JPH0329114B2 - - Google Patents

Info

Publication number
JPH0329114B2
JPH0329114B2 JP9948183A JP9948183A JPH0329114B2 JP H0329114 B2 JPH0329114 B2 JP H0329114B2 JP 9948183 A JP9948183 A JP 9948183A JP 9948183 A JP9948183 A JP 9948183A JP H0329114 B2 JPH0329114 B2 JP H0329114B2
Authority
JP
Japan
Prior art keywords
coal
particle size
particles
water
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9948183A
Other languages
Japanese (ja)
Other versions
JPS59226094A (en
Inventor
Akira Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9948183A priority Critical patent/JPS59226094A/en
Publication of JPS59226094A publication Critical patent/JPS59226094A/en
Publication of JPH0329114B2 publication Critical patent/JPH0329114B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Description

【発明の詳細な説明】 本発明は高濃度石炭−水スラリの製造法に関
し、特に炭分回収率、脱灰率の高い高濃度石炭−
水スラリの製造法を提供せんとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a highly concentrated coal-water slurry, and in particular to a highly concentrated coal-water slurry with high coal recovery rate and high deashing rate.
It is an object of the present invention to provide a method for producing a water slurry.

本発明に於て、石炭高濃度水スラリとは、一般
的に石炭60〜85%(重量%)、界面活性剤0.01〜
5.0重量%(対石炭粉末)および残りが水分で構
成されるスラリ燃料を意味する。石炭高濃度水ス
ラリ中の石炭濃度、界面活性剤添加率は石炭の種
類によつて異なつてくる。石炭には灰分が含まれ
ているが、石炭高濃度水スラリをボイラで燃焼さ
せる際灰分があると、ボイラ効率の低下が発生す
るため、できるだけ灰分を燃焼前に除去しておく
ことが好ましい。又、石炭中の残灰分を各炭種毎
に値をそろえるということは炭種による発熱量、
燃焼効率のばらつきを最小にできるという効果が
ある。このような背景のもとに従来の脱灰プロセ
スが組み込まれた石炭高濃度水スラリ製造プロセ
スを第1図でもつて説明する。
In the present invention, a highly concentrated coal water slurry generally includes 60 to 85% (by weight) coal and 0.01 to 0.01 to 80% surfactant.
Means a slurry fuel consisting of 5.0% by weight (based on coal powder) and the remainder water. The coal concentration and surfactant addition rate in a highly concentrated coal water slurry vary depending on the type of coal. Coal contains ash, and if ash is present when a high-concentration coal water slurry is burned in a boiler, the efficiency of the boiler will decrease, so it is preferable to remove as much ash as possible before combustion. In addition, aligning the residual ash content in coal to the same value for each coal type means that the calorific value of each coal type,
This has the effect of minimizing variations in combustion efficiency. Based on this background, a coal high concentration water slurry manufacturing process incorporating a conventional deashing process will be explained with reference to FIG.

