π - ψ1 - ψ2 - θ4 θe=sin 1 (n 2 sin θ5)μ2=μm
+θ6−θ.

ε=−jan(μ2) ζ=JV+jan(μz)Jx η=2εζ−2Jx−2Jyε t =J x2+J y”−J K”十ζ2−2 J 
yζKx= [−η+ η”−4(1+ε2)t)/ 
(2/ (1+ε2)) Ky=−jan (μt) Kx+J y+’jan 
(μりJX となる。以上のようにして指紋検出面2のG点からの光
線の軌跡(光軸X)をシュミレートすることができる。
ε=-jan(μ2) ζ=JV+jan(μz)Jx η=2εζ-2Jx-2Jyε t=J x2+J y”-J K”10ζ2-2 J
yζKx= [−η+ η”−4(1+ε2)t)/
(2/ (1+ε2)) Ky=-jan (μt) Kx+J y+'jan
(μ = JX) In the above manner, the trajectory of the light ray (optical axis X) from point G on the fingerprint detection surface 2 can be simulated.

次に、この条件で最も低倍率側(Q点に到達する光線)
の軌跡をシュミレートする。
Next, under these conditions, the lowest magnification side (the ray that reaches point Q)
Simulate the trajectory of.

レンズ11の後側主点に′からCCD受光面12までの
距離をl、とし、光軸Xに対する低倍率側光線の相対角
度をθ7とすると、CCD受光面12の大きさと倍率m
よりθ7は、 θ7= jan (N U/ (! b)l b= f
 (1+ m) と表される。
Assuming that the distance from the rear principal point of the lens 11 to the CCD light-receiving surface 12 is l, and the relative angle of the low-magnification side ray to the optical axis X is θ7, the size of the CCD light-receiving surface 12 and the magnification m are
Therefore, θ7 is θ7= jan (N U/ (! b)l b= f
It is expressed as (1+m).

この光線をCCD受光面12上のUから逆追跡して指紋
検出プリズム1の指紋検出面2のどの位置に到達するか
を求める。まず、補正プリズム8への入射位置である点
Mの座標を求めると、M (Mx、My) μ3;μ2−θ7 M点はMEとMKの2直線の交点であるので、My=j
an(ξ。−θ、+ψl)MX+EV−jan(ξ。−
θ、+ψ+)Ex 及び、 My=−jan (μ3) Mx+Ky+tan(μ3
)KX の2式が成り立つ。よって、 Mx= fKy十jan (μ3) Kx−Ey+ta
n(ξ0−θ、+ψ+)Exl/ [tan (ξ。−θ1+ψ、)  +tan (μ3
))My=jan(ξ0−θ、+ψ+)Mx+Eyta
n (ξ0−θ、+ψ、)Ex となる。
This light beam is traced back from U on the CCD light receiving surface 12 to determine which position on the fingerprint detection surface 2 of the fingerprint detection prism 1 it reaches. First, the coordinates of point M, which is the position of incidence on the correction prism 8, are found: M (Mx, My) μ3; μ2−θ7 Since point M is the intersection of two straight lines ME and MK, My=j
an(ξ.-θ, +ψl)MX+EV-jan(ξ.-
θ, +ψ+)Ex and My=-jan (μ3) Mx+Ky+tan(μ3
) KX holds true. Therefore, Mx= fKy jan (μ3) Kx−Ey+ta
n (ξ0-θ, +ψ+)Exl/ [tan (ξ.-θ1+ψ,) +tan (μ3
)) My=jan(ξ0-θ,+ψ+)Mx+Eyta
n (ξ0-θ, +ψ,)Ex.

