JPH03291535A - Seismoscope - Google Patents

Seismoscope

Info

Publication number
JPH03291535A
JPH03291535A JP2094233A JP9423390A JPH03291535A JP H03291535 A JPH03291535 A JP H03291535A JP 2094233 A JP2094233 A JP 2094233A JP 9423390 A JP9423390 A JP 9423390A JP H03291535 A JPH03291535 A JP H03291535A
Authority
JP
Japan
Prior art keywords
vibration
earthquake
duration
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2094233A
Other languages
Japanese (ja)
Other versions
JP3047426B2 (en
Inventor
Akira Fujimoto
晶 藤本
Masao Hirano
平野 正夫
Hideyuki Bingo
備後 英之
Atsushi Kuno
敦司 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP9423390A priority Critical patent/JP3047426B2/en
Publication of JPH03291535A publication Critical patent/JPH03291535A/en
Application granted granted Critical
Publication of JP3047426B2 publication Critical patent/JP3047426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To accurately decide earthquake waves which are different, area by area, by superposing two conditions of a vibration frequency and duration one over the other and deciding the cause of the vibration. CONSTITUTION:A sensor part 1 supplies the electric signal of the vibration to a signal processing decision part 3 through a preamplifier 2 and the decision part 3 extracts the vibration frequency and duration of the signal wave. Then a fuzzy reasoning part 4 uses the vibration frequency, amplitude, and duration of the vibration and the number of peaks of the amplitude within a specific time which have acceleration larger than a specific threshold value as fuzzy variables to find the magnitude alphaof the earthquake as the sum of sets of definition variables alpha1, alpha2, and alpha3. Further, a tuning function pat 6 initializes a weight coefficient and a learning function part 5 increases or decreases the weight coefficient of a definition variable alphai which exerts maximum influence of the calculation of the magnitude alpha according to the decision result. Then the decision part 3 decides whether the vibration is caused by the earthquake or others by fuzzy logic of the reasoning part 4 where the two condition of the vibration frequency and duration are superposed one over the other, and outputs a specific signal to an output part 7 when it is decided that the magnitude alpha is larger than the threshold value TH and the earthquake causes the vibration.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、感震器に関し、特にガスメータ等に取り付け
られて地震を感知する感震器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a seismic sensor, and particularly to a seismic sensor that is attached to a gas meter or the like to sense earthquakes.

(従来の技術) 日本は、指折りの地震国であり、缶口数多くの有感、無
感地震が発生している。
(Prior Art) Japan is one of the most earthquake-prone countries, and has experienced numerous felt and non-sensible earthquakes.

地震による災害には、地震そのものによる一次災害と、
地震に付随して発生する二次災害とがある。二次災害は
火災なと人為的なものが多く、地震の発生がリアルタイ
ムに正確に検知され、これに基づいて適切な処置がとら
れれば、二次災害の発生がかなり防止される。
Disasters caused by earthquakes include primary disasters caused by the earthquake itself;
There are secondary disasters that occur along with earthquakes. Secondary disasters are often man-made such as fires, and if the occurrence of an earthquake is accurately detected in real time and appropriate measures are taken based on this, the occurrence of secondary disasters can be significantly prevented.

このため、地震の発生を振動センサを用い、振動波の一
つである地震波を、一定時間内に於ける振幅のピークの
数を計測する等の所定のアルゴリズムをもって検知する
感震器が秤々提案されている。
For this reason, there are many types of seismic sensors that use vibration sensors to detect the occurrence of earthquakes using predetermined algorithms such as measuring the number of amplitude peaks within a certain period of time. Proposed.

(発明が解決しようとする課題) しかし、地震波は、震源から観測点までの伝搬過程にて
、地盤、土壌など、数多くの要因によって影響を受けつ
つ数多くの反射、屈折を行い1、その波形は、複雑で、
千差万別である。とりわけその波形は、地盤、土壌によ
り太き(変化し、同一の地震に於いてもその波形が地域
によって大きく異なってしまう。このため従来のアルゴ
リズムによって種々の日常束じる振動波より地震波を選
別しようとしても、その判定率は各地域によって大きく
異なってしまう。
(Problem to be solved by the invention) However, during the propagation process from the epicenter to the observation point, seismic waves undergo numerous reflections and refractions while being influenced by many factors such as the ground and soil. , complex,
There are many variations. In particular, the waveform is thick (changes) depending on the ground and soil, and even in the same earthquake, the waveform differs greatly depending on the region.For this reason, conventional algorithms are used to select seismic waves from various vibration waves that are bundled in daily life. Even if they tried, the determination rate would vary greatly depending on the region.