原炭30を原炭受入槽31に入れ、次いで定量
供給機32により石炭破砕機33に供給する。石
炭破砕機33では、約30〜50mm程度の粒径の原炭
30を約3mm以下の細炭34に破砕する。このよ
うに破砕された細炭34はスクリーン35により
粒径が3mm以上の石炭37と3mmより小さい石炭
36に分別される。粒径が3mmより小さい石炭3
6は細炭受入槽38に貯蔵される。一方、3mm以
上の石炭37は再び原炭受入槽31にもどされ
る。細炭受入槽38に貯蔵された粒径が3mmより
小さい石炭36は、定量供給機39により一定割
合で微粉砕機(通常湿式微粉砕機)40に供給さ
れ、水43と混合されながら200メツシユパス70
〜95%の如き微粉炭41に微粉砕される。微粉炭
41は石炭−水スラリ状(石炭濃度で約45〜55重
量%)で微粉炭貯槽42に受け入れられる。そし
て微粉炭41は後述する浮選機1の後に設置され
た脱水機2より分離された水14により約20〜30
重量%に濃度調整され、条件槽4に起泡剤24お
よび捕収剤25とともに供給されそして浮選機1
に導入されて灰分の少い石炭(精炭)11と灰分
の多い石炭(テール)12に別けられる。灰分の
多い石炭(テール)12は排水処理設備へ送られ
廃棄される。一方、灰分の少い石炭(精炭)11
は脱水機2により約20重量%水分の石炭濃度迄脱
水され、また脱水機2より分離された水14は条
件槽4に供給される微粉炭41の濃度調整に再利
用される。ケーキ状の水分約20重量%を含有する
精炭13は、スラリ調整槽3で界面活性剤の水溶
液26で石炭高濃度水スラリ15の最終石炭濃度
に再調整される。尚、第2図は上記従来方式の脱
灰プロセスのみを示している。
Raw coal 30 is put into a raw coal receiving tank 31, and then supplied to a coal crusher 33 by a quantitative feeder 32. The coal crusher 33 crushes raw coal 30 having a particle size of approximately 30 to 50 mm into fine coal 34 having a particle size of approximately 3 mm or less. The fine coal 34 crushed in this way is separated by a screen 35 into coal 37 with a particle size of 3 mm or more and coal 36 with a particle size of less than 3 mm. Coal 3 with particle size smaller than 3mm
6 is stored in the fine coal receiving tank 38. On the other hand, coal 37 of 3 mm or more is returned to the raw coal receiving tank 31 again. Coal 36 with a particle size smaller than 3 mm stored in the fine coal receiving tank 38 is supplied at a constant rate to a pulverizer (usually a wet pulverizer) 40 by a quantitative feeder 39, and is mixed with water 43 for 200 mesh passes. 70
It is comminuted to pulverized coal 41, such as ~95%. The pulverized coal 41 is received in a pulverized coal storage tank 42 in the form of a coal-water slurry (coal concentration of about 45 to 55% by weight). Then, the pulverized coal 41 is mixed with water 14 separated from the dehydrator 2 installed after the flotation machine 1, which will be described later.
The concentration is adjusted to % by weight, and the conditioned tank 4 is supplied with a foaming agent 24 and a scavenger 25, and the flotation machine 1
The coal is introduced into coal and is divided into coal with a low ash content (clean coal) 11 and coal with a high ash content (tail) 12. Coal (tail) 12 with a high ash content is sent to a wastewater treatment facility and disposed of. On the other hand, coal with low ash content (clean coal) 11
is dehydrated by the dehydrator 2 to a coal concentration of approximately 20% water by weight, and the water 14 separated by the dehydrator 2 is reused to adjust the concentration of pulverized coal 41 supplied to the conditioning tank 4. The cake-like clean coal 13 containing about 20% by weight of water is readjusted to the final coal concentration of a high coal concentration water slurry 15 in a slurry adjustment tank 3 with an aqueous surfactant solution 26. Note that FIG. 2 shows only the conventional deashing process described above.

以上が従来の脱灰プロセスが組み込まれた石炭
高濃度水スラリ製造プロセスである。ここで従来
のプロセスに於ては、かなり粒径巾の広い微粉炭
41を同時に条件槽4で処理し浮選機1に送つて
いる。しかし、条件槽4で微粉炭41と起泡剤2
4および捕収剤25を充分撹拌混合すると、微粉
炭41の微粒炭と粗粒炭で起泡剤24と捕収剤2
5との付着度合に差が発生し、浮選機1での脱灰
処理に微粒炭と粗粒炭との間に大きな差が生じる
ことになり、その為全微粉炭41の脱灰処理効率
が低下することとなる。すなわち、微粒炭の表面
積の方が粗粒炭に比らべて大きいので、起泡剤2
4および捕収剤25の付着量が多いが、粒径が小
さいため浮選特性は悪く、一方粗粒炭への付着量
は少いが粗径が大きいため浮選特性は良い等に原
因して全体の灰分の少い石炭(精炭)11の回収
率が起泡剤24および捕収剤25の添加率の割合
に比して低いものとなつてしまう。逆に起泡剤2
4および捕収剤25を増やすと、灰分の少い石炭
(精炭)11の回収率は向上するが、精炭11中
の残灰率も多くなる。すなわち、精炭11の脱灰
処理効率が低下したこととなり不具合である。
The above is the coal high concentration water slurry production process incorporating the conventional deashing process. In the conventional process, pulverized coal 41 having a considerably wide particle size is simultaneously treated in the conditioned tank 4 and sent to the flotation machine 1. However, in condition tank 4, pulverized coal 41 and foaming agent 2
When 4 and the collecting agent 25 are sufficiently stirred and mixed, the fine granulated coal of the pulverized coal 41 and the coarse granulated coal combine to form the foaming agent 24 and the collecting agent 2.
There is a difference in the degree of adhesion between the pulverized coal 41 and the deashing process in the flotation machine 1, which results in a large difference between the pulverized coal and the coarse granulated coal. will decrease. In other words, since the surface area of fine granule coal is larger than that of coarse granule coal, foaming agent 2
This is because the amount of adhesion to coarse coal is large, but the flotation characteristics are poor because the particle size is small, whereas the amount of adhesion to coarse coal is small, but the flotation characteristics are good because the coarse diameter is large. As a result, the recovery rate of the coal (clean coal) 11 having a low overall ash content becomes low compared to the addition rate of the foaming agent 24 and the collecting agent 25. On the contrary, foaming agent 2
4 and the collecting agent 25 improves the recovery rate of coal (clean coal) 11 with a small ash content, but the percentage of residual ash in the clean coal 11 also increases. In other words, the deashing efficiency of the clean coal 11 has decreased, which is a problem.

