JPH0329244B2 - - Google Patents

Info

Publication number
JPH0329244B2
JPH0329244B2 JP60122565A JP12256585A JPH0329244B2 JP H0329244 B2 JPH0329244 B2 JP H0329244B2 JP 60122565 A JP60122565 A JP 60122565A JP 12256585 A JP12256585 A JP 12256585A JP H0329244 B2 JPH0329244 B2 JP H0329244B2
Authority
JP
Japan
Prior art keywords
polymer
sulfide
pyridine ring
dihalogenated
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60122565A
Other languages
Japanese (ja)
Other versions
JPS61281130A (en
Inventor
Yukihiro Ikeda
Masaru Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60122565A priority Critical patent/JPS61281130A/en
Publication of JPS61281130A publication Critical patent/JPS61281130A/en
Publication of JPH0329244B2 publication Critical patent/JPH0329244B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はスルフイド系高分子重合体及びその製
造方法に関するものである。 このスルフイド系高分子重合体は、高分子主鎖
内にビニレン基とピリジル基とを含有した一次元
高分子であり、特有の電気的特性を有しており、
有機高分子半導体として有用である。 (従来の技術) 従来より、一般式が(―CH=CH−L)―o(ただ
し、LはS又はSeを表す)で表されるいわゆる
ポリビニレンカルコゲナイドは知られていた。特
にポリビニレンカルコゲナイドの一種であるポリ
ビニレンスルフイドを製造する方法として、1,
2−ジクロルエチレンと硫化ナトリウムとを縮重
合させる方法(特願昭58−19821号)、1,2−ジ
ハロゲン化エチレンと1,2−エチレンジチオー
ルの二アルカリ金属塩とを縮重合させる方法(特
願昭60−5835号)等が提案されている。 (発明が解決しようとする問題点) しかし、上記方法等によつて製造されるポリビ
ニレンスルフイドは熱安定性及び溶媒への溶解性
に劣り、フイルム成型、延伸等の高分子加工上困
難を伴つていた。 たとえば、ポリビニレンスルフイドは120〜150
℃の温度での加熱により収縮・黒化が始まり、さ
らに180℃にまで加熱すると、熱分解を起こし、
分解生成物である1,4−ジチインが発生してい
た。 また、ポリビニレンスルフイドはジメチルスル
オキシド、ジメチルホルムアミド等の有機極性溶
媒に溶解し得るが、その溶解度は低くキヤステイ
ングによるフイルム成形が困難であつた。 このように、従来から知られている製造法によ
りポリビニレンカルコゲナイドポリマーは、熱安
定性及び溶媒への溶解性の点でさらに検討を重ね
る必要があつた。 (問題点を解決するための手段) そこで本発明者らは、ポリビニレンカルコゲナ
イド関連ポリマーの製造について研究を重ねた結
果、ポリビニレンスルフイドの主鎖中にピリジン
環を含有させることにより優れた高分子特性を有
する新規スルフイド系高分子重合体を見出した。 本発明は、ポリビニレンスルフイドの主鎖中に
ピリジン環を含有しているスルフイド系高分子重
合体を提供するものである。さらに本発明は、
1,2−エチレンジチオレートとジハロゲン化ピ
リジンとを共重合させることを特徴とするスルフ
イド系高分子重合体の製造方法に関するものであ
る。 本発明の提供するスルフイド系高分子重合体は
下記の構造式で示される。 ただし、mは1以上の整数、nは0または2以上
の偶数、またxはx(m+)30となるような
整数を表す。 ここで、n=0の場合、上記ポリマーとして、 等が挙げられる。これらのポリマーのIR吸収ス
ペクトルを測定すると、オレフイン性のC−H伸
縮振動が3020〜3100cm-1に、ピリジン環の環伸縮
と考えられる吸収が1380〜1630cm-1に3〜4本、
ピリジン環の面外変角振動が700〜900cm-1に、ビ
ニレン基のC=C伸縮振動が1530〜1600cm-1に、
ビニレン基の面外変角振動が630〜780cm-1に観測
される。また、プロトンNMRスペクトルを測定
すると、ビニレン基のプロトンのシグナルが5.5
〜7.0ppmに、ピリジン環のプロトンのシグナル
が6.8〜8.5ppmに観測される。さらに元素分析の
結果から、炭素C、水素H、窒素N、硫黄Sの組
成比を求めると、C7H5N1S2となり、構造式と一
致する。さらに、GPCにより、ポリエチレング
リコール換算による分子量を測定すると、数平均
分子量Mnは5000以上であることがわかる。これ
らのポリマーの熱安定性を調べるためにDTG分
析を行うと、重量減少は180℃から徐々に始まり、
210〜240℃で発熱ピークが現れ、220〜250℃にお
いて最大の重量減少変化を示すことがわかる。こ
の熱特性はポリビニレンスルフイド(―CH=CH
−S)―xよりも優れているといえる。また、キヤ
スト法により形成したフイルムにヨウ素蒸気を接
触させると、電導度は2×10-3〜1×10-2S・cm
-1にまで上昇し、ポリビニレンスルフイドにおけ
る値1.3×10-3S・cm-1よりも高い値を示してい
る。 また、構造式(1)において、nが2以上の偶数の
場合、ポリマー中に
(Industrial Application Field) The present invention relates to a sulfide-based polymer and a method for producing the same. This sulfide-based polymer is a one-dimensional polymer containing vinylene groups and pyridyl groups in the polymer main chain, and has unique electrical properties.
It is useful as an organic polymer semiconductor. (Prior Art) So-called polyvinylene chalcogenide represented by the general formula (-CH=CH-L) -o (where L represents S or Se) has been known so far. In particular, as a method for producing polyvinylene sulfide, which is a type of polyvinylene chalcogenide, 1.
A method of condensation polymerization of 2-dichloroethylene and sodium sulfide (Japanese Patent Application No. 19821/1982), a method of condensation polymerization of 1,2-dihalogenated ethylene and a di-alkali metal salt of 1,2-ethylenedithiol ( Patent Application No. 60-5835) etc. have been proposed. (Problems to be Solved by the Invention) However, polyvinylene sulfide produced by the above method has poor thermal stability and solubility in solvents, making it difficult to process polymers such as film molding and stretching. was accompanied by For example, polyvinylene sulfide has 120 to 150
