JPH03292304A - Production of terminal-modified olefin polymer - Google Patents

Production of terminal-modified olefin polymer

Info

Publication number
JPH03292304A
JPH03292304A JP9613090A JP9613090A JPH03292304A JP H03292304 A JPH03292304 A JP H03292304A JP 9613090 A JP9613090 A JP 9613090A JP 9613090 A JP9613090 A JP 9613090A JP H03292304 A JPH03292304 A JP H03292304A
Authority
JP
Japan
Prior art keywords
formula
formulas
group
hydrocarbon group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9613090A
Other languages
Japanese (ja)
Inventor
Tatsuya Osumi
辰也 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP9613090A priority Critical patent/JPH03292304A/en
Publication of JPH03292304A publication Critical patent/JPH03292304A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a terminal-modified olefin polymer desirable as a resin additive or a material for functional resins by polymerizing an olefin monomer in the presence of a transition metal compound catalyst, adding a specified compound to the polymerization system, and reacting it. CONSTITUTION:A monomer selected from among ethylene, a 3-20C alpha-olefin (e.g. propylene) and a nonconjugated linear or cyclic diene or polyene monomer (e.g. 1,4-hexadiene) is polymerized in the presence of a transition metal compound catalyst (e.g. TiCl4). A compound selected from among a compound having a group of formula I (e.g. ethylene oxide), a compound having a group of formula II (e.g. maleic anhydride) and a compound having a group of formula III (e.g. caprolactone) is added to the polymerization system and reacted to produce a terminal-modified olefin polymer. In the formulas, X<1>, X<2>, X<3>, X<4> and X<5> are each O, S or NR; X<6> is C=O, C=S, C=NR or CH2; R is hydrocarbyl; and n is 1-4.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、末端変性オレフィン系重合体の製造方法及び
末端変性オレフィン系重合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a terminal-modified olefin-based polymer and a terminal-modified olefin-based polymer.

さらに詳しくは、樹脂添加剤、機能性樹脂原料等として
使用され得る末端変性オレフィン系重合体の製造方法及
び末端変性オレフィン系重合体に関する。
More specifically, the present invention relates to a method for producing a terminal-modified olefin polymer that can be used as a resin additive, a functional resin raw material, etc., and a terminal-modified olefin polymer.

[従来の技術] 従来、オレフィン系重合体の変性方法としては、オレフ
ィン系重合体を酸化する方法、オレフィン系重合体にビ
ニル化合物をグラフトする方法等がある。
[Prior Art] Conventionally, methods for modifying olefin polymers include a method of oxidizing the olefin polymer, a method of grafting a vinyl compound onto the olefin polymer, and the like.

[発明が解決しようとする課題] しかしながら従来の技術では、末端だけを変性する方法
は知られておらず、例えばポリオレフィンを側鎖に有す
るグラフト共重合体等の合成は極めて困難であった。
[Problems to be Solved by the Invention] However, in the prior art, no method of modifying only the terminals was known, and it was extremely difficult to synthesize, for example, a graft copolymer having a polyolefin in its side chain.

[課題を解決するための手段] 本発明者らは、上記課題を解決するため末端変性ポリオ
レフィンについて鋭意検討した結果、本発明に至った。
[Means for Solving the Problems] In order to solve the above problems, the present inventors conducted intensive studies on terminal-modified polyolefins, and as a result, they arrived at the present invention.

即ち、本発明は、遷移金属化合物触媒存在下、エチレン
、炭素数3〜20のα−オレフィン及び非共役二重結合
をもつ直鎖または環状のジエンあるいはポリエンモノマ
ーからなる群より選ばれるモノマーを重合させた後、そ
の反応系に、一般式 (式中X1は0、SまたはNRI、R1は炭化水素基)
で表される基を有する化合物、一般式C式中X2、X3
、X4は、0、SまたはNR2、R2は炭化水素基)で
表される基ををする化合物、一般式 %式% (式中nは1〜4、XIは、O,SまたはNR”、X6
はC=O1C=S、C=NR”またはCH2、R3は炭
化水素基)で表される基を有する化合物からなる群より
選ばれる化合物を加えて反応させることを特徴とする末
端変性オレフィン系重合体の製造方法、及び末端変性オ
レフィン系重合体である。
That is, the present invention involves polymerizing a monomer selected from the group consisting of ethylene, an α-olefin having 3 to 20 carbon atoms, and a linear or cyclic diene or polyene monomer having a nonconjugated double bond in the presence of a transition metal compound catalyst. After that, the general formula (wherein X1 is 0, S or NRI, and R1 is a hydrocarbon group) is added to the reaction system.
A compound having a group represented by the general formula C, X2, X3
, X4 is a group represented by 0, S or NR2, R2 is a hydrocarbon group), a compound having the general formula % (wherein n is 1 to 4, XI is O, S or NR", X6
is C=O1C=S, C=NR" or CH2, R3 is a hydrocarbon group). A method for producing a polymer, and a terminal-modified olefin polymer.