一般的に、硬い地盤の地域では地震波の周期は短く、振
幅が小さく、逆に軟らかい地盤の地域では地震波の周期
は長く、振幅が大きい。
Generally, in areas with hard ground, seismic waves have short periods and small amplitudes, whereas in areas with soft ground, seismic waves have long periods and large amplitudes.

この様に地域によって大きく異なる地震波を、一定時間
内の振幅のピークの数の計測によって地震波の判定を行
うアルゴリズムに代表される従来の単一のアルゴリズム
のみでは、正確に判定できない。
Seismic waves, which vary greatly from region to region, cannot be accurately determined using a single conventional algorithm, such as an algorithm that determines seismic waves by measuring the number of amplitude peaks within a certain period of time.

この様なことから、すべての地域で高い判定率を得るた
めには各地域ごとに異なったアルゴリズムを用意しなけ
ればならず、これには開発費用などの経費が膨大なもの
になり、これは実用上、不可能に近い。
For this reason, in order to obtain a high detection rate in all regions, it is necessary to prepare a different algorithm for each region, which requires enormous development costs and other expenses. Practically speaking, this is close to impossible.

本発明は、上述の如き従来の問題点に着目して成された
ものであり、各地域ごとに異なる地震波を正確に判定で
きる感震器を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a seismic sensor that can accurately determine seismic waves that vary from region to region.

(課題を解決するための手段) 上述の如き目的は、本発明によれば、振動を電気信号に
変換する振動センサと、前記振動センサよりの電気信号
より振動数と持続時間とを抽出し、振動数と持続時間の
二つの条件の重畳により振動が地震によるものか、その
他の原因によるものかを判定し、振動が地震によるもの
であると判定した時には特定の信号を出力する信号処理
判定部とを有していることを特徴とする感震器によって
達成される。
(Means for Solving the Problem) According to the present invention, the above-mentioned object includes a vibration sensor that converts vibration into an electric signal, a vibration frequency and a duration extracted from the electric signal from the vibration sensor, A signal processing/judgment unit that determines whether the vibration is due to an earthquake or another cause based on the superposition of two conditions, frequency and duration, and outputs a specific signal when it is determined that the vibration is due to an earthquake. This is achieved by a seismic sensor characterized by having the following.

本発明による感震器は、振動が地震によるものか、その
他の原因によるものかの判定結果の適否に基づいて振動
数と持続時間の二つの条件の重畳による判定条件を学習
する学習機能部を有して良く、また振動が地震によるも
のか、その他の原因によるものかの判定結果の適否に関
する信号を前記学習機能部に与える手動操作部が家屋内
に設けられていてよい。
The seismic sensor according to the present invention has a learning function section that learns a judgment condition based on the superposition of two conditions of vibration frequency and duration based on the suitability of the judgment result as to whether the vibration is caused by an earthquake or another cause. In addition, a manual operation section may be provided in the house for supplying a signal to the learning function section regarding the suitability of the determination result as to whether the vibration is caused by an earthquake or another cause.

(作用) 一般に、地震波は所定帯域の振動数の振動を所定時間に
亘って持続するから、上述の如く振動数と持続時間の二
つの条件の重畳により振動が地震によるものか、その他
の原因によるものかの判定が行われて地震が検知される
。そして振動が地震によるものか、その他の原因による
ものかの判定結果の適否に基ついて振動数と持続時間の
二つの条件の重畳による判定条件が学習されることによ
り、これが設置地域に於ける地震波判定に適合するよう
になる。振動が地震によるものか、その他の原因による
ものかの判定結果の適否に関する信号を前記学習機能部
に与える手動操作部が家屋内に設けられていてば、この
操作が家屋内にて行われる。
(Function) In general, seismic waves continue to vibrate at a frequency in a predetermined band for a predetermined period of time, so as mentioned above, the combination of the two conditions of frequency and duration determines whether the vibration is due to an earthquake or due to other causes. An earthquake is detected by determining whether it is a thing or not. Then, based on the suitability of the judgment result of whether the vibration is caused by an earthquake or another cause, a judgment condition based on the superposition of two conditions of vibration frequency and duration is learned, and this is a judgment condition that determines whether the vibration is caused by earthquake waves in the installation area. It becomes compatible with the judgment. If a manual operation unit is provided in the house that provides a signal regarding the suitability of the judgment result as to whether the vibration is due to an earthquake or another cause to the learning function unit, this operation is performed inside the house.

