JPH03291997A - Magnetic shielding device - Google Patents
Magnetic shielding deviceInfo
- Publication number
- JPH03291997A JPH03291997A JP9344290A JP9344290A JPH03291997A JP H03291997 A JPH03291997 A JP H03291997A JP 9344290 A JP9344290 A JP 9344290A JP 9344290 A JP9344290 A JP 9344290A JP H03291997 A JPH03291997 A JP H03291997A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- shielding
- center
- magnetic field
- shielding device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000696 magnetic material Substances 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 abstract description 30
- 230000004907 flux Effects 0.000 abstract description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 14
- 230000035699 permeability Effects 0.000 abstract description 14
- 229910052742 iron Inorganic materials 0.000 abstract description 7
- 229910000889 permalloy Inorganic materials 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は電気機器、電子機器等に関連して用いられる磁
気を遮蔽するシールド容器等の装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to devices such as shield containers for shielding magnetism used in connection with electrical equipment, electronic equipment, and the like.
(従来の技術)
電気、電子機器の高性能化と急激な利用拡大に伴って、
これらの機器使用磁界は大きくなる一方、操作室や試験
室または人体等を磁界から保護したり、電子機器相互の
磁気による障害を防ぐため、機器からでる磁界を遮蔽す
る能動遮蔽や、機器に侵入してくる磁界を遮蔽する受動
遮蔽が行われ、磁気遮蔽材が使用されている。(Conventional technology) With the improvement in performance and rapid expansion of use of electrical and electronic equipment,
As the magnetic fields used by these devices become larger, in order to protect operation rooms, test rooms, and human bodies from magnetic fields, and to prevent interference between electronic devices due to magnetic fields, active shielding is required to shield the magnetic fields emitted from the devices and prevent intrusion into the devices. Passive shielding is used to block the incoming magnetic fields, and magnetic shielding materials are used.
例えば核磁気共鳴(NMR)を用いたイメージング装置
においては、超電導磁石等による高磁界を必要とするの
で、測定領域外への漏れ磁束が大きくなる。そこで環境
への漏れ磁界を少なくするため、磁気シールドが行われ
る。For example, in an imaging apparatus using nuclear magnetic resonance (NMR), a high magnetic field from a superconducting magnet or the like is required, resulting in a large leakage of magnetic flux outside the measurement area. Therefore, magnetic shielding is used to reduce the leakage of magnetic fields into the environment.
このような磁気妨害を回避するためには、シールド材と
して鉄をはじめとする軟質磁性材料が用いられている。In order to avoid such magnetic interference, soft magnetic materials such as iron are used as shielding materials.
例えば、核磁気共鳴(NMR)を利用した厚板鉄板等で
磁気シールドを行う。また、部屋をシールドする場合は
、小型、軽量化の要請を受けて、最近では電磁鋼板やパ
ーマロイ、アモルファス等の磁性薄帯も使用されるよう
になって来ている。For example, magnetic shielding is performed using a thick iron plate using nuclear magnetic resonance (NMR). In addition, when shielding a room, magnetic ribbons such as electromagnetic steel sheets, permalloy, and amorphous have recently come to be used in response to demands for smaller size and lighter weight.
磁気シールドには、一般に透磁率の高い材料が使用され
る。しかし、実際にはシールドされるべき磁場の強さに
よって透磁率が変わるため、適切な材料の選択が必要と
される。また、磁気シールドはシールドすべき磁界の磁
束を集めてシールドを行うものであるため、その磁界が
大きくなると、材料の断面積を大きくしたり、磁束密度
の高い材料を使用することが必要になる。A material with high magnetic permeability is generally used for the magnetic shield. However, since the magnetic permeability actually changes depending on the strength of the magnetic field to be shielded, it is necessary to select an appropriate material. In addition, magnetic shielding collects the magnetic flux of the magnetic field to be shielded, so as the magnetic field increases, it becomes necessary to increase the cross-sectional area of the material or use materials with high magnetic flux density. .