炭素数3〜20のα−オレフィンの具体例としては、プ
ロピレン、1−ブテン、1−ペンテン、4−メチル−1
−ペンテン、1−オクテン、1−ドデセン、1−オクタ
デセン、1−エイコセン等が挙げられる。  非共役二
重結合をもつ直鎖または環状のジエンあるいはポリエン
モノマーの具体例としては、1,4−へキサジエン、8
−メチル−1、5−へブタジェン、シクロへブタンジエ
ン−1、4、ジシクロペンタジェン、5−エチリデン−
2−ノルボルネン、メチルテトラヒドロインデン等が挙
げられる。
Specific examples of α-olefins having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 4-methyl-1
-pentene, 1-octene, 1-dodecene, 1-octadecene, 1-eicosene and the like. Specific examples of linear or cyclic diene or polyene monomers having non-conjugated double bonds include 1,4-hexadiene, 8
-Methyl-1,5-hebutadiene, cyclohebutane-1,4, dicyclopentadiene, 5-ethylidene-
Examples include 2-norbornene and methyltetrahydroindene.

本発明に使用する遷移金属化合物触媒の種類は特に限定
されるもので信なく、公知の触媒系が使用可能である。
The type of transition metal compound catalyst used in the present invention is not particularly limited, and any known catalyst system can be used.

遷移金属化合物としては、バナジウム化合物(四塩化バ
ナジウム、オキシ三塩化バナジウム、これらとアルコー
ル(メタノール、イソプロピルアルコールなど)の反応
生成物、バナジウムトリスアセチルアセトナート等)、
チタン化合物(三塩化チタン、四塩化チタン、これらと
アルコールとの反応生成物等)及び、ニッケル化合物、
コバルト化合物、クロム化合物、ジルコニウム化合物、
亜鉛化合物、イー1 )リウム化合物、ハフニウム化合
物、ユーロピウム化合物、サマリウム化合物等及びこれ
らの混合物が挙げられる。
Examples of transition metal compounds include vanadium compounds (vanadium tetrachloride, vanadium oxytrichloride, reaction products of these with alcohols (methanol, isopropyl alcohol, etc.), vanadium trisacetylacetonate, etc.);
Titanium compounds (titanium trichloride, titanium tetrachloride, reaction products of these with alcohol, etc.) and nickel compounds,
cobalt compounds, chromium compounds, zirconium compounds,
Examples include zinc compounds, E1)ium compounds, hafnium compounds, europium compounds, samarium compounds, and mixtures thereof.

有機アルミニウム化合物は助触媒として必要に応じて用
いられ、ジエチルアルミニウムクロライド、ジイソブチ
ルアルミニウムブロマイド、エチルアルミニウムセスキ
クロライド、エチルアルミニウムジクロライド等、及び
これらの混合物が挙げられる。また、アルミニウム化合
物とアルコールまたは水との反応生成物等も使用できる
。触媒活性化剤としてトリクロル酢酸メチル等のハロゲ
ン化アルキルエステル類、安息香酸メチル等の芳香族エ
ステル類及びこれらの誘導体等も使用できる。
Organoaluminum compounds are used as co-catalysts if necessary, and include diethylaluminum chloride, diisobutylaluminum bromide, ethylaluminum sesquichloride, ethylaluminum dichloride, and mixtures thereof. Further, a reaction product of an aluminum compound and alcohol or water can also be used. As catalyst activators, halogenated alkyl esters such as methyl trichloroacetate, aromatic esters such as methyl benzoate, and derivatives thereof can also be used.

また、これら触媒系を、塩化マグネシウム化合物(塩化
マグネシウム、マグネシウムヒドロキシ塩化物等)、あ
るいはシリカ、アルミナ類およびこれらの混合物で処理
し、あるいは、担持したものも用いることができる。こ
れらの中で、好ましい組合せは、バナジウム化合物と有
機アルミニウム化合物、あるいはチタン化合物とを機ア
ルミニウム化合物の組合せ、具体的にはオキシ三塩化バ
ナジウムとエチルアルミニウムセスキクロライド、ある
いは四塩化チタンとトリエチルアルミニウムの塩化マグ
ネシウム担持体である。
Moreover, those catalyst systems treated with or supported by magnesium chloride compounds (magnesium chloride, magnesium hydroxychloride, etc.), silica, aluminas, and mixtures thereof can also be used. Among these, preferred combinations are vanadium compounds and organic aluminum compounds, or titanium compounds and aluminum compounds, specifically vanadium oxytrichloride and ethylaluminum sesquichloride, or titanium tetrachloride and triethylaluminum chloride. It is a magnesium carrier.