次に、補正プリズム8からの出射位置である点0を求め
ると、 0 (Ox、Oy) θ8=06−θ7 θ5−sin  ’ ((sinθg)/n2]μ4=
μ3−θ9+θB 0点はOEとOMの交点であるので、 0y=jan(ξ。−θ、)Ox+Ey−jan(ξ0
−θ、)Ex Oy=−jan (μ4) Ox+My+tan(μ4
)MX となり、よって、 Ox= (My+jan (μ4) Mx−Ex+ja
n(ξ。−θ、)Exl/ (tan (ξ。−θ、) +tan (μ4))Oy
=jan(ξ0−θ、)Ox+Ey−tan(ξ。−θ
、)Ex のようになり、さらに指紋検出プリズムlへの入射位置
である点Pは、 P (Px、Py) θ10”π−ψ1−ψ2−θ9 θ+x=sin −’ (n 2 sinθto)P点
はBPとPOとの交点であるので、p y ” tan
ξoPx−Lsinξ。
Next, when finding the point 0 which is the exit position from the correction prism 8, 0 (Ox, Oy) θ8=06-θ7 θ5-sin' ((sinθg)/n2]μ4=
μ3-θ9+θB Since the 0 point is the intersection of OE and OM, 0y=jan(ξ.-θ,)Ox+Ey-jan(ξ0
-θ, )Ex Oy=-jan (μ4) Ox+My+tan(μ4
)MX, so Ox= (My+jan (μ4) Mx-Ex+ja
n(ξ.-θ,)Exl/ (tan (ξ.-θ,) +tan (μ4))Oy
=jan(ξ0-θ,)Ox+Ey-tan(ξ.-θ
, )Ex, and the point P, which is the position of incidence on the fingerprint detection prism l, is P (Px, Py) θ10"π−ψ1−ψ2−θ9 θ+x=sin −' (n 2 sinθto)P point is the intersection of BP and PO, so p y ” tan
ξoPx−Lsinξ.

及び、 py=−tan(μ<−θ1□+θ1o)Px+Q y
 +tan (μ4−θ1□+θto)Pxの2式が成
り立つ。よって、 Px= (Oy+jan(μ*−θ11+θto)Ox
+Lsin(ξo) ) /(tanξ。+tan (μ4−θ11+θ1゜))
P y = tanξoPx−Lsinξ0となる。そ
して、指紋検出面lに到達する位置である点Qは、 Q (Qx、O) θ12=θ1、−θ。
and py=-tan(μ<-θ1□+θ1o)Px+Q y
The following two equations hold true: +tan (μ4-θ1□+θto)Px. Therefore, Px= (Oy+jan(μ*-θ11+θto)Ox
+Lsin(ξo) ) /(tanξ.+tan (μ4-θ11+θ1°))
P y = tanξoPx−Lsinξ0. Then, the point Q, which is the position reaching the fingerprint detection surface l, is Q (Qx, O) θ12=θ1, −θ.

θ+3=Sjn−’  [Sjn (θ12) / n
 11μ5=μ4−θ11+θlO+θ12−θ13Q
x=  (Py+jan (μs)  Px) /ja
n (μs)θ14=π/2−μ5 (このθ14は臨界角条件を満たさねばならない)以上
よりQ点からレンズの中心に到達する光線の距離は、 となる。
θ+3=Sjn-' [Sjn (θ12)/n
11μ5=μ4-θ11+θlO+θ12-θ13Q
x= (Py+jan (μs) Px) /ja
n (μs) θ14=π/2−μ5 (This θ14 must satisfy the critical angle condition) From the above, the distance of the ray from point Q to the center of the lens is as follows.

このとき、求める倍率はQ点からに点までの光軸Xに平
行な光線の距離であるので、まず、線分QPで光軸Xに
平行な成分はQPcos(θ1.−θ、)/nlとなる
。次に、線分POで光軸Xに平行な成分はPOcos(
θ1□−θりとなる。又、線分OMで光軸Xに平行な成
分はOMcos(θ10−θ*)/n2となり、線分M
Kで光軸Xに平行な成分はJK=MJsinθ、となる
。倍率m′はこれらすべてを加算した値でlbを割った
ものとなる。
At this time, the required magnification is the distance of a ray of light parallel to the optical axis X from point Q to point Q, so first, the component parallel to the optical axis becomes. Next, the component parallel to the optical axis X in the line segment PO is POcos(
θ1□−θ. Also, the component parallel to the optical axis X in the line segment OM is OMcos(θ10-θ*)/n2, and the line segment M
The component of K parallel to the optical axis X is JK=MJsinθ. The magnification m' is the sum of all these values divided by lb.