(発明が解決しようとする課題)
磁束密度の高い材料として使用されているものには、純
鉄系の電磁厚板や、電磁鋼板がある。しかし、このよう
な材料でも磁界が大きくなって来ると漏れ磁界が大きく
なり、断面積を大きくしなければならない。超電導磁石
による高い磁界をシールドするような場合には、断面積
はかなり大きくなり、シールド装置だけでもかなりむ重
量物になり、また材料コストも高くなる。(Problems to be Solved by the Invention) Materials used as materials with high magnetic flux density include pure iron-based electromagnetic thick plates and electromagnetic steel plates. However, even with such materials, as the magnetic field increases, the leakage magnetic field increases, and the cross-sectional area must be increased. In the case of shielding a high magnetic field from a superconducting magnet, the cross-sectional area becomes considerably large, the shielding device alone becomes quite heavy, and the material cost also increases.
また、パーマロイやアモルファス等のように透磁率が高
い材料は、飽和磁束密度が電磁鋼板の1/2〜1/3程
度に小さい。そのため、シールドすべき磁界が大きい場
合、積層して断面積を大きくすると、重量は大きく且つ
、材料費も莫大なものとなる。そのため、施工費用や施
工上の問題となる場合もある。Further, materials with high magnetic permeability such as permalloy and amorphous have a saturation magnetic flux density as low as about 1/2 to 1/3 that of electrical steel sheets. Therefore, when the magnetic field to be shielded is large, if the cross-sectional area is increased by laminating layers, the weight and material cost will be enormous. Therefore, there may be problems with construction costs and construction.
そこで、本発明の目的は、シールド磁界が大きい場合で
も、平均断面積を小さくし、軽量化を図り、安価で遮蔽
効果の良好なシールド装置を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a shielding device that has a small average cross-sectional area, is lightweight, and has a good shielding effect at low cost even when the shielding magnetic field is large.
(課題を解決するための手段)
本発明は、磁気シールド用磁性材料の断面形状をかえ、
磁気シールド特性を高めると共に、軽量化と低廉化をも
たらすシールド装置を提供する。(Means for Solving the Problems) The present invention provides for changing the cross-sectional shape of the magnetic material for magnetic shielding,
Provided is a shielding device that improves magnetic shielding characteristics and is lightweight and inexpensive.
磁気シールドを行う場合、シールド材料の選択は、透磁
率の高い材料が求められるが、磁性材料として現在利用
できる材料は、透磁率が高いと、その飽和磁束密度は低
くなる。パーマロイPCは代表的な高透磁率の材料で、
最大透磁率は100.000以上であるが、その飽和磁
束密度は7kG程度であり、鉄の20kGに比べかなり
低い。パーマロイPBは、最大透磁率は30,000以
上を示すが、飽和磁束密度は14kGと低い。シールド
磁界が大きい場合には、鉄系の材料が用いられるが、飽
和磁束密度は高いが透磁率は低く板厚を大きくする必要
がある。When performing magnetic shielding, a material with high magnetic permeability is required when selecting a shielding material, but the saturation magnetic flux density of the materials currently available as magnetic materials is low when the magnetic permeability is high. Permalloy PC is a typical material with high magnetic permeability.
Although the maximum magnetic permeability is 100,000 or more, its saturation magnetic flux density is about 7 kG, which is considerably lower than the 20 kG of iron. Permalloy PB exhibits a maximum magnetic permeability of 30,000 or more, but a saturation magnetic flux density as low as 14 kG. When the shielding magnetic field is large, an iron-based material is used, but it has a high saturation magnetic flux density but a low magnetic permeability, so it is necessary to increase the plate thickness.
したがって、磁気シールドを行う場合にはシールドすべ
き磁界に対応して、磁性材料が飽和し磁束が漏れる場合
は、材料の板厚を大きくすることで対処している。しか
し、板厚を大きくすると、当然重量が増え、大型のシー
ルド装置では重量が大きくなり施工工事に手間が掛かる
上、極端な場合には、建物の床重量設置基準を超え、機
器の設置すら不可能になる場合もある。また、透磁率の
高い材料は高優で、板厚が大きくなるとシールド費用は
急激に増加する。Therefore, when performing magnetic shielding, if the magnetic material is saturated and magnetic flux leaks in response to the magnetic field to be shielded, this is dealt with by increasing the thickness of the material. However, increasing the thickness of the board naturally increases the weight, and large shield devices are heavier and require more effort to install.In extreme cases, the floor weight installation standards of the building may be exceeded, making it impossible to even install the equipment. In some cases it may be possible. In addition, materials with high magnetic permeability are of high quality, and as the thickness of the plate increases, the cost of shielding increases rapidly.