オレフィン系重合体の製造には、通常、炭化水素系の重
合媒体が用いられる。用いられる重合媒体は特に限定さ
れるものではなく、モノマー及び触媒により種々変える
ことができるが、一般に用いられている炭化水素(ヘキ
サン、ヘプタン、灯油、精製鉱物油、シクロヘキサン、
トルエン等)、もしくはハロゲン化炭化水素(クロロホ
ルム、トリクロロエチレン、テトラクロロエタン、1.
 2−ジクロロエタン等)等が挙げられる。また、原料
のモノマーを媒体として行うこともできる。これら重合
媒体の中で好ましいものは、ヘプタン及びトルエンであ
る。
A hydrocarbon polymerization medium is usually used in the production of olefin polymers. The polymerization medium used is not particularly limited and can be varied depending on the monomer and catalyst, but commonly used hydrocarbons (hexane, heptane, kerosene, refined mineral oil, cyclohexane,
toluene, etc.) or halogenated hydrocarbons (chloroform, trichloroethylene, tetrachloroethane, 1.
2-dichloroethane, etc.). Moreover, it can also be carried out using a raw material monomer as a medium. Preferred among these polymerization media are heptane and toluene.

触媒の使用量は、目的とする末端変性オレフィン系重合
体の組成及び分子量に応じて変化するが、遷移金属化合
物の使用量は、媒体IL当り通常、 0.  OO1=
100m−ol、  好ましくは、 0゜1〜lQ+s
molである。有機アルミニウム化合物の使用量は、遷
移金属化合物1モル当り、通常0〜100倍モル、好ま
しくは、1〜30倍モルである。
The amount of the catalyst used varies depending on the composition and molecular weight of the target terminal-modified olefin polymer, but the amount of the transition metal compound used per medium IL is usually 0. OO1=
100 m-ol, preferably 0゜1~lQ+s
It is mol. The amount of the organoaluminum compound used is usually 0 to 100 times, preferably 1 to 30 times, per mole of the transition metal compound.

重合温度は、広い範囲で変化させ得るが、通常は一70
℃〜200℃であり、特に−30℃〜80℃の範囲が好
ましい。
The polymerization temperature can be varied within a wide range, but is usually -70°C.
℃~200℃, especially preferably in the range of -30℃~80℃.

重合は、大気圧下もしくは加圧下で実施され、1〜10
0 kg/am”で実施するのが好ましく、特に1〜3
0kgノc冒”の間が好ましい。
Polymerization is carried out at atmospheric pressure or under increased pressure, with 1 to 10
It is preferable to carry out at 0 kg/am”, especially 1 to 3
Preferably it is between 0 kg and 0 kg.

得られるオレフィン系重合体の分子量は、特に限定され
るものではなく、その用途に応じて通常、数平均分子量
数百〜数百万である。
The molecular weight of the obtained olefin polymer is not particularly limited, and usually has a number average molecular weight of several hundred to several million, depending on its use.

一般式(1)、 (2)、 (3)において、R1、R
2、R3の炭化水素基としては炭素数1〜4のアルキル
基(メチル、エチル、イソプロピル、ブチル基等)およ
び置換炭化水素基(ハロゲン置換炭化水素基等)が挙げ
られる。
In general formulas (1), (2), (3), R1, R
Examples of the hydrocarbon group represented by 2 and R3 include alkyl groups having 1 to 4 carbon atoms (methyl, ethyl, isopropyl, butyl groups, etc.) and substituted hydrocarbon groups (halogen-substituted hydrocarbon groups, etc.).

一般式(1)で表される基を育する化合物の例としでは
、アルキレンオキシド類(エチレンオキシド、プロピレ
ンオキシド、フェニレンオキシド、オクテンオキシド−
1等)、エピクロルヒドリン、グリシジル化合物類及び
その誘導体(グリシジル(メタ)アクリレート、ポリア
ルキレングリコールジグリシジルエーテル類、ポリエス
テル類及びポリアミド等のグリシジルエーテル化物、グ
リシジル(メタ)アクリレートとビニルモノマー(メチ
ルメタクリレート、アルキルメタクリレート、スチレン
、 (メタ)アクリロニトリル、アクリルアミド、ブタ
ジェン等)との共重合体等、エチレンスルフィド及びそ
の誘導体、N−置換エチレンイミン(N−メチルエチレ
ンイミン、N−(N’、Nゝ−ジメチルアミノエチルエ
チレンイミン等)及びその誘導体、等があげられる。
Examples of compounds that grow groups represented by general formula (1) include alkylene oxides (ethylene oxide, propylene oxide, phenylene oxide, octene oxide).
1, etc.), epichlorohydrin, glycidyl compounds and their derivatives (glycidyl (meth)acrylate, polyalkylene glycol diglycidyl ethers, polyesters, polyamides, etc.), glycidyl (meth)acrylate and vinyl monomers (methyl methacrylate, alkyl methacrylate, styrene, (meth)acrylonitrile, acrylamide, butadiene, etc.), ethylene sulfide and its derivatives, N-substituted ethyleneimine (N-methylethyleneimine, N-(N', Nゝ-dimethylamino), ethylethyleneimine, etc.) and derivatives thereof.

一般式(2)で表される基を有する化合物の例としては
、無水マレイン酸及びその誘導体、ジチオ無水マレイン
酸及びその誘導体、N−置換マレイン酸イミド及びその
誘導体、等があげられる。
Examples of compounds having a group represented by general formula (2) include maleic anhydride and its derivatives, dithiomaleic anhydride and its derivatives, N-substituted maleic acid imide and its derivatives, and the like.

一般式(3)で表される基を育する化合物の例としでは
、テトラヒドロフラン、カプロラクトン及びその誘導体
、N−置換カプロラクタム及びその誘導体、N−置換−
2−ピロリドン等があげられる。
Examples of compounds that support the group represented by general formula (3) include tetrahydrofuran, caprolactone and its derivatives, N-substituted caprolactam and its derivatives, N-substituted -
Examples include 2-pyrrolidone.

モノマーの重合の後加えられる化合物の量は、一般式(
1)〜(3)で表される基の含有量によって、あるいは
目的とする末端変性重合体の構造によって種々変えるこ
とができるが、重合に用いた遷移金属化合物1モル当り
、一般式(1)〜(3)で表される基の量が、通常0.
001〜10oooo倍モル、好ましくは、0. 1〜
1000倍モルとなるような量である。
The amount of compound added after polymerization of the monomers is determined by the general formula (
Although it can be varied depending on the content of the groups represented by 1) to (3) or the structure of the desired end-modified polymer, the amount of general formula (1) per mol of the transition metal compound used in the polymerization is The amount of groups represented by ~(3) is usually 0.
001 to 10oooo times the mole, preferably 0. 1~
The amount is 1000 times the molar amount.

末端変性オレフィン系重合体は、化合物をモノマーの重
合反応系に加えて反応させることにより得られるが、そ
の反応温度、圧力はモノマーの重合条件と同一でも、変
化させても構わない。また、反応時間は系の粘度によっ
て異なるが、通常1分〜50時間、好ましくは0. 5
〜2時間である。
The terminal-modified olefin polymer can be obtained by adding a compound to a monomer polymerization reaction system and reacting it, and the reaction temperature and pressure may be the same as or different from the monomer polymerization conditions. The reaction time varies depending on the viscosity of the system, but is usually 1 minute to 50 hours, preferably 0.5 hours. 5
~2 hours.

化合物は、重合反応系に、溶媒で希釈して、あるいは希
釈せずに加えることができ、溶媒とじては、前記重合媒
体等が挙げられる。特に、重合に用いた重合媒体と同一
の溶媒で希釈するか、希釈せずに加えることが好ましい
The compound can be added to the polymerization reaction system after being diluted with a solvent or without being diluted, and examples of the solvent include the above-mentioned polymerization medium. In particular, it is preferable to dilute it with the same solvent as the polymerization medium used in the polymerization, or add it without diluting it.

本発明における末端変性オレフィン系重合体は、モノマ
ーとしてエチレンを選んだ場合、末端変性ポリエチレン
である。モノマーとしてプロピレンを選んだ場合、末端
変性ポリプロピレンであり、他のα−オレフィンを選ん
だ場合は末端変性ポリα−オレフィンである。また、七
ツマ−としてエチレン、プロピレンの2種を選んだ場合
、末端変性EPMであり、さらに非共役二重結合をもっ
直鎖または環状のジエンあるいはポリエンモノマーを加
えたものは、末端変性・EPDMである。
The terminal-modified olefin polymer in the present invention is terminal-modified polyethylene when ethylene is selected as the monomer. When propylene is selected as the monomer, it is a terminally modified polypropylene, and when another α-olefin is selected, it is a terminally modified polyα-olefin. In addition, when ethylene and propylene are selected as the seven polymers, it is terminally modified EPM, and when linear or cyclic diene or polyene monomers with non-conjugated double bonds are added, terminally modified EPDM It is.

[実施例コ 以下、実施例により本発明をさらに説明するが、本発明
はこれに限定されない。
[Example] Hereinafter, the present invention will be further explained with reference to Examples, but the present invention is not limited thereto.

実施例1 2Lのセパラブルフラスコに攪拌機、温度計、滴下ロー
トおよび還流冷却管をつけて減圧、加熱乾燥した後窒素
で置換した。このフラスコに精製乾燥したノルマルヘキ
サンILを入れて30℃の恒温に保ち、これにエチレン
40モル%、プロピレン60モル%の混合ガスを10L
/分の割合で30分流して飽和させた。次いで、オキシ
三塩化バナジウム0. 8mmolとエチルアルミニウ
ムセスキクロライド3.2■−olとをフラスコ内へ添
加してエチレン/プロピレンの共重合を開始させた。
Example 1 A 2L separable flask was equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser, and the flask was dried under reduced pressure and heated, and then replaced with nitrogen. Pour purified and dried normal hexane IL into this flask, keep it at a constant temperature of 30°C, and add 10 L of a mixed gas of 40 mol% ethylene and 60 mol% propylene to this flask.
It was saturated by flowing at a rate of 30 minutes. Then, 0.0% vanadium oxytrichloride was added. 8 mmol and 3.2-ol of ethylaluminum sesquichloride were added into the flask to initiate ethylene/propylene copolymerization.

さらに、攪拌下に10分間エチレンとプロピレンの混合
ガスを流して重合を行った。混合ガスの供給を停止し、
0℃に冷却した後、滴下ロートから5gのスチレンオキ
シドを加え、30分攪拌した。
Further, a mixed gas of ethylene and propylene was flowed for 10 minutes while stirring to perform polymerization. Stop the mixed gas supply,
After cooling to 0° C., 5 g of styrene oxide was added from the dropping funnel and stirred for 30 minutes.

次いで、30gのメタノールを加えた後、反応混合物を
大量のメタノールに投入して共重合体を析出させた。析
出物を石油エーテルでゴム膜透析することにより精製し
て白色無定形固体である末端変性ポリオレフィン重合体
を得た。このポリマーの極限粘度は0. 94dl/w
in(30℃、トルエン溶液)、エチレン/プロピレン
のモル比; 60/40であり、IRl NMRによっ
てスチレンに由来するベンゼン環の存在が確認された。
Next, after adding 30 g of methanol, the reaction mixture was poured into a large amount of methanol to precipitate a copolymer. The precipitate was purified by rubber membrane dialysis with petroleum ether to obtain a terminal-modified polyolefin polymer as a white amorphous solid. The intrinsic viscosity of this polymer is 0. 94dl/w
in (30° C., toluene solution), the molar ratio of ethylene/propylene was 60/40, and the presence of a benzene ring derived from styrene was confirmed by IRl NMR.

実施例2 ノルマルヘキサンの代わりにトルエンを用い、スチレン
オキシドの代わりに、グリシジルメタクリレート−メチ
ルメタクリレート共重合体(グリシジルメタクリレート
含量10wt%、重量平均分子量10000)の50w
t%トルエン溶液20gを加える以外は、実施例1と同
様にした。
Example 2 Toluene was used instead of normal hexane, and 50w of glycidyl methacrylate-methyl methacrylate copolymer (glycidyl methacrylate content 10 wt%, weight average molecular weight 10000) was used instead of styrene oxide.
The same procedure as in Example 1 was carried out except that 20 g of t% toluene solution was added.

得られた白色固体の極限粘度は1. 2 dl/i+I
n (30℃、トルエン溶液)、エチレン/プロピレン
のモル比:  80/40であり、IRl NMRによ
ってグリシジルメタクリレート−メチルメタクリレート
共重合体セグメントの存在が確認された。
The intrinsic viscosity of the obtained white solid was 1. 2 dl/i+I
n (30° C., toluene solution), ethylene/propylene molar ratio: 80/40, and the presence of a glycidyl methacrylate-methyl methacrylate copolymer segment was confirmed by IRl NMR.

実施例3 エチレン40モル%、プロピレン60モル%の混合ガス
を10L/分の割合で30分流して飽和させた後、エチ
リデンノルボルネンを5g加えることと、グリシジルメ
タクリレート−メチルメタクリレート共重合体の50w
t%トルエン溶液の代わりに、無水マレイン酸の50w
t%トルエン溶液2gを加える以外は、実施例2と同様
にした。
Example 3 After saturated by flowing a mixed gas of 40 mol% ethylene and 60 mol% propylene at a rate of 10 L/min for 30 minutes, 5 g of ethylidene norbornene was added, and 50 w of glycidyl methacrylate-methyl methacrylate copolymer was added.
50w of maleic anhydride instead of t% toluene solution
The same procedure as in Example 2 was carried out except that 2 g of t% toluene solution was added.

得られた白色無定形固体の極限粘度は0.90dl/m
ln (30℃、トルエン溶液)、エチレン/プロピレ
ン/エチリデンノルボルネンのモル比:58/38/4
であり、IR,NMRによって無水マレイン酸に由来す
る 一COCH=CH−COOH の存在が確認された。
The intrinsic viscosity of the obtained white amorphous solid is 0.90 dl/m
ln (30°C, toluene solution), ethylene/propylene/ethylidene norbornene molar ratio: 58/38/4
The presence of COCH=CH-COOH derived from maleic anhydride was confirmed by IR and NMR.

実施例4 無水マレイン酸の代わりにN−メチルカプロラクタムを
使用する以外は実施例3と同様にした。
Example 4 The same procedure as Example 3 was carried out except that N-methylcaprolactam was used instead of maleic anhydride.

得られた白色無定形固体の極限粘度は0.98dl/w
in (30℃、トルエン溶液)、エチレン/プロピレ
ンのモル比;  E34/44であり、IRlNMRに
よってN−メチルカプロラクタムに由来する − COCH2CH2CH2N HCH3の存在が確認
された。
The intrinsic viscosity of the obtained white amorphous solid is 0.98 dl/w
(30° C., toluene solution), the molar ratio of ethylene/propylene was E34/44, and the presence of -COCH2CH2CH2N HCH3 derived from N-methylcaprolactam was confirmed by IRlNMR.

実施例5 1、SLオートクレーブを乾燥、窒素置換した後、0.
5Lの精製乾燥したノルマルヘキサンを加え、そこに別
途調製した四塩化チタンとヒドロキシ塩化マグネシウム
から調製した触媒(Ig当り13mgのTi含有)74
1mgと、 トリエチルアルミニウム67mgのヘキサ
ン懸濁液(ヘキサン20m1)を加えた。ここに、25
0gのエチレンを加えた後、50℃で5時間反応させた
。次いで、100gのポリエチレングリコールジグリシ
ジルエーテル(数平均分子量2000)を圧入し、1時
間攪拌した。未反応エチレンをパージした後、反応懸濁
液を大量のメタノールに投入、撹拌により洗浄した後重
合体を分離した。析出物をイソプロピルアルフールで抽
出することにより精製して白色固体を得た。このポリマ
ーの140℃における固有粘度は0.3L/gであり、
IR。
Example 5 1. After drying the SL autoclave and purging with nitrogen, 0.
5 L of purified and dried normal hexane was added, and a catalyst prepared from separately prepared titanium tetrachloride and magnesium hydroxychloride (containing 13 mg of Ti per Ig)74
1 mg of triethylaluminum and 67 mg of triethylaluminum in hexane suspension (20 ml of hexane). Here, 25
After adding 0 g of ethylene, the mixture was reacted at 50° C. for 5 hours. Next, 100 g of polyethylene glycol diglycidyl ether (number average molecular weight 2000) was press-fitted and stirred for 1 hour. After purging unreacted ethylene, the reaction suspension was poured into a large amount of methanol, washed with stirring, and then the polymer was separated. The precipitate was purified by extraction with isopropyl alfur to obtain a white solid. The intrinsic viscosity of this polymer at 140°C is 0.3 L/g,
IR.

NMRによってポリエチレングリコールセグメントの存
在が確認された。
The presence of polyethylene glycol segments was confirmed by NMR.

[発明の効果コ 本発明の製造法によφと、種々の性質を有した末端変性
オレフィン系重合体が合成できる。本発明の末端変性オ
レフィン系重合体は、従来なうかたもので、新規樹脂及
びポリオレフィンを側鎖に有するグラフト共重合体等の
合成原料等として有効である。
[Effects of the Invention] By the production method of the present invention, terminal-modified olefin polymers having various properties can be synthesized. The terminal-modified olefin polymer of the present invention is not conventional and is effective as a synthetic raw material for new resins and graft copolymers having polyolefins in their side chains.

Claims (1)

【特許請求の範囲】 1、遷移金属化合物触媒存在下、エチレン、炭素数3〜
20のα−オレフィン及び非共役二重結合をもつ直鎖ま
たは環状のジエンあるいはポリエンモノマーからなる群
より選ばれるモノマーを重合させたものと、一般式 ▲数式、化学式、表等があります▼(1) (式中X^1はO、SまたはNR^1、R^1は炭化水
素基)で表される基を有する化合物、一般式 ▲数式、化学式、表等があります▼(2) (式中X^2、X^3、X^4は、O、SまたはNR^
2、R^2は炭化水素基)で表される基を有する化合物
、及び一般式 ▲数式、化学式、表等があります▼(3) (式中nは1〜4、X^5は、O、SまたはNR^3、
X^6はC=O、C=S、C=NR^3またはCH_2
、R^3は炭化水素基)で表される基を有する化合物、
からなる群より選ばれる化合物とを反応させることを特
徴とする末端変性オレフィン系重合体の製造方法。 2、遷移金属化合物触媒存在下、エチレン、炭素数3〜
20のα−オレフィン及び非共役二重結合をもつ直鎖ま
たは環状のジエンあるいはポリエンモノマーからなる群
より選ばれる一種以上のモノマーを重合させた後、その
反応系に、一般式 ▲数式、化学式、表等があります▼(1) (式中X^1はO、SまたはNR^1、R^1は炭化水
素基)で表される基を有する化合物、一般式 ▲数式、化学式、表等があります▼(2) (式中X^2、X^3、X^4は、O、SまたはNR^
2、R^2は炭化水素基)で表される基を有する化合物
、及び一般式 ▲数式、化学式、表等があります▼(3) (式中nは1〜4、X^5は、O、SまたはNR^3の
いずれか、X^6はC=O、C=S、C=NR^3、ま
たはCH_2、R^3は炭化水素基)で表される基を有
する化合物からなる群より選ばれる化合物を加えて反応
させることを特徴とする末端変性オレフィン系重合体の
製造方法。 3、遷移金属化合物触媒がバナジウム化合物と有機アル
ミニウム化合物の組合せである請求項1または2記載の
製造方法。 4、エチレン、炭素数3〜20のα−オレフィン及び非
共役二重結合をもつ直鎖または環状のジエンあるいはポ
リエンモノマーからなる群より選ばれるモノマーの重合
体の末端が、一般式 ▲数式、化学式、表等があります▼(1) (式中、X^1はO、SまたはNR^1、R^1は炭化
水素基)で表される基を有する化合物、及び一般式▲数
式、化学式、表等があります▼(2) (式中X^2、X^3、X^4は、O、SまたはNR^
2、R^2は炭化水素基)で表される基を有する化合物
、及び一般式 ▲数式、化学式、表等があります▼(3) (式中nは1〜4、X^5は、O、SまたはNR^3、
X^8はC=O、C=S、C=NR^3またはCH_2
、R^3は炭化水素基)で表される基を有する化合物か
らなる群より選ばれる化合物によって変性されている末
端変性オレフィン系重合体。
[Scope of Claims] 1. In the presence of a transition metal compound catalyst, ethylene with 3 to 3 carbon atoms
There are polymerized monomers selected from the group consisting of 20 α-olefins and linear or cyclic diene or polyene monomers having non-conjugated double bonds, and general formulas ▲ mathematical formulas, chemical formulas, tables, etc. ▼ (1 ) (In the formula, X^1 is O, S or NR^1, R^1 is a hydrocarbon group) Compounds having a group represented by the general formula ▲ Numerical formula, chemical formula, table, etc. Medium X^2, X^3, X^4 are O, S or NR^
2, R^2 is a hydrocarbon group), and general formulas ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (3) (In the formula, n is 1 to 4, X^5 is O , S or NR^3,
X^6 is C=O, C=S, C=NR^3 or CH_2
, R^3 is a hydrocarbon group),
A method for producing a terminal-modified olefin polymer, the method comprising reacting a compound selected from the group consisting of: 2. In the presence of a transition metal compound catalyst, ethylene, carbon number 3-
After polymerizing one or more monomers selected from the group consisting of 20 α-olefins and linear or cyclic diene or polyene monomers having non-conjugated double bonds, the reaction system is added with the general formula ▲mathematical formula, chemical formula, There are tables, etc. ▼ (1) Compounds having a group represented by (in the formula, X^1 is O, S or NR^1, R^1 is a hydrocarbon group), general formula ▲ Numerical formula, chemical formula, table, etc. Yes▼(2) (In the formula, X^2, X^3, and X^4 are O, S, or NR^
2, R^2 is a hydrocarbon group), and general formulas ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (3) (In the formula, n is 1 to 4, X^5 is O , S or NR^3, X^6 is C=O, C=S, C=NR^3, or CH_2, R^3 is a hydrocarbon group). A method for producing a terminal-modified olefin polymer, which comprises adding and reacting a compound selected from among the above. 3. The manufacturing method according to claim 1 or 2, wherein the transition metal compound catalyst is a combination of a vanadium compound and an organoaluminium compound. 4. The terminal end of the polymer of a monomer selected from the group consisting of ethylene, an α-olefin having 3 to 20 carbon atoms, and a linear or cyclic diene or polyene monomer having a non-conjugated double bond has the general formula ▲ mathematical formula, chemical formula , tables, etc. ▼(1) Compounds having a group represented by (in the formula, X^1 is O, S or NR^1, R^1 is a hydrocarbon group), and general formulas ▲ Numerical formula, chemical formula, There are tables, etc.▼(2) (In the formula, X^2, X^3, and X^4 are O, S, or NR^
2, R^2 is a hydrocarbon group), and general formulas ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (3) (In the formula, n is 1 to 4, X^5 is O , S or NR^3,
X^8 is C=O, C=S, C=NR^3 or CH_2
, R^3 is a hydrocarbon group).
JP9613090A 1990-04-10 1990-04-10 Production of terminal-modified olefin polymer Pending JPH03292304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9613090A JPH03292304A (en) 1990-04-10 1990-04-10 Production of terminal-modified olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9613090A JPH03292304A (en) 1990-04-10 1990-04-10 Production of terminal-modified olefin polymer

Publications (1)

Publication Number Publication Date
JPH03292304A true JPH03292304A (en) 1991-12-24

Family

ID=14156808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9613090A Pending JPH03292304A (en) 1990-04-10 1990-04-10 Production of terminal-modified olefin polymer

Country Status (1)

Country Link
JP (1) JPH03292304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011958A1 (en) * 1994-10-13 1996-04-25 Mitsui Petrochemical Industries, Ltd. Process for producing polyolefin having terminal functional group

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011958A1 (en) * 1994-10-13 1996-04-25 Mitsui Petrochemical Industries, Ltd. Process for producing polyolefin having terminal functional group

Similar Documents

Publication Publication Date Title
JP3739401B2 (en) Blends and alloys of polycyclic polymers
US6043401A (en) Reactive, low molecular weight, viscous poly(1-olefins) and copoly(1-olefins) and their method of manufacture
US5688887A (en) Reactive, low molecular weight, viscous poly(1-olefins) and copoly(1-olefins) and their method of manufacture
EP0642539B1 (en) Reactive, low molecular weight, viscous poly(1-olefins) and copoly(1-olefins) and their method of manufacture
US20060183631A1 (en) Supported metallocene catalyst and method of preparing ethylene-based copolymer using the same
US10508165B2 (en) Olefin-based polymer
JP2007517087A (en) Polyethylene for water supply pipes with excellent processability and pressure resistance characteristics using a hybrid supported metallocene catalyst and method for producing the same
JPH08100029A (en) Cycloolefin polymer
US7166682B2 (en) Process to prepare a particulated metallocene catalyst with a modified aluminoxane and use in polymerization of olefins
JPS61228003A (en) Alpha-olefin polymer and manufacture
WO1987000184A1 (en) Polyethylene composition
KR100376918B1 (en) Olefin block copolymers and preparation method thereof
SK46393A3 (en) Method of polymerization of olefins and block copolymers derived from one oplefin at least
US6518384B1 (en) Preparation of highly branched, liquid polymers of ethylene and/or α-olefins in the presence of aluminum-based catalyst systems
JP2022515730A (en) Olefin polymerization catalyst and olefin polymer prepared using it
US5623039A (en) Cycloolefin polymers
US3457244A (en) Process for preparing a polymer
US20110003954A1 (en) Cyclobutene polymers and methods of making the same
KR100458810B1 (en) Highly transparent and highly flexible phosphorous polyolefin composition
JPH03292304A (en) Production of terminal-modified olefin polymer
JPH09502212A (en) New ring-closure polymer from non-conjugated dienes
JPH0558020B2 (en)
JP3962544B2 (en) Method for producing polypropylene-b-poly (ethylene-co-propylene)
US5135996A (en) Process of making copolymers for viscosity index improvers
EP1493760A1 (en) Styrene copolymerisation process