Shrinkage and blackening begin when heated at a temperature of 180°C, and thermal decomposition occurs when heated further to 180°C.
1,4-dithiine, a decomposition product, was generated. Further, although polyvinylene sulfide can be dissolved in organic polar solvents such as dimethyl sulfoxide and dimethyl formamide, its solubility is low and it has been difficult to form a film by casting. As described above, polyvinylene chalcogenide polymers produced by conventionally known production methods have required further investigation in terms of thermal stability and solubility in solvents. (Means for Solving the Problems) Therefore, as a result of repeated research on the production of polyvinylene chalcogenide-related polymers, the present inventors found that an excellent product was obtained by incorporating a pyridine ring in the main chain of polyvinylene sulfide. We have discovered a new sulfide-based polymer with high molecular properties. The present invention provides a sulfide-based polymer containing a pyridine ring in the main chain of polyvinylene sulfide. Furthermore, the present invention
The present invention relates to a method for producing a sulfide-based polymer, which comprises copolymerizing 1,2-ethylene dithiolate and dihalogenated pyridine. The sulfide-based polymer provided by the present invention is represented by the following structural formula. However, m is an integer of 1 or more, n is 0 or an even number of 2 or more, and x is an integer such as x(m+ n )30. Here, when n=0, as the above polymer, etc. When the IR absorption spectra of these polymers were measured, olefinic C-H stretching vibrations were observed at 3020 to 3100 cm -1 , 3 to 4 absorptions believed to be due to ring stretching of the pyridine ring were observed at 1380 to 1630 cm -1 , and
The out-of-plane bending vibration of the pyridine ring is 700 to 900 cm -1 , the C=C stretching vibration of the vinylene group is 1530 to 1600 cm -1 ,
Out-of-plane bending vibrations of vinylene groups are observed between 630 and 780 cm -1 . In addition, when measuring the proton NMR spectrum, the proton signal of the vinylene group was 5.5
~7.0 ppm, and the proton signal of the pyridine ring is observed at 6.8 to 8.5 ppm. Further, from the results of elemental analysis, the composition ratio of carbon C, hydrogen H, nitrogen N, and sulfur S is found to be C 7 H 5 N 1 S 2 , which matches the structural formula. Furthermore, when the molecular weight in terms of polyethylene glycol was measured by GPC, it was found that the number average molecular weight Mn was 5000 or more. When DTG analysis was performed to investigate the thermal stability of these polymers, weight loss started gradually from 180 °C;
It can be seen that an exothermic peak appears at 210-240°C, and the maximum weight loss change occurs at 220-250°C. This thermal property is similar to that of polyvinylene sulfide (-CH=CH
-S) - It can be said that it is better than x . Furthermore, when the film formed by the cast method is brought into contact with iodine vapor, the electrical conductivity is 2×10 -3 to 1×10 -2 S・cm.
-1 , which is higher than the value of 1.3×10 -3 S cm -1 for polyvinylene sulfide. In addition, in structural formula (1), when n is an even number of 2 or more, in the polymer