(実施例) 以下に添付の図を参照して本発明を実施例について詳細
に説明する。
(Example) The present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明による感震器の一実施例を示している。FIG. 1 shows an embodiment of a vibration sensor according to the present invention.

第1図に於いて、符号1は感震器を示しており、感震器
1は、サイスモ系とトランスデユーサとの組合せにより
構成され、振動を与えられてこれを電気信号に変換する
センサ部1と、センサ部1より電気信号を与えられてS
/N比の向上と増幅とを行う前置増幅器2と、前置増幅
器2より増幅された電気信号を与えられる信号処理判定
部3と、ファジィ推論部4と、学習機能部5と、チュー
ニング機能部6と、信号処理判定部3より判定結果の電
気信号を与えられる出力部7とを有している。
In Fig. 1, the reference numeral 1 indicates a seismic sensor, and the seismic sensor 1 is composed of a combination of a cysmo system and a transducer, and is a sensor that receives vibration and converts it into an electrical signal. section 1, and S is given an electric signal from the sensor section 1.
A preamplifier 2 that improves the /N ratio and performs amplification, a signal processing determination unit 3 that receives the electrical signal amplified by the preamplifier 2, a fuzzy inference unit 4, a learning function unit 5, and a tuning function. 6 and an output section 7 to which the electrical signal of the determination result from the signal processing determination section 3 is applied.

出力部7はブサー8に対して作動信号を出力し、また感
震器1がガス需要家のガスメータに設置される場合は、
出力部7はガスの供給を遮断する遮新井9に対し制御信
号を出力し、地震時には遮断弁9を遮断作動させるよう
になっている。
The output unit 7 outputs an activation signal to the buzzer 8, and when the seismic sensor 1 is installed in a gas meter of a gas consumer,
The output unit 7 outputs a control signal to the cutoff well 9 that cuts off the gas supply, and operates the cutoff valve 9 to cut off the gas supply in the event of an earthquake.

信号処理判定部3は、前置増幅器2よりの電気信号、即
ち判定対象の信号波を与えられて、これよりこの信号波
の振動数と持続時間とを抽出し、振動数と持続時間の二
つの条件の重畳により振動が地震によるものか、或いは
その他の原因によるものかを判定し、振動が地震による
ものであると判定した時には地震であることを示す特定
の信号を出力部7へ出力するように構成されている。
The signal processing/determination section 3 is given the electric signal from the preamplifier 2, that is, the signal wave to be determined, extracts the frequency and duration of this signal wave from this, and divides the frequency and duration into two. It determines whether the vibration is due to an earthquake or another cause by superimposing two conditions, and when it is determined that the vibration is due to an earthquake, it outputs a specific signal indicating that it is an earthquake to the output section 7. It is configured as follows.

信号処理判定部3に於ける上述の如き判定はファジィ推
論部4を用いてファジィ理論により行われるようになっ
ている。この場合のファジィ変数としては、振動数と、
振幅と、振動の持続時間と、所定の閾値以上の加速度を
持つ所定時間内の振幅のピーク数とが用いられ、次のよ
うに定義されたファジィルールのもとにファジィ推論が
行われる。
The above-mentioned determination in the signal processing determination section 3 is performed using a fuzzy inference section 4 based on fuzzy theory. In this case, the fuzzy variables are the frequency and
The amplitude, the duration of the vibration, and the number of peaks of the amplitude within a predetermined time period having an acceleration equal to or greater than a predetermined threshold are used, and fuzzy inference is performed based on the fuzzy rule defined as follows.