そこで、本発明においては、磁性材料の断面積を一様に
大きくするのでなく、一部分のみの断面積を大きくし、
磁気シールド性、施工性の優れたシールド装置とするも
のである。このようにして、透磁率の高い材料も有効に
使用され、軽量化、施工性の向上とシールド費用の低減
を図れる。Therefore, in the present invention, instead of uniformly increasing the cross-sectional area of the magnetic material, only a portion of the cross-sectional area is increased,
The purpose is to provide a shielding device with excellent magnetic shielding properties and workability. In this way, materials with high magnetic permeability can be used effectively, making it possible to reduce weight, improve workability, and reduce shielding costs.
このシールド磁性材料は、どのような磁性材料でも良く
、透磁率の高い、パーマロイやアモルファス等から磁束
密度の高い電磁鋼板、電磁厚板等で構成されるシールド
装置に適用できる。This shielding magnetic material may be any magnetic material, and can be applied to a shielding device composed of permalloy, amorphous, etc. with high magnetic permeability, electromagnetic steel plate, electromagnetic thick plate, etc. with high magnetic flux density.
第1図はシールド容器への磁束漏れの図である。FIG. 1 is a diagram of magnetic flux leakage into the shield container.
磁気シールドの場合、シールド磁界が小さくて軟質磁性
材料が飽和しない場合、シールド性は第1図のaに示す
ようにシールド装置の中央部−磁性材料の中央−で最良
となる。しかし、シールド磁界が大きく磁性材料が飽和
し磁束が漏れてくる場合は、第1図のbに示すように中
央部から磁束の漏れが生じ、シールド性が悪くなること
を見出した。In the case of magnetic shielding, if the shielding magnetic field is small and the soft magnetic material is not saturated, the shielding performance is best at the center of the shielding device - the center of the magnetic material, as shown in Figure 1a. However, it has been found that when the shielding magnetic field is large enough to saturate the magnetic material and the magnetic flux leaks, the leakage of magnetic flux occurs from the center as shown in FIG. 1b, and the shielding performance deteriorates.
したがって、シールド磁界が大きい場合、板厚を一様に
厚くする必要はなく、材料の断面積を変えて、効果的に
シールドを行い得ることになる。Therefore, when the shielding magnetic field is large, it is not necessary to uniformly increase the plate thickness, and it is possible to effectively shield by changing the cross-sectional area of the material.
磁性材料の断面積を変えるのは、材料の磁化方向即ちシ
ールド磁界の方向に沿って中央部を大きく、端部を小さ
くする。この断面積の差は実験的に決めることができる
が、次のような式にしたがって決めていくことができる
。The cross-sectional area of the magnetic material is changed by making the center part larger and the end parts smaller along the magnetization direction of the material, that is, the direction of the shielding magnetic field. This difference in cross-sectional area can be determined experimentally using the following formula.
今、シールド部材の端部と材料の断面積の差をΔSとす
ると、ΔSは材料幅が一定であるため、板厚差Δtに置
き換えられる。Δtは材料の長さをLとすると、板中央
を原点とするXの関数で表される次式にしたがって選べ
ばよい。Now, assuming that the difference in cross-sectional area between the end of the shield member and the material is ΔS, ΔS is replaced by the plate thickness difference Δt since the material width is constant. Δt may be selected according to the following equation, which is expressed as a function of X with the origin at the center of the plate, where L is the length of the material.
Δを一Δt (1−(2x/L) ) (
1)ただしΔt0は材料中央と端部の板厚さであり、端
部はx−L/2で、Δt−0である。Δt (1-(2x/L)) (
1) However, Δt0 is the thickness of the material at the center and at the ends, and at the ends, x-L/2 is Δt-0.