、’、m’  = 1 b/ IQ Pcos (θ1
4−θ、)/nl+POcos(θ1□−θ2) →−OMcos(θ1o−04) / n 2+ (J
K−MJsinθ6)) 一方、指紋検出面2上においてG点を中心としてQ点と
反対側に位置するS点はμ3を、μ3:μ2+67 と代えることで同様の手順で求めることができる。
, ', m' = 1 b/ IQ Pcos (θ1
4-θ, )/nl+POcos(θ1□-θ2) →-OMcos(θ1o-04)/n 2+ (J
K-MJsin θ6)) On the other hand, point S located on the opposite side of point Q with point G as the center on the fingerprint detection surface 2 can be found by the same procedure by replacing μ3 with μ3:μ2+67.

これにより求めたS点での倍率m”は、m  =fb/
 (QP’  cos(θ目′ −θ、)/nl+PO
’cos(θ1□−θ2) +OM’ cos (θ1o−θ4)/n2+ (JK
十MJ’  +sinθ6))となる。
The magnification m'' at point S obtained from this is m = fb/
(QP'cos(θth' - θ,)/nl+PO
'cos (θ1□-θ2) +OM' cos (θ1o-θ4)/n2+ (JK
10MJ' + sin θ6)).

以上のようにして求めたmr m’ t m”を等しく
なるようにすれば倍率差の発生を防ぐことができる。そ
して、このQ点、S点での倍率m’ 、 mは以下に示
す要因で変化する。
By making mr m' t m'' obtained in the above manner equal, the occurrence of a difference in magnification can be prevented.The magnifications m' and m at points Q and S are determined by the factors shown below. It changes with

■、指紋検出プリズム1の角ξ0 2、指紋検出プリズム1と補正プリズム8とがなす角θ
■, Angle ξ0 of fingerprint detection prism 1 2, Angle θ between fingerprint detection prism 1 and correction prism 8
.

3、補正プリズム8の角ψ1 4、指紋検出プリズムl及び補正プリズム8の材質 5、レンズ11の焦点距離f 6、反射光線の反射の角度θ、と反射光λの波長7、画
像の中心倍率m 8、CCD受光面12の長さ 従って、これらの要因を適宜設定することで、各点G、
Q、Sでの倍率m、 m’ 、 m“を等しくして倍率
差の発生を防止することができる。
3. Angle ψ1 of the correction prism 8 4. Material of the fingerprint detection prism l and the correction prism 8 5. Focal length f of the lens 11 6. Angle of reflection θ of the reflected light ray and a wavelength of the reflected light λ 7. Image center magnification m 8, the length of the CCD light-receiving surface 12 Therefore, by setting these factors appropriately, each point G,
By making the magnifications m, m', and m'' at Q and S equal, it is possible to prevent a difference in magnification from occurring.

次に、本実施例の指紋読取装置の具体的な仕様をシュミ
レーションプログラムに基づいて選定する。
Next, specific specifications of the fingerprint reading device of this embodiment are selected based on a simulation program.

上記した各項の変化要因を考慮してG、 Q、  S点
での倍率を求めるが、変化要因が1項から8項まで多数
あるため以下の条件を予め設定しておく。
The multipliers at points G, Q, and S are determined by considering the factors of change in each of the above terms, but since there are many factors of change from term 1 to term 8, the following conditions are set in advance.

まず、1項目の角ξ。については、指紋検出プリズムl
を直角をなす辺の長さが25mmの直角プリズムとする
ことがらξ。=45°とする。又、4項目の指紋検出プ
リズムlと補正プリズム8の材質についてはBK7とし
、6項目の反射光λの波長としては660nm、7項目
の中心倍率をm=0゜5.8項目のCOD受光面12の
長さを6.4mmに選定する。
First, the angle ξ of one item. For fingerprint detection prism l
Let ξ be a right-angled prism with the length of the right-angled side being 25 mm. =45°. In addition, the material of the fingerprint detection prism l of the 4th item and the correction prism 8 is BK7, the wavelength of the reflected light λ of the 6th item is 660 nm, the center magnification of the 7th item is m = 0°, and the COD light receiving surface of the 5.8th item is 660 nm. 12 is selected to be 6.4 mm.

又、指紋検出プリズムlと補正プリズム8とが当接する
D点は指紋検出プリズムlのQ点からの光を妨げない位
置に選定する必要があることからCD=5印とする。さ
らに、補正プリズム8は直角プリズムとし、その辺DE
は指紋検出プリズムlO8点からの光を入射可能な長さ
が必要なことからDE=25mmとする。
Also, point D, where the fingerprint detection prism l and correction prism 8 come into contact, needs to be selected at a position that does not block the light from point Q of the fingerprint detection prism l, so it is marked CD=5. Furthermore, the correction prism 8 is a right-angled prism, and its side DE
Since it is necessary to have a length that allows light from 8 points of the fingerprint detection prism to enter, DE=25 mm.