α1=W13μm (χ1) V μ4 (χ4)・W4    ・・・(1)α2=
W2 ・μ2 (χ2) Δ μ3 (χ3)・w3    ・・・(2)α3 
=w1 ・μm (χ1) Δ μ3 (χ3)・w3     ・・・(3)α 
=α1 Vα2Vα3         ・・・(4)
μ、(χ1)は振動数に関する地震らしさを、μ2 (
χ2)は振幅に関する地震らしさを、μ3(χ3)は振
動の持続時間に関する地震らしさを、μ4 (χ4)は
所定閾値以上の加速度の振幅ピーク数に関する地震らし
さを各々示し、Wl 、w2、W3 、W4は各々ファ
ジィ変数χ1・χ2・χ3・χ4の重みを決定する係数
である。
α1=W13μm (χ1) V μ4 (χ4)・W4 ... (1) α2=
W2 ・μ2 (χ2) Δ μ3 (χ3)・w3 ... (2) α3
= w1 ・μm (χ1) Δ μ3 (χ3)・w3 ... (3) α
= α1 Vα2 Vα3 ... (4)
μ, (χ1) is the earthquake-likeness regarding the frequency, μ2 (
χ2) indicates the likeness of an earthquake regarding the amplitude, μ3 (χ3) indicates the likeness of an earthquake regarding the duration of vibration, μ4 (χ4) indicates the likeness of an earthquake regarding the number of amplitude peaks of acceleration above a predetermined threshold, and Wl, w2, W3, W4 is a coefficient that determines the weight of the fuzzy variables χ1, χ2, χ3, and χ4, respectively.

α1は振動数に関する地震らしさと振幅のピーク数によ
る地震らしさとの和集合による定義変数であり、これは
専ら自動車、トラック等の走行振動対策である。
α1 is a defined variable that is the union of the earthquake-likeness in terms of frequency and the earthquake-likeness in terms of the number of amplitude peaks, and is used exclusively as a countermeasure against running vibrations of automobiles, trucks, etc.

α2は振幅に関する地震らしさと振動の持続時間に関す
る地震らしさとの積集合による定義変数であり、これは
専ら遊戯用のボール等がぶつけられたことによる振動対
策である。
α2 is a defined variable that is the product of the earthquake-likeness related to the amplitude and the earthquake-likeness related to the duration of vibration, and this is a measure against vibration caused exclusively by being hit by a game ball or the like.

α3は振動数に関する地震らしさと振動の持続時間によ
る地震らしさとの積集合による定義変数であり、これは
専ら人が寄り掛った等による振動対策である。
α3 is a defined variable that is the product of the earthquake-likeness in terms of frequency and the earthquake-likeness in terms of duration of vibration, and is a measure against vibrations caused mainly by people leaning on the ground.

αは(4)式に示されている如く、α1とα2とα3と
の和集合により決まる地震度であり、この地震度αが予
め定められた閾値TH以上である場合には地震であると
判定し、そうでない場合には地震ではなくと外乱である
と判定するようになっている。
As shown in equation (4), α is the seismic intensity determined by the union of α1, α2, and α3, and if this seismic intensity α is greater than or equal to a predetermined threshold TH, it is considered an earthquake. If not, it is determined that it is not an earthquake but a disturbance.

第2図は振動数に関するファジィ変数χ1のメンバーシ
ップ関数μmの一例を、第3図は振幅に関するファジィ
変数χ2のメンバーシップ関数μ2の一例を、第4図は
振動の持続時間に関するファジィ変数χ3のフレンドシ
ップ関数μ3の一例を、第5図は所定の閾値以上の加速
度の振幅のピーク数に関するファジィ変数χ4のメンバ
ーシップ関数μ4の一例を各々示している。
Figure 2 shows an example of the membership function μm of the fuzzy variable χ1 related to the frequency, Figure 3 shows an example of the membership function μ2 of the fuzzy variable χ2 related to the amplitude, and Figure 4 shows the membership function μm of the fuzzy variable χ3 related to the duration of vibration. FIG. 5 shows an example of the friendship function .mu.3, and FIG. 5 shows an example of the membership function .mu.4 of the fuzzy variable .chi.4 regarding the number of peaks of the amplitude of acceleration above a predetermined threshold.