本発明者等は上記従来方式の欠点を解消すべく
鋭意研究の結果、石炭粒度分布の変動があつても
精炭回収率、脱灰処理効率が効率よく保たれるこ
とを見い出し、本発明を完成した。すなわち、本
発明の目的は、石炭を高濃度石炭−水スラリに適
する粒度に粉砕し、これをある一定の粒度で分級
し、より大きな粒度の石炭とより小さな粒度の石
炭を別々に条件槽にて各粒度表面積に対応して起
泡剤、捕収剤と混合、衝突させ、その後より小さ
な粒度の石炭に超音波振動を与え、石炭粒子を水
中で共振させて石炭粒子同志を衝突粗粒化させ、
その後、分級されたより大きな粒度の石炭と混合
して浮選脱灰処理を行い、その精炭をスラリ調整
槽に入れて高濃度石炭−水スラリにすることを特
徴とする高炭分回収率、高脱灰率の高濃度石炭−
水スラリの製造法を提供することにある。
As a result of intensive research aimed at solving the drawbacks of the above-mentioned conventional methods, the present inventors discovered that the clean coal recovery rate and deashing treatment efficiency can be efficiently maintained even when the coal particle size distribution fluctuates. completed. That is, the purpose of the present invention is to pulverize coal to a particle size suitable for a highly concentrated coal-water slurry, classify this into a certain particle size, and separate coal with a larger particle size and coal with a smaller particle size into a conditioned tank. The coal particles are mixed with a foaming agent and a collecting agent according to each particle size and surface area, and then collided with each other, and then ultrasonic vibrations are applied to the coal of smaller particle size to cause the coal particles to resonate in water, causing the coal particles to collide with each other and coarsen the particles. let me,
After that, it is mixed with classified coal of larger particle size and subjected to flotation deashing treatment, and the clean coal is put into a slurry adjustment tank to make a high concentration coal-water slurry. Highly concentrated coal with high demineralization rate
An object of the present invention is to provide a method for producing a water slurry.

本発明の脱灰法を第3図をもつて説明する。 The demineralization method of the present invention will be explained with reference to FIG.

200メツシユパス70〜95%の微粉炭10のスラ
リを、湿式サイクロンの如き分級器100で200
メツシユより大きい粒子と200メツシユ以下の小
さい粒子に分級する。200メツシユより大きい石
炭粒子50は、浮選機1での灰分の少い石炭(精
炭)11を脱水機2により約20重量%水分迄脱水
処理して得た水14により石炭濃度が約20〜30%
に調整され、条件槽4に起泡剤24および捕収剤
25とともに供給され、200メツシユより大きい
石炭粒子50は充分に撹拌され、該石炭粒子50
の表面積に対応する起泡剤24および捕収剤25
と付着、衝突される。
200 mesh pass A slurry of 70 to 95% pulverized coal of 10% is passed through a classifier such as a wet cyclone.
It is classified into particles larger than a mesh and particles smaller than 200 mesh. Coal particles 50 larger than 200 mesh have a coal concentration of about 20% by water 14 obtained by dehydrating coal (clean coal) 11 with a low ash content in the flotation machine 1 to about 20% water by weight in the dehydrator 2. ~30%
The coal particles 50 larger than 200 mesh are sufficiently stirred and supplied to the condition tank 4 together with the foaming agent 24 and the collecting agent 25.
Foaming agent 24 and scavenger 25 corresponding to the surface area of
adhesion and collision.

一方、200メツシユ以下の石炭粒子150は浮
選機1での灰分の少い石炭(精炭)11を脱水機
2により約20重量%水分迄脱水処理して得た水1
4により石炭濃度が約20〜30%に調整されて条件
槽104に起泡剤24と捕収剤25とともに供給
され、200メツシユ以下の石炭粒子150は充分
撹拌され、該石炭粒子150の表面積に対応する
起泡剤24と捕収剤25と付着、衝突される。
On the other hand, coal particles 150 of 200 mesh or less are obtained by dehydrating coal (clean coal) 11 with a low ash content in a flotation machine 1 to about 20% water by weight in a dehydrator 2.
4, the coal concentration is adjusted to about 20 to 30% and supplied to the condition tank 104 together with the foaming agent 24 and the collecting agent 25, and the coal particles 150 of 200 mesh or less are sufficiently stirred to increase the surface area of the coal particles 150. The corresponding foaming agent 24 and collecting agent 25 are attached and collided with each other.

その後、超音波発生機30の振動板31によ
り、条件槽104から浮選機1に導入される200
メツシユ以下の石炭粒子150に振動を与える。
ここで、振動板31の周波数は50〜1000kHzの如
き超音波振動と呼ぶべきもので、石炭粒子150
が水中で共振する周波数が選らばれる。石炭粒子
150はA重油又はケロシンの如き捕収剤25と
付着、衝突しているため、捕収剤25をバインダ
として石炭粒子150は凝集し、粒径の大きな石
炭粒子へと成長する。
Thereafter, the 200
Vibration is applied to coal particles 150 that are smaller than a mesh.
Here, the frequency of the diaphragm 31 is 50 to 1000 kHz, which should be called ultrasonic vibration, and the coal particles 150
The frequency that resonates in water is selected. Since the coal particles 150 adhere to and collide with the collecting agent 25 such as A heavy oil or kerosene, the coal particles 150 aggregate with the collecting agent 25 as a binder and grow into coal particles with a large particle size.

この粒径の大きく成長した石炭粒子のスラリは
200メツシユより大きい石炭粒子50のスラリと
混合され、浮選機1に導入されて灰分の少い石炭
(精炭)11と灰分の多い石炭(テール)12に
別けられる。灰分の少い石炭(精炭)11は脱水
機2により約20重量%水分の石炭濃度迄脱水さ
れ、脱水機2より分離された水14は条件槽4,
104に供給される石炭粒子の濃度調整に再利用
される。
This slurry of coal particles that have grown to a large particle size is
It is mixed with a slurry of 50 coal particles larger than 200 mesh, introduced into a flotation machine 1, and separated into coal with a low ash content (clean coal) 11 and coal with a high ash content (tail) 12. Coal (clean coal) 11 with a low ash content is dehydrated by a dehydrator 2 to a coal concentration of approximately 20% water by weight, and water 14 separated from the dehydrator 2 is sent to a conditioning tank 4,
It is reused to adjust the concentration of coal particles supplied to 104.

一方、灰分の多い石炭(テール)12は排水1
15として系外に除去される。
On the other hand, coal with a high ash content (tail) 12 is wastewater 1
It is removed from the system as 15.

かくして得られたケーキ状の水分約20%の精炭
13はスラリ調整槽3で界面活性剤の水溶液26
と混合されて石炭高濃度水スラリ15が製造され
る。
The thus obtained cake-like clean coal 13 with a water content of about 20% is mixed with an aqueous surfactant solution 26 in a slurry adjustment tank 3.
The coal-high concentration water slurry 15 is produced by mixing with the coal-rich water slurry 15.

このようにして脱灰処理された精炭と従来方法
の浮選法で得た精炭とを下記の運転条件で夫々の
精炭歩留を比較した。
The clean coal yields of clean coal deashed in this way and clean coal obtained by the conventional flotation method were compared under the following operating conditions.

炭種:大同炭(粒度200メツシユパス80%) 浮選機:フアーレンワルド型 浮選条件:条件槽滞留時間 7分間 浮選時間 7分間 捕収剤 A重油(起泡剤1に対し捕収剤4添
加) PH 6〜8 浮選機石炭濃度 10% 超音波照射処理 200メツシユパス微粒炭に
200kHz1分間照射 得られた結果を第5図に示す。図中左側の〓と
□・は本発明によるものであり、右側の〓と□・は従
来法によるものである。第5図から本発明の方法
によれば、従来方法に較らべ精炭の歩留が約10%
向上し、さらに精炭中灰分の低下が本発明で達成
され、炭分回収率、脱灰率で優れていることがわ
かる。
Coal type: Daido coal (particle size 200 mesh pass 80%) Flotation machine: Fahrenwald type Flotation conditions: Conditions Tank residence time 7 minutes Flotation time 7 minutes Collection agent A heavy oil (1 part foaming agent to 1 part collection agent) 4 addition) PH 6-8 Flotation machine coal concentration 10% Ultrasonic irradiation treatment 200 mesh pass granule coal
Irradiation at 200kHz for 1 minute The results obtained are shown in Figure 5. 〓 and □• on the left side of the figure are based on the present invention, and 〓 and □• on the right side are based on the conventional method. Figure 5 shows that according to the method of the present invention, the yield of clean coal is approximately 10% compared to the conventional method.
It can be seen that the present invention has achieved an improvement in the ash content in the clean coal and a reduction in the ash content in clean coal, and is excellent in the coal content recovery rate and the deashing rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の石炭高濃度水スラリ製造プロセ
スを示すフロー・シートであり、第2図は第1図
での脱灰プロセスのみを抜き出したものであり、
第3図は本発明による脱灰プロセスのフロー・シ
ートであり、第4図は本発明と従来法とでの精炭
歩留の比較を示している。
Figure 1 is a flow sheet showing the conventional coal high concentration water slurry manufacturing process, and Figure 2 is an extraction of only the deashing process from Figure 1.
FIG. 3 is a flow sheet of the deashing process according to the present invention, and FIG. 4 shows a comparison of clean coal yield between the present invention and the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭を高濃度石炭−水スラリに適する粒度に
粉砕し、これをある一定の粒度で分級し、より大
きな粒度の石炭とより小さな粒度の石炭を別々に
条件槽にて各粒度、表面積に対応して起泡剤、捕
収剤と混合、衝突させ、その後より小さな粒度の
石炭に超音波振動を与え、石炭粒子を水中で共振
させて石炭粒子同志を衝突粗粒化させ、その後分
級されたより大きな粒度の石炭と混合して浮選脱
灰処理を行い、その精炭をスラリ調整槽に入れて
高濃度石炭−水スラリにすることを特徴とする高
炭分回収率、高脱灰率の高濃度石炭−水スラリの
製造法。
1. Pulverize coal to a particle size suitable for highly concentrated coal-water slurry, classify this into a certain particle size, and separate larger particle size coal and smaller particle size coal in conditioned tanks to correspond to each particle size and surface area. The coal particles are then mixed with a foaming agent and a collecting agent and collided with each other, and then ultrasonic vibrations are applied to the smaller-sized coal to cause the coal particles to resonate in water to cause the coal particles to collide with each other and become coarser. It is characterized by high coal recovery rate and high deashing rate, which is characterized by mixing it with coal of large particle size and performing flotation deashing treatment, and then putting the clean coal into a slurry adjustment tank to make a highly concentrated coal-water slurry. Method for producing highly concentrated coal-water slurry.
JP9948183A 1983-06-06 1983-06-06 Production of coal-water slurry having high concentration Granted JPS59226094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9948183A JPS59226094A (en) 1983-06-06 1983-06-06 Production of coal-water slurry having high concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9948183A JPS59226094A (en) 1983-06-06 1983-06-06 Production of coal-water slurry having high concentration

Publications (2)

Publication Number Publication Date
JPS59226094A JPS59226094A (en) 1984-12-19
JPH0329114B2 true JPH0329114B2 (en) 1991-04-23

Family

ID=14248498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9948183A Granted JPS59226094A (en) 1983-06-06 1983-06-06 Production of coal-water slurry having high concentration

Country Status (1)

Country Link
JP (1) JPS59226094A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2249029C1 (en) * 2003-07-23 2005-03-27 Петраков Александр Дмитриевич Method of producing coal-water fuel and production line for accomplishment thereof

Also Published As

Publication number Publication date
JPS59226094A (en) 1984-12-19

Similar Documents

Publication Publication Date Title
US4762526A (en) Process for deashing coal
JPS61123699A (en) Production of deashed slurry with high concentration
US4593859A (en) Preparation of deashed high solid concentration coal-water slurry
JPH0711268A (en) Production of deashed high-concentration coal-water slurry
JPH0329114B2 (en)
JPH0328476B2 (en)
US4775106A (en) Use of smelter-grade sulfuric acid as true heavy-liquid media in coal cleaning
JPH0328475B2 (en)
RU2079372C1 (en) Method of preparing coal for fuel suspension
JPH0367117B2 (en)
JPH0352788B2 (en)
RU2366607C2 (en) Potassium chloride obtaining method from sylvinite ore
JPS61106698A (en) Recovery of finely granulated coal by cyclone
JPS60202193A (en) Deashing of concentrated aqueous slurry of coal
JPH044032B2 (en)
JPS58191793A (en) Deashing method of coal
JPH0259197B2 (en)
JPS62116692A (en) Method and device for production of finely particulate, high-concentration coal-water slurry
USH981H (en) Process for selective grinding of coal
JPH026596A (en) Producing high-concentration coal-water slurry
JPS61126198A (en) Process for preparing deashed high-concentration slurry
JPH0412755B2 (en)
JPS59142289A (en) Deashing of coal
JPS61133294A (en) Production of high-concentration slurry
JPS60206894A (en) Dehydration of aqueous slurry of coal