Δt0は、材料が同じであれば、L及びシールド磁界強
さによって決まる値である。ただし、実際にシールド容
器を設計する場合、加工上繁雑になる場合は(1)式に
近い直線で近似することも可能であり、また、シールド
磁界がそれ程大きくない場合は、Xに相当する距離だけ
、Δを一Δt0とすることも可能である。If the materials are the same, Δt0 is a value determined by L and the shielding magnetic field strength. However, when actually designing a shielded container, if the processing becomes complicated, it is possible to approximate it with a straight line close to equation (1), and if the shielding magnetic field is not that large, it is possible to approximate the distance equivalent to X. It is also possible to set Δ to −Δt0.
(実施例1)
内径100關、長さ300市の円筒シールド容器を最大
透磁率1500の鉄板で製作した。板厚を端部で2mm
5円筒150mm位置で4■1の厚みとし、式(1)に
したがって円筒長さ方向の板厚に加工した。(Example 1) A cylindrical shield container with an inner diameter of 100 mm and a length of 300 mm was manufactured using an iron plate with a maximum permeability of 1,500. The plate thickness is 2mm at the end.
5 The thickness was set to 4×1 at the 150 mm position of the cylinder, and the plate thickness was processed in the length direction of the cylinder according to formula (1).
また、比較のために同一材料で円筒全長の板厚が21鵬
、 3mm、 411の円筒を製作した。シールド性
は、平行直流磁界の中に円筒の長さ方向が磁界と平行に
なるように設置し、直流磁界強さを変えて円筒内部の磁
界を測定した。For comparison, a cylinder with a plate thickness of 21 mm, 3 mm, and 411 mm in total length was manufactured using the same material. The shielding property was measured by installing the cylinder in a parallel DC magnetic field so that the length direction was parallel to the magnetic field, and measuring the magnetic field inside the cylinder by changing the DC magnetic field strength.
表1に測定結果を示す。Table 1 shows the measurement results.
本発明によるシールド容器1は、全長が4關厚の容器と
同等のシールド性を示した。一方、2關。The shielded container 1 according to the present invention exhibited shielding properties equivalent to a container having a total length of 4 mm. On the other hand, the second issue.
3■l板厚の場合はシールド磁界が大きくなると、中央
部のシールド性は悪くなった。In the case of a 3■l plate thickness, as the shielding magnetic field increased, the shielding performance at the center deteriorated.
表
(山)
本発明
比較12
比較23
比較34
Hex−5G Hex−20G
12B 7.2
7.8 1.0
16.7 1.1
B2.5 5.2
So京−シールド磁界強さHex/
シールド後磁界強さHl
(実施例2)
板中央部1/3を板厚2waIss両端部の板厚を1m
IIとした磁性材料を100mm角、長さ80hmの角
筒に組み立て、実施例1と同様の実験を行った。Table (mountain) Invention comparison 12 Comparison 23 Comparison 34 Hex-5G Hex-20G 12B 7.2 7.8 1.0 16.7 1.1 B2.5 5.2 Sokyo-shield magnetic field strength Hex/shield Rear magnetic field strength Hl (Example 2) The thickness of the center 1/3 of the plate is 2waIss, the thickness of both ends is 1m
The magnetic material II was assembled into a rectangular tube of 100 mm square and 80 hm long, and the same experiment as in Example 1 was conducted.
比較として各々1+n、2m板厚の板から角筒を製作し
た。For comparison, rectangular tubes were made from plates with thicknesses of 1+n and 2m, respectively.
表2に結果を示す。Table 2 shows the results.
2市板厚の角筒と同等のシールド特性を示すことが分か
る。It can be seen that it exhibits shielding characteristics equivalent to a square tube with a thickness of 2 mm.
表 2 (Hex−25G) シールド容器 シールド性S。Table 2 (Hex-25G) Shield container Shielding property S.
本発明 9.7
比較12.7
比較2 10.2
(発明の効果)
本発明は、磁性材料を用いる磁気シールドの方法におい
て、シールド装置を構成する磁性材料の断面積をシール
ド磁界の方向に材料中央部を大きく、端部を小さくする
ので、磁束漏れを効果的にシールドができ、軽量で安価
なシールド装置を提供できる。The present invention 9.7 Comparison 12.7 Comparison 2 10.2 (Effects of the invention) The present invention provides a method of magnetic shielding using a magnetic material, in which the cross-sectional area of the magnetic material constituting the shielding device is increased in the direction of the shielding magnetic field. Since the central portion is made large and the end portions are made small, magnetic flux leakage can be effectively shielded, and a lightweight and inexpensive shielding device can be provided.
第1図はシールド容器への磁束漏れの図表である。 FIG. 1 is a diagram of magnetic flux leakage into a shielded container.
Claims (2)
断面積を大きくしたことを特徴とする磁気シールド装置
。1. A magnetic shielding device characterized in that the cross-sectional area of a central portion of a magnetic material constituting the magnetic shielding device is increased.
とき、中央部から端部への距離xにおける板厚差Δtを
、Δt=Δt_0(1−(2x/L)^2)とすること
を特徴とする請求項1記載の磁気シールド装置。 ここで、L:磁気シールド装置の長さ2. When the plate thickness difference between the center and the end of the magnetic material is Δt_0, the plate thickness difference Δt at the distance x from the center to the edge is Δt=Δt_0(1-(2x/L)^2) The magnetic shielding device according to claim 1, characterized in that: Here, L: length of the magnetic shielding device
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9344290A JPH03291997A (en) | 1990-04-09 | 1990-04-09 | Magnetic shielding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9344290A JPH03291997A (en) | 1990-04-09 | 1990-04-09 | Magnetic shielding device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03291997A true JPH03291997A (en) | 1991-12-24 |
Family
ID=14082442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9344290A Pending JPH03291997A (en) | 1990-04-09 | 1990-04-09 | Magnetic shielding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03291997A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6280168B1 (en) * | 1999-07-01 | 2001-08-28 | Sanyo Electric Co., Ltd | Multi-cylinder rotary compressor |
JP2017053810A (en) * | 2015-09-11 | 2017-03-16 | 日置電機株式会社 | Current sensor and measuring apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62203399A (en) * | 1986-03-03 | 1987-09-08 | 富士電機株式会社 | Magnetic shielding apparatus of chamber in which uniform field magnet is installed |
-
1990
- 1990-04-09 JP JP9344290A patent/JPH03291997A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62203399A (en) * | 1986-03-03 | 1987-09-08 | 富士電機株式会社 | Magnetic shielding apparatus of chamber in which uniform field magnet is installed |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6280168B1 (en) * | 1999-07-01 | 2001-08-28 | Sanyo Electric Co., Ltd | Multi-cylinder rotary compressor |
JP2017053810A (en) * | 2015-09-11 | 2017-03-16 | 日置電機株式会社 | Current sensor and measuring apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5045637A (en) | Magnetic shielding material | |
JP2005514797A (en) | Wall member for magnetic shield room and magnetic shield room | |
Deng et al. | Magnetic flux biasing of magnetostrictive sensors | |
US4484814A (en) | Superconductive magnet | |
JPH03291997A (en) | Magnetic shielding device | |
KR20210072092A (en) | Electromagnetic shielding plate, manufacturing method thereof, electromagnetic shielding structure and semiconductor manufacturing environment | |
JPH06132118A (en) | Superconduction electromagnet apparatus | |
JP4814618B2 (en) | Magnetic shield room | |
JPH03291996A (en) | Magnetic shielding device | |
Heinonen et al. | Properties of a thick-walled conducting enclosure in low-frequency magnetic shielding | |
JPH07273484A (en) | Magnetic shielding device | |
JPH08264350A (en) | Magnetic shield device | |
JPH08264351A (en) | Magnetic shield material | |
JPH0373598A (en) | Magnetic shielding device | |
CN110044459A (en) | Precision is without the low leakage electromagnetic damping device of vis in situ | |
JP2532226Y2 (en) | Magnetic shield box for color TV | |
JPH04324998A (en) | Electromagnetic shielding material | |
JPH01109799A (en) | Magnetic shielding device | |
JP5592193B2 (en) | Method of constructing a composite magnetic shield for disturbance magnetic fields | |
JP2532227Y2 (en) | Magnetic shield box | |
JP2606971B2 (en) | Electromagnetic shielding materials | |
JP2003152380A (en) | Magnetic shielding case | |
JP2004226345A (en) | Magnetic material detector | |
JP2606972B2 (en) | Electromagnetic shielding materials | |
Haga et al. | A new shielding device using U-shaped magnetic material |