チューニング機能部6は重み係数W工の初期設定等を行
う調整部と、正しく判定が行われた否かに関しての信号
をユーザの判断により生じるリセット釦の如きスイッチ
釦を有しており、この信号に基いて学習機能部5は地震
度αの算出に最大の影響を与えたαiを求め、判定結果
が正しいと判断された場合にはそのαiに関連した重み
係数wiを増大し、これとは反対に判定結果が間違いで
あったと判断された時にはαiに関連した重み係数wi
を低減する学習制御を行うようになっている。
The tuning function unit 6 has an adjustment unit that performs initial settings of the weighting coefficient W, etc., and a switch button such as a reset button that generates a signal as to whether or not the determination has been made correctly based on the user's judgment. Based on this, the learning function unit 5 determines αi that had the greatest influence on the calculation of the earthquake intensity α, and if the determination result is determined to be correct, it increases the weighting coefficient wi related to that αi. On the other hand, when it is determined that the judgment result is wrong, the weighting coefficient wi related to αi
Learning control is now in place to reduce this.

第6図は」二連の如きファジィ理論を用いた判定アルゴ
リスムによる地震判定及びそれの学習を行うフローチャ
ートを示している。
FIG. 6 shows a flowchart for earthquake determination and learning based on a determination algorithm using a fuzzy theory such as "double series".

先ずステップ10に於ては、上述の(4)式に従って地
震度αを算出することが行われ、次にステップ20にて
今回用いられた定義変数α1、α2、α3を各々記憶す
ることが行われる。
First, in step 10, the earthquake intensity α is calculated according to the above equation (4), and then in step 20, the defining variables α1, α2, and α3 used this time are memorized. be exposed.

次にステップ30に於ては、地震度αが予め定められた
閾値THより大きいか否かによって地震判定が行われる
。α>THである場合は地震検知時てあって、この時に
はステップ40へ進んで地震判定出力処理が行われ、こ
れに対しα>THてない時は地震ではない時であってス
テップ10に戻る。
Next, in step 30, an earthquake determination is made based on whether the earthquake intensity α is greater than a predetermined threshold TH. If α > TH, it means that an earthquake has been detected, and in this case, the process proceeds to step 40 to perform earthquake determination output processing, whereas when α > TH, it means that there is no earthquake, and the process returns to step 10. .

ステップ40に於ては、例えばブザー8を作動させると
共に遮断弁9を遮断作動させることが行われる。
In step 40, for example, the buzzer 8 is operated and the cutoff valve 9 is cut off.

ステップ50は、チューニング機能部6に設けられたユ
ーザによるスイッチ釦の操作から、今回の地震判定結果
が正しいか否かの判別が行われ、正しいかった場合には
ステップ60へ進み、そうでない場合は、地震でもない
のに拘らず地震判定がされた場合にはステップ80へ進
む。
In step 50, it is determined whether or not the current earthquake determination result is correct based on the user's operation of a switch button provided in the tuning function section 6. If it is correct, the process proceeds to step 60; otherwise, the process proceeds to step 60. If an earthquake is determined even though it is not an earthquake, the process proceeds to step 80.

ステップ60に於ては、地震度αの算出に最大の影響を
与えたαiをステップ20にて記憶されているα1、α
2、α3より求めることが行われ、そしステップ70に
てαiに関連した重み係数wiを増大することが行われ
る。例えば、地震度αの算出に最大の影響を与えたαi
がα1である場合には、重み係数W1、W4が増加され
る。
In step 60, αi that had the greatest influence on the calculation of earthquake intensity α is calculated from α1 and α stored in step 20.
2, α3 is determined, and then, in step 70, the weighting coefficient wi associated with αi is increased. For example, αi has the greatest influence on the calculation of earthquake intensity α.
is α1, the weighting coefficients W1 and W4 are increased.

ステップ80に於ては、ステップ60と同様にαの算出
に最大の影響を与えたα1を求めることが行われ、そし
てステップ90に於ては、そのαiに関連した重み係数
wiを低減することが行われる。
In step 80, as in step 60, α1 that has the greatest influence on the calculation of α is determined, and in step 90, the weighting coefficient wi associated with αi is reduced. will be held.

」二連の如く、重み係数wiが判定結果の適否に基いて
学習されることにより、ファジィ理論による地震判定の
確率は使用過程にてより一層向−1ニし、その使用過程
にて感震器1の各々は各地域に適合したものになる。
As shown in the double series, by learning the weighting coefficient wi based on the suitability of the judgment result, the probability of earthquake judgment by fuzzy theory becomes even more positive in the process of use, and in the process of use, the probability of earthquake judgment Each of the vessels 1 will be adapted to each region.