以上の条件により2項目の両プリズムl、8がなす角θ
1.3項目の補正プリズム8の角ψ1.5項目のレンズ
11の焦点距離f、6項目の反射光線の反射角度θ、を
求める。
Under the above conditions, the angle θ formed by both prisms l and 8 in the two items is
1.3 items of the angle ψ of the prism 8; 1.5 items of the focal length f of the lens 11; and 6 items of the reflection angle θ of the reflected light ray are determined.

まず、補正プリズム8の角ψlは反射光線の反射角度θ
、の臨界角条件より決定する。このときレンズ11の焦
点距離fは25mm、  θ、は40゜とする。第3図
は補正プリズム8の角ψ1、G点での反射角θr、Q点
及び8点での反射角θ14゜θ目°を変えた場合を示し
た図である。ψlは一般的な角度である30° 45°
、60°とした。
First, the angle ψl of the correction prism 8 is the reflection angle θ of the reflected light beam.
It is determined from the critical angle condition of . At this time, the focal length f of the lens 11 is 25 mm, and θ is 40°. FIG. 3 is a diagram showing the case where the angle ψ1 of the correction prism 8, the reflection angle θr at point G, the reflection angle θ14° at points Q and 8, and the θth degree are changed. ψl is a common angle 30° 45°
, 60°.

この第3図よりψ1が30°の場合ではθ、を46°以
上としなければ014′ が臨界角条件を満たさないこ
とがわかる。同様にψlが45°ではθ、は45°以上
、ψ1が60°ではθ、は44゜以上でなければならな
いことがわかる。このようにψ1の角度によりθ7は制
約を受ける。
From FIG. 3, it can be seen that when ψ1 is 30°, 014' does not satisfy the critical angle condition unless θ is set to 46° or more. Similarly, when ψl is 45°, θ must be 45° or more, and when ψ1 is 60°, θ must be 44° or more. In this way, θ7 is restricted by the angle of ψ1.

又、第4図はG点での反射角θ、と補正プリズム8の角
ψ1を変化させたときに画像全体の倍率差がどのように
変化するかを表した図であり、ψlが30°、45°、
600の内では45°が最も倍率差が少なく、ψ1=4
5°においてθ、が小さいほど倍率差が少ないことがわ
かる。又、ψlが60°の場合では過補正となり(倍率
差が負となり)レンズ11に近い側での倍率がプリズム
中心での倍率より低くなっていることから45゜から6
0°の間に最適値が存在することが予測できる。
Moreover, FIG. 4 is a diagram showing how the magnification difference of the entire image changes when the reflection angle θ at point G and the angle ψ1 of the correction prism 8 are changed, and when ψl is 30° , 45°,
Among 600, 45° has the smallest magnification difference, ψ1=4
It can be seen that the smaller θ is at 5°, the smaller the magnification difference is. Also, if ψl is 60°, there will be overcorrection (the difference in magnification will be negative) and the magnification on the side closer to the lens 11 will be lower than the magnification at the center of the prism, so from 45° to 6
It can be predicted that the optimum value exists between 0°.

従って、ψ1を45°より1°ずつ増加させた場合にお
いてθ、を45°、46°、47°とした時の倍率差を
計算し、倍率差の最も少ない設定値を求める。第5図は
その倍率差の変化を示す図であり、この図よりθ、が4
5°の時にはψ1を47°とすれば倍率差を無くすこと
ができ、θ。
Therefore, when ψ1 is increased by 1° from 45°, the magnification difference when θ is set to 45°, 46°, and 47° is calculated, and the set value with the smallest magnification difference is determined. Figure 5 is a diagram showing the change in the magnification difference, and from this figure, θ is 4
When the angle is 5°, the difference in magnification can be eliminated by setting ψ1 to 47°, and θ.