【式】ユニツトと−CH =CH−S−ユニツトとがm:nの比で存在し、
前記のポリマー(2)、(3),(4)に比べて、ピリジン環
の導入率の低いポリマーが提供される。このポリ
マーのIR吸収スペクトルを測定すると、ポリマ
ー(2),(3),(4)に類似したスペクトルが得られる
が、1540〜1595cm-1に現れるビニレン基のC=C
伸縮振動がより強く現れていることがわかる。ま
た、プロトンNMRスペクトルを測定すると、ポ
リマー(2),(3),(4)に比べて、ビニレン基のプロト
ンのシグナル強度がより大きくなつており、ピリ
ジン環のプロトンとのシグナル強度比は、2(m
+n):3mとなる。元素分析を行うと、組成比は
C7n+2oH5n+2oNnS2n+oとなり、またGPCによる分
子量測定では、Moは7000以上である。熱安定性
を調べると、重減少は150〜180℃から徐々に始ま
り、180〜230℃で発熱ピークが現れる。さらに、
キヤストフイルムにヨエ素蒸気を接触させて電導
度を測定すると、1×10-3〜8×10-3S・cm-1
まで上昇する。 本発明の製造方法において用いることのできる
1,2−ジハロゲン化エチレンとしては、1,2
−ジブロムエチレン、1,2−ジクロルエチレン
等が挙げられ、シス型、トランス型のいずれの幾
何異性体も使用可能である。 また、1,2−エチレンジチオレートとしては MS−CH=CH−SM (ただし、Mはアルカリ金属原子を表す)なる
構造の化合物を使用することができる。特にMが
ナトリウム原子Na、又はカリウム原子Kである
ことが好ましい。 ジハロゲン化ピリジンとしては、2,6−ジブ
ロムピリジン、2,6−ジクロルピリジン、2,
5−ジブロムピリジン、2,5−ジクロルピリジ
ン、3,5−ジブロムピリジン、3,5−ジクロ
ルピリジンが用いられるが、他のジハロゲン置換
ピリジンを用いてもよい。 本発明の製造方法において、1,2−ジハロゲ
ン化エチレンは、本発明のスルフイド系高分子重
合体主鎖中のピリジン環の含有率を変える役割を
有している。 たとえば、1,2−ジハロゲン化エチレンの非
存在下において、1,2−エチレンジチオレート
とジハロゲン化ピリジンとを共重合させた場合、
ピリジン基とビニレン基とが硫黄原子Sを挟んで
交互に現れるポリマー
[Formula] unit and -CH=CH-S- unit exist in a ratio of m:n,
A polymer with a lower introduction rate of pyridine rings than the above polymers (2), (3), and (4) is provided. When measuring the IR absorption spectrum of this polymer, a spectrum similar to polymers (2), (3), and (4) is obtained, but the C=C of the vinylene group appearing at 1540 to 1595 cm -1
It can be seen that the stretching vibration appears more strongly. Furthermore, when proton NMR spectra were measured, the signal intensity of the vinylene group proton was larger than that of polymers (2), (3), and (4), and the signal intensity ratio with the pyridine ring proton was as follows: 2 (m
+n): 3m. When elemental analysis is performed, the composition ratio is
C 7n+2o H 5n+2o N n S 2n+o , and when molecular weight is measured by GPC, Mo is 7000 or more. When examining the thermal stability, heavy loss begins gradually at 150-180°C, and an exothermic peak appears at 180-230°C. moreover,
When the conductivity is measured by contacting cast film with iodine vapor, it increases to 1×10 −3 to 8×10 −3 S·cm −1 . The 1,2-dihalogenated ethylene that can be used in the production method of the present invention includes 1,2-dihalogenated ethylene.
-dibromoethylene, 1,2-dichloroethylene, etc., and both cis and trans geometric isomers can be used. Further, as the 1,2-ethylene dithiolate, a compound having the structure MS-CH=CH-SM (where M represents an alkali metal atom) can be used. In particular, it is preferable that M is a sodium atom, Na, or a potassium atom, K. Examples of dihalogenated pyridine include 2,6-dibromopyridine, 2,6-dichloropyridine, 2,
5-dibromopyridine, 2,5-dichloropyridine, 3,5-dibromopyridine, and 3,5-dichloropyridine are used, but other dihalogen-substituted pyridines may also be used. In the production method of the present invention, 1,2-dihalogenated ethylene has the role of changing the content of pyridine rings in the main chain of the sulfide polymer of the present invention. For example, when 1,2-ethylene dithiolate and dihalogenated pyridine are copolymerized in the absence of 1,2-dihalogenated ethylene,
Polymer in which pyridine groups and vinylene groups appear alternately with a sulfur atom S in between