第7図は本発明による感震器をガスメータに組込んだ一
つの実施例を示している。第7図に於て符号11はガス
メータを全体的に示しており、ガスメータ11には、ガ
スメータ表示部12以外に、に感震器10のセンサ部1
、信号処理判定部3等を構成されたコントローラ13、
ファジィ推論用マイクロプロセッサ14、感震器10等
の電源をなすりチューム電池15、遮断弁9、遮断理由
及び警告を表示する表示ランプ16、操作スイッチ17
を有している。操作スイッチ17は」二連の学習のため
のものであり、例えば抑圧回数が一回である場合は判定
結果が正しかったとし、皿回続けて押されれば判定結果
が間違っていたと、予め(・ψ作約束が決められていれ
はよい。
FIG. 7 shows one embodiment in which the seismic sensor according to the present invention is incorporated into a gas meter. In FIG. 7, reference numeral 11 indicates a gas meter as a whole, and the gas meter 11 includes a sensor section 1 of the seismic sensor 10 in addition to a gas meter display section 12.
, a controller 13 configured with a signal processing determination unit 3, etc.
A fuzzy inference microprocessor 14, a battery 15 for powering the seismic sensor 10, etc., a shutoff valve 9, an indicator lamp 16 that displays the reason for shutoff and a warning, and an operation switch 17
have. The operation switch 17 is for double learning; for example, if the number of times of suppression is one, it is assumed that the judgment result is correct, and if it is pressed twice in succession, the judgment result is incorrect.・It would be good if the ψ production promise was fixed.

第8図は第7図に示されている如き感震器付きのガスメ
ータ11が屋外に取付けられている場合を示しており、
第9図は感震器付きのガスメータ11が屋内に取付けら
れている場合の実施例を各々示している。尚、第8図及
び第9図に於て、各々符号18はガス管を、19は家屋
の壁を示している。
FIG. 8 shows a case where the gas meter 11 with a seismic sensor as shown in FIG. 7 is installed outdoors.
FIG. 9 shows an embodiment in which a gas meter 11 with a seismic sensor is installed indoors. In FIGS. 8 and 9, reference numeral 18 indicates a gas pipe, and 19 indicates a wall of a house.

第7図乃至第9図に示された実施例に於ては、何れの場
合に於ても表示ランプ16、操作スイッチ17はカスメ
ータ11に組込まれているが、カスメータ11が屋外に
配置される場合は、第10図或いは第11図に示されて
いる如く、表示ランプ16と操作スイッチ17、更には
ブザー8とかユニットボックス20にカスメータ11と
は別に組込まれ、このユニットボックス20のみが屋内
に配置されるようになっていてもよい。この場合には、
表示ランプ16の内容が屋内にて便利に見られるように
なり、また学習のための操作スイッチ17の操作も屋内
にて容易に行われ得るようになる。
In the embodiments shown in FIGS. 7 to 9, the display lamp 16 and the operation switch 17 are built into the scum meter 11 in all cases, but the sass meter 11 is placed outdoors. In this case, as shown in FIG. 10 or 11, the display lamp 16, operation switch 17, and even the buzzer 8 are incorporated into the unit box 20 separately from the meter 11, and only this unit box 20 is installed indoors. It may be arranged in such a way that the In this case,
The contents of the display lamp 16 can be conveniently viewed indoors, and the operation switch 17 for learning can also be easily operated indoors.

尚、」一連の実施例に於ては、地震判定が振動数、持続
時間以外に、振幅、ピーク数を用いてファジィ理論によ
り行われるか、本発明はこれに限定されるものではなく
、本発明に於ては、地震判定は、最少限度、振動数と接
続時間の二つの条件の重畳により行われれはよく、また
ファジィ理論による判定にも限定されるものではない。
In addition, in the series of embodiments, the present invention is not limited to this, and the present invention is not limited to whether earthquake determination is performed using fuzzy theory using amplitude and number of peaks in addition to frequency and duration. In the present invention, earthquake determination may be performed by superimposing two conditions, namely, minimum limit, vibration frequency, and connection time, and is not limited to determination based on fuzzy theory.