が46°の時にはψlを49°、θ、が47°ならばψ
lを51°とすれば倍率差を無くすことができることが
わかる。一般的な45°三角プリズムではθ、が臨界角
条件を満たすことができないため完全には倍率差を補正
することはできないが、倍率差を0.01以下に抑える
ことが可能となる。
When is 46°, ψl is 49°, and when θ is 47°, ψ
It can be seen that if l is set to 51°, the difference in magnification can be eliminated. In a general 45° triangular prism, the magnification difference cannot be completely corrected because θ cannot satisfy the critical angle condition, but it is possible to suppress the magnification difference to 0.01 or less.

よって、補正プリズム8の角ψ1を45°、レンズ11
の焦点距離fは光学系の大きさを考慮して25mmとす
る。又、反射光線の反射角度θ、は第3,5図より45
°以上であれば臨界角条件を満足するが、製作・組付誤
差を考慮してθ7=47°とする。
Therefore, the angle ψ1 of the correction prism 8 is 45°, and the lens 11
The focal length f is set to 25 mm in consideration of the size of the optical system. Also, the reflection angle θ of the reflected ray is 45 from Figures 3 and 5.
The critical angle condition is satisfied if the angle is greater than or equal to .degree., but in consideration of manufacturing and assembly errors, .theta.7 is set to 47.degree.

一方、第6図は角θ、を30°に設定したときの倍率差
を示す図であり、第7図は角θ、を500に設定したと
きの倍率差を示す図である。これらの図に示すように、
角θ1が倍率差を補正する上ではほとんど影響しないこ
とがわかる。
On the other hand, FIG. 6 is a diagram showing the magnification difference when the angle θ is set to 30°, and FIG. 7 is a diagram showing the magnification difference when the angle θ is set to 500°. As shown in these figures,
It can be seen that the angle θ1 has almost no effect on correcting the magnification difference.

しかしながら、この角θ、は指紋検出範囲に影響を与え
る。第8図と第9図は角θ1を変化させたときの指紋検
出範囲の増減を示す図であるが、θ、が大きいほど検出
範囲が狭くなることがわかる。現在の光学系レイアウト
では指紋に対して斜めから画像を入力するため倍率差と
は別に指紋の縦方向と横方向で画像が歪んでいる。この
ため縦方向の検出範囲はできるだけ短いほうが歪みを無
くすることができる。但し、指紋検出長は17mm程度
必要であるので今回のθ、は40°とする。
However, this angle θ affects the fingerprint detection range. FIGS. 8 and 9 are diagrams showing increases and decreases in the fingerprint detection range when the angle θ1 is changed, and it can be seen that the larger θ is, the narrower the detection range is. In the current optical system layout, the image is input diagonally to the fingerprint, so the image is distorted in the vertical and horizontal directions of the fingerprint, in addition to the difference in magnification. Therefore, distortion can be eliminated by making the detection range in the vertical direction as short as possible. However, since the fingerprint detection length needs to be about 17 mm, θ is set to 40° in this case.

尚、第1O図は補正プリズム8の辺DEの長さ(プリズ
ム8の大きさ)を増減させたときの倍率差の変化を示す
図であり、この図に示すように、辺DEの長さが変化し
ても倍率差はほとんど変わらないことがわかる。
In addition, FIG. 1O is a diagram showing the change in the magnification difference when the length of the side DE of the correction prism 8 (size of the prism 8) is increased or decreased. As shown in this figure, the length of the side DE It can be seen that the magnification difference remains almost unchanged even if the value changes.

以上の最適値をまとめると以下のようになる。The above optimal values are summarized as follows.

1、指紋検出プリズム1の角ξ0は、45°直角プリズ
ム(直角をなす辺の長さ25−)を使用し、ξ。=45
°とする。
1. The angle ξ0 of the fingerprint detection prism 1 is set to ξ by using a 45° right-angled prism (the length of the right-angled side is 25-). =45
°.

2、指紋検出プリズム1と補正プリズム8とがなす角θ
、は、θ、=40°とする。
2. Angle θ between the fingerprint detection prism 1 and the correction prism 8
, is θ,=40°.

3、補正プリズム8の角ψ1は、ψ1=45°とする。3. The angle ψ1 of the correction prism 8 is set to 45°.

4、指紋検出プリズム1及び補正プリズム8の材質は、
光学部品として一般的なりK7を使用する。
4. The materials of the fingerprint detection prism 1 and the correction prism 8 are:
General resin K7 is used as the optical component.

5、反射光線の反射角度θ、は、θ、=47°とし、反
射光λの波長は赤色LEDの660nmにする。
5. The reflection angle θ of the reflected light beam is θ=47°, and the wavelength of the reflected light λ is 660 nm of the red LED.

6、レンズ11の焦点距離fは、f=25nmとする。6. The focal length f of the lens 11 is f=25 nm.

(この場合、全体の倍率差が0.008となる) 7、画像の中心倍率mは、m=0.5とする。(In this case, the overall magnification difference is 0.008) 7. The center magnification m of the image is set to m=0.5.

8、CCD受光面12の長さは、2/3インチCCD素
子を使用するため6.4mmとする。
8. The length of the CCD light receiving surface 12 is 6.4 mm because a 2/3 inch CCD element is used.

その他AC=BD=DE=DF=25mm、CD=5闘
、ψ2=90°上記のような設定値を決定した。
Other setting values were determined as follows: AC=BD=DE=DF=25mm, CD=5mm, ψ2=90°.

本発明者は、以上のように設定した本実施例の指紋読取
装置と補正プリズム8を備えない従来の指紋読取装置と
を比較し、実際に得られた画像におけるQ点と8点との
倍率差が従来の指紋読取装置では0.064倍であった
のに対し、本実施例の指紋読取装置では0.007倍ま
で低減されたことを確認した。
The present inventor compared the fingerprint reading device of this embodiment set as described above with a conventional fingerprint reading device that does not include the correction prism 8, and determined the magnification of point Q and point 8 in the actually obtained image. It was confirmed that while the difference was 0.064 times in the conventional fingerprint reader, it was reduced to 0.007 times in the fingerprint reader of this embodiment.

このように本実施例の指紋読取装置においては、指紋検
出プリズムlとレンズ11との間に、指紋検出面2から
レンズ11の前側主点Kまでの全ての光路長の光軸Xに
平行な成分を同光軸X上の光路長とほぼ等しくなるよう
に補正する補正プリズム8を配設した。
In this way, in the fingerprint reading device of this embodiment, there is an optical path parallel to the optical axis X of the entire optical path length from the fingerprint detection surface 2 to the front principal point K of the lens 11. A correction prism 8 is provided to correct the component so that it becomes approximately equal to the optical path length on the optical axis X.

従って、指紋検出面2上の実際の指紋は、その部位に関
係なく全て等しい倍率でCOD受光面12上に指紋画像
として結像し、指紋画像中の倍率差の発生が防止される
。その結果、指紋登録時と指紋照合時とで指先の位置が
ずれても所定数の画素を一致させて、照合率の低下を未
然に防止することができる。
Therefore, the actual fingerprint on the fingerprint detection surface 2 is imaged as a fingerprint image on the COD light-receiving surface 12 at the same magnification regardless of its location, and magnification differences in the fingerprint images are prevented from occurring. As a result, even if the position of the fingertip deviates between fingerprint registration and fingerprint verification, it is possible to match a predetermined number of pixels and prevent a decrease in the verification rate.

又、本実施例の指紋読取装置においては、拡散板5の厚
みを指紋検出面2に近い側はど厚く設定したため、指紋
検出面2に到達する光量が均一化されるとともにCCD
受光面12に結像する指紋画像の明るさも均一化される
。従って、パターンマツチングのために映像信号を2値
化しても指紋の凹凸を表している映像信号の消失が防止
され、実際の指紋に忠実な信号を得ることができる。
In addition, in the fingerprint reading device of this embodiment, the thickness of the diffusion plate 5 is set to be thicker on the side closer to the fingerprint detection surface 2, so that the amount of light reaching the fingerprint detection surface 2 is made uniform and the CCD
The brightness of the fingerprint image formed on the light receiving surface 12 is also made uniform. Therefore, even if the video signal is binarized for pattern matching, the video signal representing the unevenness of the fingerprint is prevented from disappearing, and a signal faithful to the actual fingerprint can be obtained.

尚、本実施例の指紋読取装置は以上のようにして具体的
な仕様を決定したが、上記した1項から8項までの項目
を適宜変更することで異なる仕様、例えば、倍率差をさ
らに低減させたりレンズ11の焦点距離fを短くして読
取装置の小型化を図ったりすること°もできる。
Although the specific specifications of the fingerprint reading device of this embodiment were determined as described above, it is possible to further reduce the different specifications, for example, the magnification difference, by appropriately changing the items 1 to 8 above. It is also possible to reduce the size of the reading device by shortening the focal length f of the lens 11.

又、上記実施例では拡散板5の厚みを変更することで指
紋検出面2に到達する光量を均一化したが、上記したよ
うに縦方向と横方向に整列したしED6の配置密度を指
紋検出面2側はど疎となるように設定してもよい。
In addition, in the above embodiment, the thickness of the diffuser plate 5 was changed to equalize the amount of light reaching the fingerprint detection surface 2, but as described above, the arrangement density of the EDs 6 arranged in the vertical and horizontal directions was adjusted to detect fingerprints. The surface 2 side may be set to be sparse.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明の指紋読取装置によれば、倍
率差の発生を防止して実際の指紋に忠実な指紋画像を得
ることができるという優れた効果を発揮する。
As described in detail above, the fingerprint reading device of the present invention exhibits the excellent effect of preventing the occurrence of magnification differences and obtaining a fingerprint image that is faithful to an actual fingerprint.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の指紋読取装置の概略的な構成を示す図
、第2図は指紋検出面上の各点を通過する光の経路を示
す図、第3図は反射角θ、と反射角θ14,014′ 
 との関係を示した図、第4図は反射角θ、と倍率差と
の関係を示す図、第5図は同じく反射角θ、と倍率差と
の関係を示す図、第6図は角θ1を30°に設定したと
きの倍率差を示す図、第7図は角θ、を50°に設定し
たときの倍率差を示す図、第8図と第9図は角θ、と指
紋検出範囲との関係を示す図、第1O図は補正プリズム
の辺DEの長さを増減させたときの倍率差の変化を示す
図、第11図は実施例の指紋読取装置によって得られた
指紋画像を映像信号に変換した状態を示す図、第12図
は平坦な拡散板を用いたり拡散板を用いなかったりした
読取装置による映像信号を示す図、第13図は従来の指
紋読取装置の概略的な構成を示す図である。 1は指紋検出部材としての指紋検出プリズム、2は指紋
検出面、7は光源、8は光学補正部材としての補正プリ
ズム、11はレンズ、12は撮像素子としてのCCD受
光面、13は指先、Xは光軸、Kは主点。
Fig. 1 is a diagram showing the schematic configuration of the fingerprint reading device of the embodiment, Fig. 2 is a diagram showing the path of light passing through each point on the fingerprint detection surface, and Fig. 3 is a diagram showing the reflection angle θ and the reflection angle. Angle θ14,014'
Figure 4 is a diagram showing the relationship between reflection angle θ and magnification difference, Figure 5 is a diagram showing the relationship between reflection angle θ and magnification difference, and Figure 6 is a diagram showing the relationship between reflection angle θ and magnification difference. Figure 7 shows the magnification difference when θ1 is set to 30°, Figure 7 shows the magnification difference when the angle θ is set to 50°, Figures 8 and 9 show the angle θ and fingerprint detection. A diagram showing the relationship with the range, FIG. 1O is a diagram showing the change in magnification difference when the length of the side DE of the correction prism is increased or decreased, and FIG. 11 is a fingerprint image obtained by the fingerprint reading device of the example. FIG. 12 is a diagram showing a video signal obtained by a reader using a flat diffuser plate or without a diffuser plate, and FIG. 13 is a schematic diagram of a conventional fingerprint reader. FIG. 1 is a fingerprint detection prism as a fingerprint detection member, 2 is a fingerprint detection surface, 7 is a light source, 8 is a correction prism as an optical correction member, 11 is a lens, 12 is a CCD light receiving surface as an image sensor, 13 is a fingertip, is the optical axis and K is the principal point.

Claims (1)

【特許請求の範囲】 1、透明なる指紋検出部材に指紋検出面を形成し、同指
紋検出面上に指先を接触させた状態で指紋検出面の裏面
に光源から光を照射し、同指紋検出面から反射された光
をレンズを介して撮像素子上に指紋画像として結像させ
てなる指紋読取装置において、 前記指紋検出部材とレンズとの間に、前記指紋検出面か
らレンズの主点までの全ての光路長の光軸に平行な成分
を同光軸上の光路長とほぼ等しくなるように補正する光
学補正部材を配設したことを特徴とする指紋読取装置。
[Claims] 1. A fingerprint detection surface is formed on a transparent fingerprint detection member, and light is irradiated from a light source to the back side of the fingerprint detection surface while the fingertip is in contact with the fingerprint detection surface to detect the same fingerprint. In a fingerprint reading device in which light reflected from a surface is imaged as a fingerprint image on an image sensor through a lens, there is provided a space between the fingerprint detection member and the lens from the fingerprint detection surface to the principal point of the lens. 1. A fingerprint reading device comprising an optical correction member that corrects components of all optical path lengths parallel to an optical axis to be approximately equal to optical path lengths on the same optical axis.
JP2096697A 1990-04-11 1990-04-11 Fingerprint reading device Pending JPH03292578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2096697A JPH03292578A (en) 1990-04-11 1990-04-11 Fingerprint reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2096697A JPH03292578A (en) 1990-04-11 1990-04-11 Fingerprint reading device

Publications (1)

Publication Number Publication Date
JPH03292578A true JPH03292578A (en) 1991-12-24

Family

ID=14171959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096697A Pending JPH03292578A (en) 1990-04-11 1990-04-11 Fingerprint reading device

Country Status (1)

Country Link
JP (1) JPH03292578A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625448A (en) * 1995-03-16 1997-04-29 Printrak International, Inc. Fingerprint imaging
WO1997043735A1 (en) * 1996-05-10 1997-11-20 Digitalpersona, Inc. A fingerprint sensing system using a sheet prism
US6324020B1 (en) * 1999-08-04 2001-11-27 Secugen Corporation Method and apparatus for reduction of trapezoidal distortion and improvement of image sharpness in an optical image capturing system
US6381347B1 (en) 1998-11-12 2002-04-30 Secugen High contrast, low distortion optical acquistion system for image capturing
KR20020090371A (en) * 2001-05-23 2002-12-05 주식회사 티에스바이오메트릭스 An apparatus for reading a fingerprint using two prisms

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625448A (en) * 1995-03-16 1997-04-29 Printrak International, Inc. Fingerprint imaging
WO1997043735A1 (en) * 1996-05-10 1997-11-20 Digitalpersona, Inc. A fingerprint sensing system using a sheet prism
US6381347B1 (en) 1998-11-12 2002-04-30 Secugen High contrast, low distortion optical acquistion system for image capturing
US6324020B1 (en) * 1999-08-04 2001-11-27 Secugen Corporation Method and apparatus for reduction of trapezoidal distortion and improvement of image sharpness in an optical image capturing system
KR20020090371A (en) * 2001-05-23 2002-12-05 주식회사 티에스바이오메트릭스 An apparatus for reading a fingerprint using two prisms

Similar Documents

Publication Publication Date Title
US7046907B2 (en) Backlight system
US7787159B2 (en) Achieving convergent light rays emitted by planar array of light sources
US11574137B2 (en) Handheld ID-reading system with integrated illumination assembly
US4968876A (en) Laser beam reader having a projecting and receiving optical system
CN108663816B (en) Light emitting device and image display system
CN103244846A (en) Light source module
KR20020033459A (en) Method and apparatus for reduction of trapezoidal distortion and improvement of image sharpness in an optical image capturing system
US20120287333A1 (en) Double direction camera and portable electronic device
KR20170023430A (en) Camera module
US7440119B2 (en) Three-dimensional shape detecting device, image capturing device, and three-dimensional shape detecting method
US6414749B1 (en) Uneven-pattern reading apparatus
GB2428305A (en) Compact self-compensating beam splitter
JP2001043301A (en) Two-dimensional code reader
JPH03292578A (en) Fingerprint reading device
US6650450B1 (en) Light transmitting and receiving device having optical member with beam splitter
US10386549B2 (en) Prism, particularly for optical data communication
CN111290061B (en) Optical diffusion sheet, light source device, and distance measuring device
US20100207011A1 (en) System and method for performing optical navigation using a compact optical element
US6912300B1 (en) Irregular pattern reader
US20090057541A1 (en) Image sensor module and light guiding member used for the same
US20080291427A1 (en) Optical Imaging Device Suitable for Forming Images of Fingerprints
JP2005525892A (en) Subject image playback device
US6414797B1 (en) Beamsplitter prism with spherical faces for transmitting or reflecting spherical waves without magnification
US8035907B2 (en) Image capturing device
CN109073371B (en) Apparatus and method for tilt detection