【式】 が得られる。これは(1)式の構造式においてn=0
の場合を表す。 また、1,2−ジハロゲン化エチレンの存在下
において共重合させた場合は、構造式(1)でnが0
でない場合のポリマーが得られる。たとえば、原
料としての、1,2−エチレンジチオレート、ジ
ハロゲン化ピリジン、1,2−ジハロゲン化エチ
レンの比を、(m+l):m:lとすると、生成ポ
リマーとして、 が得られる。 反応は有機溶媒中で行い、その溶媒としては、
ジメチルホルムアミド、ジメチルスルホキシド、
ジメチルアセトアミド、ヘキサメチルホスホルア
ミド、N−メチル−2−ピロリドン等の非プロト
ン性極性溶媒を用いることが好ましい。 反応温度は0℃〜200℃の温度範囲内で選ぶこ
とが可能であるが、生成ポリマーの収率及び純度
の向上を図る上で、好ましくは10℃〜150℃、さ
らに好ましくは60℃〜90℃の温度範囲内から選
ぶ。 生成ポリマーは、反応液を濾過後、濾液をその
まま、あるいは濃縮してから大量のメタノール中
に注ぐことにより、褐色ないし黒褐色の沈澱物と
して得ることができる。 反応液中には縮重合による副生物として、アル
カリ金属ハロゲン化物が存在している。 以上のポリマーは、ジメチルホルムアミドまた
はジメチルスルホキシドに可溶である。 (発明の効果) 本発明の提供するスルフイド系高分子重合体
は、ポリビニレンスルフイドの主鎖中にピリジン
環を含有した構造を有する新規ポリマーであり、
ポリビニレンカルコゲナイド自体に比べて、熱安
定性等の高分子特性、電導度等の電気特性に優れ
ている。 (実施例) 次に実施例によつて本発明をより具体的に説明
する。 実施例 1 容量50mlのオートクレーブ内をアルゴンガスで
置換し、シス−1,2−エチレンジチオールの二
ナトリウム塩0.65gと2,6−ジブロムピリジン
1.13g及びジメチルホルムアミド30ml入れ、75℃
の反応温度で43時間激しく撹拌した。褐色反応液
を濾過後濾液を減圧濃縮して溶媒を留去し、200
mlのメタノールを注いだ。黄褐色沈澱物としての
ポリマーが0.28g得られた。収率は30%であつ
た。生成ポリマーのIR吸収スペクトルを測定し
たところ、オレフイン性のC−H伸縮振動が3020
cm-1に、ピリジン環の環伸縮と考えられる吸収が
1380〜1560cm-1に4本、ピリジン環の面外変角振
動が780cm-1に、ビニレン基の面外変角振動が650
cm-1に観測された。また、重水素置換ジメチルス
ルホキシド溶液についてプロトンNMRスペクト
ルを測定したところ、ビニレン基のプロトンのシ
グナルが6.65ppmに、ピリジン環の3,5位のプ
ロトンのシグナルが7.2ppmに、ピリジン環の4
位のプロトンのシグナルが7.65ppmに観測され
た。元素分析から、C7H5.3N0.9S2.5となつた。こ
れらの結果から、生成ポリマーは、
[Formula] is obtained. This is n=0 in the structural formula of formula (1)
represents the case of Furthermore, when copolymerized in the presence of 1,2-dihalogenated ethylene, n is 0 in structural formula (1).
A polymer is obtained when it is not. For example, if the ratio of 1,2-ethylene dithiolate, dihalogenated pyridine, and 1,2-dihalogenated ethylene as raw materials is (m+l):m:l, the resulting polymer will be: is obtained. The reaction is carried out in an organic solvent, and the solvent is
dimethylformamide, dimethyl sulfoxide,
It is preferable to use an aprotic polar solvent such as dimethylacetamide, hexamethylphosphoramide, N-methyl-2-pyrrolidone, or the like. The reaction temperature can be selected within the temperature range of 0°C to 200°C, but in order to improve the yield and purity of the produced polymer, it is preferably 10°C to 150°C, more preferably 60°C to 90°C. Select from within the temperature range of °C. The produced polymer can be obtained as a brown to blackish brown precipitate by filtering the reaction solution and pouring the filtrate as it is or after concentrating it into a large amount of methanol. Alkali metal halides are present in the reaction solution as byproducts of polycondensation. The above polymers are soluble in dimethylformamide or dimethylsulfoxide. (Effects of the Invention) The sulfide-based polymer provided by the present invention is a novel polymer having a structure containing a pyridine ring in the main chain of polyvinylene sulfide,
Compared to polyvinylene chalcogenide itself, it has superior polymer properties such as thermal stability and electrical properties such as conductivity. (Example) Next, the present invention will be explained in more detail with reference to Examples. Example 1 The inside of an autoclave with a capacity of 50 ml was replaced with argon gas, and 0.65 g of disodium salt of cis-1,2-ethylenedithiol and 2,6-dibromopyridine were added.
Add 1.13g and 30ml of dimethylformamide, 75℃
The mixture was stirred vigorously for 43 hours at a reaction temperature of . After filtering the brown reaction solution, the filtrate was concentrated under reduced pressure to remove the solvent.
ml of methanol was poured. 0.28 g of polymer was obtained as a tan precipitate. The yield was 30%. When the IR absorption spectrum of the produced polymer was measured, the olefinic C-H stretching vibration was found to be 3020.
There is an absorption in cm -1 that is thought to be due to ring stretching of the pyridine ring.
4 at 1380 to 1560 cm -1 , the out-of-plane bending vibration of the pyridine ring is 780 cm -1 , and the out-of-plane bending vibration of the vinylene group is 650.
observed at cm -1 . In addition, when proton NMR spectra were measured for a deuterium-substituted dimethyl sulfoxide solution, the proton signal of the vinylene group was 6.65 ppm, the signal of the protons at the 3 and 5 positions of the pyridine ring was 7.2 ppm, and the signal of the proton at the 3 and 5 positions of the pyridine ring was 7.2 ppm, and the signal of the proton at the 3 and 5 positions of the pyridine ring was 7.2 ppm.
A proton signal at 7.65 ppm was observed. Elemental analysis revealed C 7 H 5.3 N 0.9 S 2.5 . From these results, the produced polymer is

【式】の構造を有している ことがわかつた。さらに、ゲルパーミエーシヨン
クロマトグラフイーにより生成ポリマーの分子量
を測定したところ、数平均分子量がポリエチレン
グリコール換算で24800となり、上記の重合度n
は148.5であることがわかつた。このポリマーに
ついてDTG分析を行つたところ、180℃から重量
減少が徐々に始まり、230℃で発熱ピークが見ら
れ、240℃で最大の重量減少変化を示した。また、
ポリマーのジメチルホルムアミド溶液からキヤス
ト法により、フイルムを形成し、ヨウ素蒸気を接
触させて電導度変化を測定したところ、3.1×
10-9S・cm-1から9.8×10-3S・cm-1にまで上昇し
た。 実施例 2 容量50mlのオートクレーブ内を窒素ガスで置換
し、シス−1,2−エチレンジオールの二カリウ
ム塩1.60g、2,6−ジクロルピリジン0.71g及
びシス−1,2−ジクロルエチレン0.46gとジメ
チルホルムアミド30mlを入れ、60℃の反応温度で
40時間激しく撹拌した。反応液を濾過して濾液を
濃縮し、200mlのメタノールを注いだところ、白
褐色沈澱物が0.28g得られた。元素分析から、
C11H9.5N0.85S4.3となつた。IR吸収スペクトルを
測定したところ、ピリジン環の環伸縮が1375〜
1560cm-1に4本、ピリジン環の面外変角振動が
780cm-1に現れていた。プロトンNMRスペクト
ルでは、ビニレン基のプロトンによると考えられ
るシグナルが6.3〜6.6ppmに3本、ピリジン環の
3,5位のプロトンのシグナルが7.2ppmに、ピ
リジン環の4位のプロトンのシグナルが7.6ppm
に観測された。これらの結果から、生成ポリマー
は、 の構造を有していることがわかつた。 実施例 3 実施例1と同様のオートクレーブ内に、シス−
1,2−エチレンジチオールの二ナトリウム塩
0.65gと3,5−ジブロムピリジン1.13g及びジ
メチルホルムアミド30mlを入れ、75℃で44時間激
しく撹拌した。反応液を濾過したところ、副生成
である臭化ナトリウムが0.42g得られた。濾液を
減圧下で濃縮し溶媒を留去したところ、濃褐色粘
稠物が残つた。元素分析の結果、C7H5.5N0.8S2.5
となつた。IR吸収スペクトルでは、ピリジン環
の環伸縮が1400〜1600cm-1に4本観測された。
It was found that it has the structure of [Formula]. Furthermore, when the molecular weight of the produced polymer was measured by gel permeation chromatography, the number average molecular weight was 24,800 in terms of polyethylene glycol, and the above polymerization degree n
was found to be 148.5. When this polymer was subjected to DTG analysis, weight loss started gradually at 180°C, an exothermic peak was observed at 230°C, and the maximum weight loss change was observed at 240°C. Also,
A film was formed from a dimethylformamide solution of the polymer by the casting method, and the change in conductivity was measured by contacting it with iodine vapor.
It increased from 10 -9 S·cm -1 to 9.8×10 -3 S·cm -1 . Example 2 The inside of an autoclave with a capacity of 50 ml was replaced with nitrogen gas, and 1.60 g of dipotassium salt of cis-1,2-ethylenediol, 0.71 g of 2,6-dichloropyridine, and 0.46 g of cis-1,2-dichloroethylene were added. Add g and 30 ml of dimethylformamide and react at a reaction temperature of 60℃.
Stir vigorously for 40 hours. The reaction solution was filtered, the filtrate was concentrated, and 200 ml of methanol was poured into it to obtain 0.28 g of a white brown precipitate. From elemental analysis,
C 11 H 9.5 N 0.85 S 4.3 . When we measured the IR absorption spectrum, we found that the ring expansion and contraction of the pyridine ring was from 1375 to
There are four out-of-plane bending vibrations of the pyridine ring at 1560 cm -1 .
It appeared at 780cm -1 . In the proton NMR spectrum, there are three signals at 6.3 to 6.6 ppm that are thought to be due to the protons of the vinylene group, a signal of the protons at the 3 and 5 positions of the pyridine ring at 7.2 ppm, and a signal of the proton at the 4 position of the pyridine ring at 7.6 ppm. ppm
was observed. From these results, the produced polymer is It was found that it has the following structure. Example 3 In an autoclave similar to Example 1, a sys-
Disodium salt of 1,2-ethylenedithiol
0.65 g, 1.13 g of 3,5-dibromopyridine, and 30 ml of dimethylformamide were added, and the mixture was vigorously stirred at 75°C for 44 hours. When the reaction solution was filtered, 0.42 g of sodium bromide as a by-product was obtained. When the filtrate was concentrated under reduced pressure and the solvent was distilled off, a dark brown viscous substance remained. As a result of elemental analysis, C 7 H 5.5 N 0.8 S 2.5
It became. In the IR absorption spectrum, four ring extensions and contractions of the pyridine ring were observed at 1400 to 1600 cm -1 .

Claims (1)

【特許請求の範囲】 1 構造式 (ただし、mは1以上の整数、nは0または2
以上の偶数、及びxはx(m+)30となるよ
うな整数を表わす。)で表わされるスルフイド系
高分子重合体。 2 1,2−ジハロゲン化エチレンの存在下、ま
たは非存在下において、1,2−エチレンジチオ
レート MS−CH=CH−MS(ただし、Mはアル
カリ金属原子を表わす。)とジハロゲン化ピリジ
ンとを共重合させることを特徴とする構造式 (ただし、mは1以上の整数、nは0または2
以上の偶数、及びx(m+)30となるような
整数を表わす。)で表わされるスルフイド系高分
子重合体の製造方法。
[Claims] 1. Structural formula (However, m is an integer greater than or equal to 1, and n is 0 or 2.
The above even numbers and x represent an integer such that x(m+ n )30. ) is a sulfide-based polymer represented by 2 In the presence or absence of 1,2-dihalogenated ethylene, 1,2-ethylene dithiolate MS-CH=CH-MS (where M represents an alkali metal atom) and dihalogenated pyridine Structural formula characterized by copolymerization (However, m is an integer greater than or equal to 1, and n is 0 or 2.
It represents an even number of the above, and an integer such that x(m+ n )30. ) A method for producing a sulfide-based polymer represented by
JP60122565A 1985-06-07 1985-06-07 Chalcogenide based high polymer and production thereof Granted JPS61281130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60122565A JPS61281130A (en) 1985-06-07 1985-06-07 Chalcogenide based high polymer and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122565A JPS61281130A (en) 1985-06-07 1985-06-07 Chalcogenide based high polymer and production thereof

Publications (2)

Publication Number Publication Date
JPS61281130A JPS61281130A (en) 1986-12-11
JPH0329244B2 true JPH0329244B2 (en) 1991-04-23

Family

ID=14839036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122565A Granted JPS61281130A (en) 1985-06-07 1985-06-07 Chalcogenide based high polymer and production thereof

Country Status (1)

Country Link
JP (1) JPS61281130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130018236A (en) * 2010-02-09 2013-02-20 수스 마이크로텍 리소그라피 게엠바하 Thin wafer carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130018236A (en) * 2010-02-09 2013-02-20 수스 마이크로텍 리소그라피 게엠바하 Thin wafer carrier

Also Published As

Publication number Publication date
JPS61281130A (en) 1986-12-11

Similar Documents

Publication Publication Date Title
Ueda et al. Synthesis of poly (3-phenyl-2, 5-thiophene) by nickel-catalyzed coupling polymerization of 3-phenyl-2, 5-dichlorothiophene
CA1265295A (en) Conductive polymers
TW200418864A (en) Preparation of 2,2'-di(3,4-ethylenedioxythiophene)s
JPH0784524B2 (en) Method for producing aromatic sulfide amide polymer
US5338823A (en) Lithium/HMPA-promoted synthesis of poly(phenylenes)
JPH0329244B2 (en)
Subramanyam et al. Conjugated ionic polyacetylenes. 6. Polymerization of 2-ethynylpyridinium triflates
Zhou et al. Synthesis and characterization of tris (2, 2′‐bipyridine) ruthenium‐cored star‐shaped polymers via RAFT polymerization
Kodaira et al. Cyclopolymerization. VIII. Polymerization of sym-Dimethacryloyldimethylhydrazine and Related Compounds
US5300625A (en) Heteroaromatic polyether
JP6726521B2 (en) Substituted polyacetylene having optically active group and method for producing the same
JPH02189333A (en) Production of conductor having selfdoping function
US5530090A (en) Reductive method for preparation of macrocyclic oligomer mixtures
Xu et al. Controlled polymerization of functional acrylamides by rare-earth aryloxide-based Lewis pairs
US5104948A (en) Substituted extensively conjugated ionic polyacetylenes
Liu et al. Synthesis and properties of polysilanes with tetrathiafulvalene as pendant group
JP3164671B2 (en) Arylene vinylene polymer and method for producing the same
JP2730757B2 (en) Conductive heterocyclic polymer and method for producing the same
Sarker et al. Syntheses of new poly (arylene vinylene) analogues: Poly (4, 7‐benzofuran vinylene) and poly (4, 7‐benzothiophene vinylene)
JPH0753682A (en) Carbazole-based polymer and its production
Shouji et al. Synthesis of poly (sulfonium cation) as an alkylating reagent
JPH04108784A (en) Thiophene derivative of polyethylene and thiophene derivative of ethylene
JPS6243421A (en) Chalcogenide polymer and production thereof
KR920009684B1 (en) Polyazomethin resin and process for preparing thereof
KR20020066056A (en) Block copolymers of ruthenium complex-comprising methacrylate and optical properties thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term