(発明の効果) 以にの説明から明らかな如く、本発明による感震器に於
ては、振動数と持続時間の少なくとも二つの条件の重畳
により振動か地震によるものか或いはその他の振動によ
るものかの’I’11定が行われて地震か検知されるか
ら、この地震検知が確実に行われるようになる。
(Effects of the Invention) As is clear from the above explanation, in the seismic sensor according to the present invention, it is possible to detect vibrations caused by earthquakes or other vibrations due to the superposition of at least two conditions of vibration frequency and duration. Since the 'I'11 determination is performed and an earthquake is detected, this earthquake detection can be performed reliably.

振動が地震によるものか、その他の原因によるものかの
判定結果の適否に基いて振動数と持続時間の二つの条件
の重畳による判定条件か学習されることにより、これが
設置される地域に於て地震判定の条件がより正しいもの
に適合するようになり、地震判定がより確実に高い判定
率をもって行われるようになる。
Based on the suitability of the judgment result as to whether the vibration is due to an earthquake or another cause, the judgment condition based on the superposition of the two conditions of vibration frequency and duration is learned, so that it can be used in the area where it is installed. The conditions for earthquake determination will become more accurate, and earthquake determination will be performed more reliably and with a higher determination rate.

地震が振動によるものか、その他の原因によるものかの
判定結果の適否に関する信号を学習機能部に与える操作
スイッチの如き手動操作部が屋内に設けられていれば、
この操作が屋内にて容易に行われ、学習のために屋外に
出る必要がなくなる。
If a manual operation unit such as an operation switch is provided indoors, which provides a signal to the learning function unit regarding the validity of the judgment result as to whether the earthquake was caused by vibration or other causes,
This operation can be easily performed indoors, eliminating the need to go outside for learning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による感震器の一つの実施例を示すブロ
ック線図、第2図乃至第5図は本発明による感震器にて
適用されるファジィ理論に用いられるメンバーシップ関
数特性を示すグラフ、第6図は本発明による感震器の作
動要領の一例を示すフローチャート、第7図は本発明に
よる感震器をガスメータに組込んだ一つの実施例を示す
斜視図、第8図乃至第11図は各々本発明による感震器
とガスメータとの組合せ実施例を示す概略構成図である
。 1・・・センサ部 2・・・前置増幅器 3・・・信号処理判定部 4・・・ファジィ推論部 5・・・学習機能部 6・・・チューニング機能部 7・・・出力部 8・・・ブザー 9・・・遮断弁 10・・・感震器 11・・・ガスメータ 12・・・ガスメータ表示部 13・・・コントローラ 15・・・リチューム電池 16・・・表示ランプ 17・・・操作スイッチ 18・・・ガス管 20・・・ボックスユニット
Fig. 1 is a block diagram showing one embodiment of the seismic sensor according to the present invention, and Figs. 2 to 5 show the membership function characteristics used in the fuzzy theory applied to the seismic sensor according to the present invention. FIG. 6 is a flowchart showing an example of the operation procedure of the seismic sensor according to the present invention, FIG. 7 is a perspective view showing one embodiment in which the seismic sensor according to the invention is incorporated into a gas meter, and FIG. FIGS. 11 to 11 are schematic configuration diagrams each showing an embodiment of the combination of a seismic sensor and a gas meter according to the present invention. 1... Sensor section 2... Preamplifier 3... Signal processing determination section 4... Fuzzy inference section 5... Learning function section 6... Tuning function section 7... Output section 8. ... Buzzer 9 ... Shutoff valve 10 ... Earthquake sensor 11 ... Gas meter 12 ... Gas meter display section 13 ... Controller 15 ... Lithium battery 16 ... Display lamp 17 ... Operation Switch 18...Gas pipe 20...Box unit

Claims (1)

【特許請求の範囲】 1、振動を電気信号に変換する振動センサと、前記振動
センサよりの電気信号より振動数と持続時間とを抽出し
、振動数と持続時間の二つの条件の重畳により振動が地
震によるものか、その他の原因によるものかを判定し、
振動が地震によるものであると判定した時には特定の信
号を出力する信号処理判定部と、 を有していることを特徴とする感震器。 2、振動が地震によるものか、その他の原因によるもの
かの判定結果の適否に基づいて振動数と持続時間の二つ
の条件の重畳による判定条件を学習する学習機能部を有
していることを特徴とする請求項1記載の感震器。 3、振動が地震によるものか、その他の原因によるもの
かの判定結果の適否に関する信号を前記学習機能部に与
える手動操作部が家屋内に設けられていることを特徴と
する請求項2記載の感震器。
[Claims] 1. A vibration sensor that converts vibration into an electrical signal, extracts the frequency and duration from the electrical signal from the vibration sensor, and generates vibration by superimposing the two conditions of frequency and duration. Determine whether it is due to an earthquake or other causes,
A seismic sensor comprising: a signal processing determination section that outputs a specific signal when determining that vibration is caused by an earthquake. 2. It has a learning function section that learns the judgment condition based on the superposition of two conditions of vibration frequency and duration based on the suitability of the judgment result of whether the vibration is caused by an earthquake or another cause. The seismic sensor according to claim 1, characterized in that: 3. A manual operation section according to claim 2, characterized in that a manual operation section is provided in the house for giving a signal to the learning function section regarding the suitability of the judgment result as to whether the vibration is caused by an earthquake or another cause. Seismic sensor.
JP9423390A 1990-04-10 1990-04-10 Seismic sensor Expired - Fee Related JP3047426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9423390A JP3047426B2 (en) 1990-04-10 1990-04-10 Seismic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9423390A JP3047426B2 (en) 1990-04-10 1990-04-10 Seismic sensor

Publications (2)

Publication Number Publication Date
JPH03291535A true JPH03291535A (en) 1991-12-20
JP3047426B2 JP3047426B2 (en) 2000-05-29

Family

ID=14104591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9423390A Expired - Fee Related JP3047426B2 (en) 1990-04-10 1990-04-10 Seismic sensor

Country Status (1)

Country Link
JP (1) JP3047426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233940A (en) * 1994-02-25 1995-09-05 Matsushita Electric Ind Co Ltd Controlling equipment of interruption of gas
JPH085448A (en) * 1994-06-15 1996-01-12 Sensor Gijutsu Kenkyusho:Kk Earthquake level determining method, gas meter, and earthquake intensity measuring method
JP2015190887A (en) * 2014-03-28 2015-11-02 日東工業株式会社 seismoscope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101946855B1 (en) * 2018-09-07 2019-02-15 대한민국 Seismic motion sensor and system for responsing earthquake using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233940A (en) * 1994-02-25 1995-09-05 Matsushita Electric Ind Co Ltd Controlling equipment of interruption of gas
JPH085448A (en) * 1994-06-15 1996-01-12 Sensor Gijutsu Kenkyusho:Kk Earthquake level determining method, gas meter, and earthquake intensity measuring method
JP2015190887A (en) * 2014-03-28 2015-11-02 日東工業株式会社 seismoscope

Also Published As

Publication number Publication date
JP3047426B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
CN100397073C (en) Gas identification system
US5001466A (en) Earthquake detector
US8955383B2 (en) Ultrasonic gas leak detector with false alarm discrimination
US20070013509A1 (en) Living being presence detection system
JPH0230455B2 (en)
DE69435324D1 (en)
EP0707205A3 (en) Apparatus for detecting anomalies within a monitored volume
GB2301921A (en) Fire alarm system
FR2884952A1 (en) Toddler/animal fall detection device, e.g. for home swimming pool, has electronic unit alternating device`s operating mode between calm, disturbed and agitated modes based on frequency of electric signals giving pressure variations by waves
US4386343A (en) Acoustic emission intruder alarm system
US11835670B2 (en) Seismic observation device, seismic observation method, and recording medium in which seismic observation program is recorded
JPH03291535A (en) Seismoscope
Liang et al. Robust robotic pouring using audition and haptics
JP3223337B2 (en) Leak sound detector
JPH06186125A (en) Method and apparatus for ultrasonic-wave-type leaking position measurement
CA1146253A (en) Method and apparatus of surveying nodular targets on the sea floor
JP2007033428A (en) Earthquake evaluation method and earthquake evaluation device
JPH0389124A (en) Seismic sensor
EP1769267B1 (en) Movement detection system and method
KR0141077B1 (en) Inference device for discriminating a certain oscillation
JPH1078371A (en) Liquid leakage detecting method and liquid leakage detector
US5339691A (en) Ultrasonic test system
JP3104320B2 (en) Vibration waveform discriminating inference device
JPH09264948A (en) Underwater voyager detector
JPH08247817A (en) Gas shut-off device and gas meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees