JPH0329114A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH0329114A
JPH0329114A JP16293089A JP16293089A JPH0329114A JP H0329114 A JPH0329114 A JP H0329114A JP 16293089 A JP16293089 A JP 16293089A JP 16293089 A JP16293089 A JP 16293089A JP H0329114 A JPH0329114 A JP H0329114A
Authority
JP
Japan
Prior art keywords
film
micropores
magnetic
oxide film
alumite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16293089A
Other languages
Japanese (ja)
Inventor
Masaru Yanagida
柳田 賢
Shingo Tonerikawa
真吾 舎川
Kenichi Ito
憲一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Precision KK
Original Assignee
Pilot Precision KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Precision KK filed Critical Pilot Precision KK
Priority to JP16293089A priority Critical patent/JPH0329114A/en
Publication of JPH0329114A publication Critical patent/JPH0329114A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetic characteristics by forming fine pores in an anodized aluminum film in a manner that the bottom of a fine pore is made larger in diameter than a diameter of the pore in the upper layer in the alumite film, or that a pore has fine branches in its bottom, and then filling these fine pores with magnetic metal. CONSTITUTION:The anodized aluminum film consists of a primary film and secondary film. Fine pores are formed through the secondary film to the primary film so that the pore in the secondary film is made larger in diameter than the pore in the primary film, or the pore in the secondary film has branches. These pores are filled with magnetic metal such as iron, nickel or cobalt or a combination of these. It is particularly preferable that the pores in the lower film are filled with soft magnetic metal and the pores in the upper film are filled with magnetic metal such as iron. Thereby, a two-layer magnetic film having a loop shape can be formed, which largely improves the reproduction ourput power compared to a single-layer magnetic film comprising a perpendicular magnetic film only.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アルミニウム又はアルミニウム合金(以下A
1という〉を陽極酸化処理(以下アルマイト処理という
)して得られた陽極酸化皮膜(以下アルマイト皮膜とい
う)を利用した2層式磁気記録材料に関するものである
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to aluminum or aluminum alloy (hereinafter referred to as A
This invention relates to a two-layer magnetic recording material using an anodic oxide film (hereinafter referred to as an alumite film) obtained by anodizing (hereinafter referred to as an alumite treatment) 1).

[従来の技術] 現在、ハード磁気ディスク、フロッピー磁気ディスク、
磁気式エンコーダー等の磁気記録材料が上市されている
. 従来、磁気記録材料の有力な手段として、アルマイト皮
膜を用いたものが知られている.即ち、その素材は軽量
で扱い易いことや、アルマイト皮膜に存在する微細孔は
、基材Afflに対し垂直に生長し、そのボアー径は約
100人前後から2000人前後まで任意に制御でき、
微細孔内に磁性金属を充填できる膜厚も、100μm前
後まで任意の厚さにできることが知られており、このた
め軽量で高記録密度の垂直磁気異方性皮膜(以下磁性ア
ルマイト皮膜という)とすることができるのである.又
、磁性アルマイト皮膜はその微細孔内に充填された磁性
体の経時変化による劣化がないことや、耐摩耗性が良い
ことなどから注目されている技術である. 最近では、一段と高密度、高出力のものが要求されてき
ている.このため、垂直磁気膜の下層部に水平磁気膜を
設けて磁気ループを形成させ高出力を得る、いわゆる2
層式の磁気皮膜が検討されている.しかし、実際に垂直
磁気膜と水平磁気膜とが連続して磁気ループを描くこと
は、効果は優れているものの、生産上の困難さがあり、
そのため効果は多少劣るものの、疑似ループを示す構造
体が各種検討されている。次にその例を示すと、1)板
状のたとえばパーマロイ等の鉄を含む軟磁性材料の両面
にA1箔を附着させ、しかるのちアルマイト処理してA
!I箔にアルマイト皮膜を生成させ、得られたアルマイ
ト皮膜の微細孔中に磁性金属を充填する。この構造とす
ることにり、微細孔中の磁性金属を通った磁力線は、下
層に設けた軟磁性材料に入って水平方向に曲がり、隣接
する微細孔中の磁性金属を通して垂直に回帰するという
、2層式の磁気皮膜となるのである。
[Prior art] Currently, hard magnetic disks, floppy magnetic disks,
Magnetic recording materials such as magnetic encoders are on the market. Conventionally, the use of an alumite film has been known as an effective method for magnetic recording materials. That is, the material is lightweight and easy to handle, the micropores present in the alumite film grow perpendicular to the base material Affl, and the bore diameter can be arbitrarily controlled from about 100 to about 2000.
It is known that the film thickness that can be filled with magnetic metal into the micropores can be made to any desired thickness up to around 100 μm, and for this reason, it is possible to create a lightweight, high recording density perpendicular magnetic anisotropic film (hereinafter referred to as magnetic alumite film). It is possible to do so. In addition, magnetic alumite coating is a technology that is attracting attention because the magnetic material filled in the micropores does not deteriorate over time and has good wear resistance. Recently, there has been a demand for higher density and higher output. For this reason, a horizontal magnetic film is provided below the vertical magnetic film to form a magnetic loop and obtain high output.
Layered magnetic coatings are being considered. However, although it is effective to actually draw a continuous magnetic loop between a vertical magnetic film and a horizontal magnetic film, it is difficult to produce.
For this reason, various structures that exhibit pseudo loops have been studied, although they are somewhat less effective. Next, an example is shown: 1) A1 foil is attached to both sides of a plate-shaped soft magnetic material containing iron, such as permalloy, and then anodized with A1 foil.
! An alumite film is formed on the I-foil, and the fine pores of the obtained alumite film are filled with magnetic metal. With this structure, the lines of magnetic force that pass through the magnetic metal in the micropores enter the soft magnetic material provided in the lower layer, bend horizontally, and return vertically through the magnetic metal in the adjacent micropores. This results in a two-layer magnetic film.

2》軟磁性材の両面にチタン、タンタル等のバリアー皮
膜となりうる金属膜を0.5〜5μm程度コーティング
させ、さらにその上にAIをコーティングする.しかる
のち、jlllをアルマイト処理して、チタン、タンタ
ル等のバリアー皮膜にまで微細孔を生成させ、該微細孔
中に磁性金属を充填する. [発明が解決しようとする課題] しかしながら、上記1)の方法においては、生産性の好
ましい2層式皮膜が得られるものの、基板としての軟磁
性材料と、アルマイト皮膜の微細孔の最下部との距離が
大きな問題となってくるのである.即ち、微細孔の最下
部と軟磁性材料との距離《つまり残存するA1箔部分)
は、なるべく小さい方が2層皮膜としての効果は大き.
いのであるが、距離を小さくすると、下地である軟磁性
材料がアルマイト皮膜生成時に溶解されてしまう.これ
は、A1箔に存在するピンホール等の欠陥部を通じて軟
磁性材料が溶解することや、Ajl箔の厚さのバラツキ
により、アルマイト皮膜微細孔の最下部が部分的に軟磁
性材料に到達し、軟磁性材料が溶解するといったことが
避けられないのである.また、AJ箔と軟磁性材料とは
、熟拡散を利用した圧着により密着性を向上する手段が
とられるが、このとき互いの界面は粗面化し易い.この
ため、アルマイト皮膜生成後に数μm以上(安全率を考
えると10μm以上)のオーダーで/Ml箔を均等に残
存させぬと、磁性金属層にアルマイト皮膜が到達して軟
磁性金属を溶解させてしまう.A1の残留厚さを均等に
コントロールすることが難しいことや、このオーダーの
AIIを残した場合、出力特性は距離の2乗に反比例し
て低下するため、磁性ループとしての効果がほとんど得
られないという問題がある. また、2)においては1〉と異なり、アルマイト皮膜生
成時に水平基材である軟磁性材料を溶解させる心配も少
なく、一見安定した効果が期待できる.しかしながらこ
の方法においても、薄いバリアー皮膜であるチタン、タ
ンタル等の金属膜のピンホールが皆無というわけにはい
かず、アルマイト処理時に下地の軟磁性材が溶解する危
険は避けられない.軟磁性材料の溶解が避けられたとし
ても、水平膜と垂直膜との間には1μm以上の距離があ
り、出力特性の著しい低下は避けられない.さらにチタ
ン、タンタル等のコーティングおよびAJのコーティン
グには、真空メッキ法を使用する必要があり、そのため
生産性が悪いとか、膜厚の精密なコントロールが困難で
あるという重要な問題があった. [課題を解決するための手段] 本発明者は、上記問題について鋭意検討した結果、アル
マイト皮膜の微細孔の底部を近接させることにより、隣
接した微細孔間で磁気ループが形成されることを見いだ
し、本発明を完成したものである。
2) Coat both sides of the soft magnetic material with a metal film of titanium, tantalum, etc. that can serve as a barrier film to a thickness of about 0.5 to 5 μm, and then coat AI on top of that. Thereafter, the Jll is subjected to an alumite treatment to form micropores even in the barrier film of titanium, tantalum, etc., and the micropores are filled with a magnetic metal. [Problems to be Solved by the Invention] However, in the method 1) above, although a two-layer film with preferable productivity can be obtained, the difference between the soft magnetic material as the substrate and the lowest part of the micropores of the alumite film is Distance becomes a big issue. In other words, the distance between the bottom of the micropore and the soft magnetic material (that is, the remaining A1 foil part)
The smaller it is, the more effective it is as a two-layer film.
However, if the distance is made small, the underlying soft magnetic material will be dissolved when the alumite film is formed. This is because the soft magnetic material melts through defects such as pinholes that exist in the A1 foil, and due to variations in the thickness of the Ajl foil, the lowest part of the micropores in the alumite film may partially reach the soft magnetic material. , melting of soft magnetic materials is unavoidable. In addition, measures are taken to improve adhesion between AJ foil and soft magnetic material by pressure bonding using mature diffusion, but in this case, the mutual interface tends to become rough. Therefore, if the /Ml foil is not left evenly on the order of several μm or more (10 μm or more considering the safety factor) after the alumite film is formed, the alumite film will reach the magnetic metal layer and dissolve the soft magnetic metal. Put it away. It is difficult to uniformly control the residual thickness of A1, and if AII of this order is left, the output characteristics will decrease in inverse proportion to the square of the distance, so it will hardly be effective as a magnetic loop. There is a problem. In addition, in 2), unlike 1>, there is little concern that the soft magnetic material that is the horizontal base material will be dissolved during the formation of the alumite film, and a seemingly stable effect can be expected. However, even with this method, pinholes in the thin barrier coating of metal such as titanium and tantalum cannot be completely eliminated, and there is an unavoidable risk that the underlying soft magnetic material will melt during alumite treatment. Even if melting of the soft magnetic material could be avoided, there is a distance of 1 μm or more between the horizontal film and the vertical film, and a significant drop in output characteristics is unavoidable. Furthermore, coatings of titanium, tantalum, etc. and AJ coatings require the use of vacuum plating, which poses important problems such as poor productivity and difficulty in precisely controlling the film thickness. [Means for Solving the Problems] As a result of intensive study on the above problem, the inventor of the present invention found that by bringing the bottoms of the micropores of the alumite film close to each other, a magnetic loop is formed between adjacent micropores. , has completed the present invention.

即ち本発明は、アルマイト皮膜の微細孔において、該微
細孔の底部の孔径が上層の微細孔の孔径よりも任意に拡
大された形状、あるいは微細孔底部で微細孔が枝分かれ
した形状を威し、さらに該微細孔中に磁性金属が充填さ
れて成る磁気記録材料およびその製造法に関するもので
ある。
That is, the present invention uses a shape in which the diameter of the micropores at the bottom of the alumite film is arbitrarily larger than the diameter of the micropores in the upper layer, or a shape in which the micropores are branched at the bottom of the micropores, The present invention further relates to a magnetic recording material in which the micropores are filled with a magnetic metal, and a method for manufacturing the same.

次に、本発明の磁気記録材料について具体的に述べる。Next, the magnetic recording material of the present invention will be specifically described.

本発明のアルマイト皮膜は、1次皮膜とその下に位置す
る2次皮膜とで形成され、1次皮膜は従来公知の皮膜、
即ち細長い微細孔を有する皮膜であり、2次皮膜は、1
次皮膜の微細孔に連続して孔径の拡大された微細孔又は
枝分かれした微細孔を有する皮膜である. 2次皮膜の微細孔の形状は、基本的にl次皮膜の微細孔
の孔径よりも大きければ、その形状はまったく任意であ
り、この形状とすることにより、微細孔の底部(2次皮
膜)において、隣接する微細孔が近接することになり、
ループ状の2層式磁気皮膜が可能となるのである。微細
孔の底部を枝分かれとした構造も同様である. 微細孔中に充填される磁性金属として、磁性を有するも
のであれば何でもよいが、特には鉄、ニッケル、コバル
トなどの単独あるいは組み合わせたものが挙げられる.
特に好ましくは、2次皮膜には軟磁性金属を充填し、1
次皮膜に鉄等の磁性金属を充填するのがよい. 次に、本発明の製造法について述べると、AiIをアル
マイト処理して、第1次アルマイト皮膜を作製する第一
工程と、該第一次アルマイト皮膜を再度アルマイト処理
して微細孔の底部を拡大させ、第2次アルマイト皮膜を
作製するか、あるいは第1次アルマイト皮膜生成後に、
微細孔の底部に枝分かれ構造の微細孔を形成させ、第2
次アルマイト皮膜を作製する第二工程と、必要に応じて
当該各々の微細孔の拡大処理をしたのちバリアー層の調
整をし、微細孔中に磁性金属を電析させる第三工程とか
ら成ることを特徴とするものである. まず、第一工程としての前処理を含むアルマイト処理は
、従来の方法を用いることができる。前処理には、脱脂
処理後硝酸による中和処理をし、目的によって研磨処理
、梨地処理等を加えてもよい アルマイト処理浴は、硫酸に代表される無機酸浴、シュ
ウ酸に代表される有機酸浴、およびこれらの混酸浴、ア
ルカリ浴、リン酸塩を主戒分とする処理浴、およびこれ
らに種々の添加剤を加えた浴等のいづれを用いてもよい
The alumite film of the present invention is formed of a primary film and a secondary film located below it, and the primary film is a conventionally known film,
In other words, it is a film with elongated micropores, and the secondary film has 1
This is a film that has micropores with enlarged pore diameters or branched micropores that are continuous with the micropores of the secondary film. Basically, the shape of the micropores in the secondary coating is completely arbitrary as long as it is larger than the diameter of the micropores in the primary coating.By choosing this shape, the bottom of the micropores (secondary coating) In this case, adjacent micropores become close to each other,
This makes it possible to create a loop-shaped two-layer magnetic coating. The structure with branches at the bottom of the micropores is also similar. The magnetic metal to be filled into the micropores may be any metal as long as it has magnetism, but iron, nickel, cobalt, etc. may be used alone or in combination.
Particularly preferably, the secondary coating is filled with a soft magnetic metal,
It is best to fill the next coating with a magnetic metal such as iron. Next, to describe the manufacturing method of the present invention, there is a first step of alumite-treating AiI to produce a primary alumite film, and a second step of alumite-treating the primary alumite film to enlarge the bottoms of the micropores. to create a second alumite film, or after the first alumite film is formed,
A branched micropore is formed at the bottom of the micropore, and a second
The second step is to prepare an alumite film, and the third step is to expand each of the micropores as necessary, adjust the barrier layer, and electrodeposit a magnetic metal into the micropores. It is characterized by First, a conventional method can be used for alumite treatment including pretreatment as the first step. For pretreatment, neutralization treatment with nitric acid is performed after degreasing, and polishing treatment, satin treatment, etc. may be added depending on the purpose.Alumite treatment baths include inorganic acid baths such as sulfuric acid, and organic acid baths such as oxalic acid. Any of acid baths, mixed acid baths thereof, alkaline baths, treatment baths containing phosphate as a main ingredient, and baths in which various additives are added to these baths may be used.

電解条件は、各浴組或に適合した条件を用いる必要があ
る.1次皮膜としては、2次皮膜よりボアー径の小なる
浴組戒電解条件を選ぶ必要があり、硫酸を主戒分とする
浴、シュウ酸を主成分とする浴で直流電解した皮膜が好
ましい. 次に第二工程として、前工程で得られた微細孔の底部を
拡大させて、第2次アルマイト皮膜を作製する.拡大す
る方法としては、再度アルマイト処理するか、あるいは
第1次アルマイト皮膜生成後に微細孔を枝分かれさせる
方法が挙げられる.再度アルマイト処理する方法は、少
なくとも第1次アルマイト皮膜微細孔より孔径の大きく
なる条件で処理する必要がある. たとえば、第1次のアルマイト処理を硫酸浴で直流電解
を行った場合には、シュウ酸浴またはリン酸洛中におい
て、直流または交流でアルマイト処理するか、あるいは
硫酸洛中で交流を用いてアルマイト処理し、第2次アル
マイト皮膜を生成させる. さらに、第1次のアルマイト処理をシュウ酸浴で直流電
解を行った場合には、リン酸洛中において、直流または
交流でアルマイト処理するか、あるいは硫酸又はシュウ
酸浴中で交流を用いてアルマイト処理し、第2次アルマ
イト皮膜を生成させる。
Electrolytic conditions must be suitable for each bath set. For the primary film, it is necessary to select bath electrolysis conditions with a smaller bore diameter than for the secondary film, and a film obtained by direct current electrolysis in a bath containing sulfuric acid as the main component or a bath containing oxalic acid as the main component is preferable. .. Next, in the second step, the bottoms of the micropores obtained in the previous step are expanded to create a second alumite film. Methods for enlarging include re-anodizing, or branching the micropores after the first alumite film is formed. In the method of re-anodizing, it is necessary to perform the treatment under conditions where the pore diameter is at least larger than the micropores of the primary alumite film. For example, when the first alumite treatment is performed by direct current electrolysis in a sulfuric acid bath, the alumite treatment is performed using direct current or alternating current in an oxalic acid bath or phosphoric acid bath, or the alumite treatment is performed using alternating current in a sulfuric acid bath. , to generate a secondary alumite film. Furthermore, when the first alumite treatment is performed by direct current electrolysis in an oxalic acid bath, the alumite treatment is performed in a phosphoric acid bath using direct current or alternating current, or the alumite treatment is performed in a sulfuric acid or oxalic acid bath using alternating current. Then, a secondary alumite film is generated.

上記方法によって得られる第2次アルマイト皮膜中の微
細孔は、1次アルマイト皮膜よりもボアー径の大きい皮
膜が生成する。
The fine pores in the secondary alumite film obtained by the above method have a larger bore diameter than the primary alumite film.

また、第2次アルマイト皮膜を枝分かれ構造とするため
の処理の一例は、第1次アルマイト皮膜生戒直後に、同
じアルマイト洛中において、定電圧電解としたのち、急
激に電圧を降下させると、一時的に電流が流れなくなる
が、一定時間経過後その電圧に合った電流が流れ始める
という、いわゆる電流回復現象を利用する.電流が回復
してくるまでの間、微細孔に枝分かれが生じることは知
られている.他の一例としては、1次アルマイト皮膜生
成後、電解浴としてクロム酸や低濃度リン酸を用いると
、当該酸特有の枝分かれ構造を有する皮膜となる. 第2次アルマイト皮膜を作製したのち、必要に応じてボ
ワーワイドニング、およびバリアー層の調整を行う. ボワーワイドニングを行うことは、磁性金属の析出量を
増大させることができ、出力の高い磁性皮膜が得られる
In addition, an example of a process for making the secondary alumite film into a branched structure is that immediately after the first alumite film is applied, constant voltage electrolysis is performed in the same alumite process, and then the voltage is suddenly dropped. It utilizes the so-called current recovery phenomenon, in which current stops flowing for a certain period of time, but after a certain period of time, a current that matches the voltage starts flowing. It is known that branching occurs in the micropores until the current is restored. As another example, if chromic acid or low concentration phosphoric acid is used as an electrolytic bath after the primary alumite film is formed, the film will have a branched structure unique to the acid. After creating the secondary alumite film, perform bower widening and adjustment of the barrier layer as necessary. By performing bower widening, the amount of magnetic metal precipitated can be increased, and a magnetic film with high output can be obtained.

バリアー層の調整は、各微細孔のバリアー層の厚さを均
質化するために行う.こうすることにより、磁性金属の
析出が各微細孔においてより均等になるという効果を有
する. 次に第三工程として、微細孔中に磁性金属を電析充填さ
せる。材質は、前述したとおりである。
Adjustment of the barrier layer is performed to homogenize the thickness of the barrier layer for each micropore. This has the effect of making the precipitation of magnetic metal more uniform in each micropore. Next, as a third step, a magnetic metal is electrodeposited and filled into the micropores. The material is as described above.

当該磁性金属を電析させる方法としては、いわゆる2次
電解着色技術を刺用して行う。この時、浴組戊、浴温、
電流波形、電流密度等の電解条件は、金属に応じて適宜
設定する必要がある。
The magnetic metal is electrodeposited using a so-called secondary electrolytic coloring technique. At this time, the bath composition, bath temperature,
Electrolytic conditions such as current waveform and current density must be appropriately set depending on the metal.

第三工程のあとに、好ましくは封孔処理、表面ラッピン
グを必要に応じて行う。封孔処理は、充填された磁性金
属の耐蝕性を向上させ、表面ラッピングはアルマイト皮
膜の表面に溢れた磁性金属を除去したり、あるいは製造
上微細孔の上層部(表面部)に、磁性金属が密に充填さ
れないこともあり、その場合表面ラッピングを行うと、
磁気特性が向上するという効果を有する. 次に実施例を述べる. [実施例] ?施例1 マグネシウムを固熔させた99.99%AIIから、φ
30X5.■tの外周面を有効面とする円盤状のドラム
を切削加工し、常法により浸漬脱脂後、硝酸による中和
処理を行い、次の条件で約30μmの1次アルマイト皮
膜を生戒させた。
After the third step, preferably sealing treatment and surface lapping are performed as necessary. Sealing treatment improves the corrosion resistance of the filled magnetic metal, and surface lapping removes magnetic metal that overflows from the surface of the alumite film, or places magnetic metal in the upper layer (surface) of the micropores during manufacturing. may not be densely packed, in which case surface lapping will result in
It has the effect of improving magnetic properties. Next, an example will be described. [Example] ? Example 1 From 99.99% AII with solidified magnesium, φ
30X5. ■A disk-shaped drum with the outer circumferential surface of t as the effective surface was cut, and after degreasing by immersion using a conventional method, neutralization treatment was performed with nitric acid, and a primary alumite film of approximately 30 μm was formed under the following conditions. .

浴組成  硫酸        150g/J?金属A
J分として  0.5g/J 処理条件 浴温  10±1℃ 直流2.OA / da”による定電流電解《約tgv
 > 充分に水洗したのち、引き続き次の条件で微細孔の底部
に枝分かれした微細孔を生成させた。
Bath composition Sulfuric acid 150g/J? Metal A
J minute: 0.5g/J Processing conditions: Bath temperature: 10±1℃ DC2. Constant current electrolysis with OA/da”《approx. tgv
> After thorough washing with water, branched micropores were generated at the bottom of the micropores under the following conditions.

浴組成  硫酸        150g/41金属A
J分として  O.’5g/!I処理条件 浴温  3
0±1℃ 直流15Vの定電圧電解とし、定常電 流がIII察された時点で電圧をIOVまで降下させ、
IOVに見合った定常電 流が流れたところでさらに電圧を5 ■まで降下させ、5Vに見合った定 常電流が流れたところで電解を中止 した. 充分に水洗したのち、常法によりバリアー層の調整を行
い、次の条件で微細孔の底部に鉄一二・ノケルを電析さ
せた. 浴組成  硫酸ニッケル     50g/.R硫酸第
一鉄      10g/1 硼a          4 0 g/IIクエン酸 
        5g/I!PH4.5 電解条件 浴温  20〜23℃ 商用交流AC14V なじみ時間   1分 スロースタート 30秒 電解時間    30秒 充分に水洗したのち、次の条件で微細孔中の鉄一ニッケ
ル上に鉄を充分に充填させ、微細孔を埋めた. 浴組戒  硫酸第一鉄      5 0 g/ II
硫酸マグネシウム   80g/II 硼酸         4 0 g / IIクエン酸
         5g/iIP84.5 電解条件 浴温  20〜23℃ 商用交流AC14V なじみ時間   1分 スロースタート 30秒 電解時間    60分 次に、#4000のアルミナ砥粒を附着させたテープ(
日本ミクロコーティング製wA # 4000 )にて
ラッピングし、アルマイト皮膜表面に溢れ出た鉄を完全
に除去した. 比較例1 2次アルマイト皮膜を生威させず、アルマイト皮膜微細
孔中にニツケルー鉄を電析させなかった池は、実施例1
と同様に処理した. 実施例2 実施例1と同一の材料を使い、同様な前処理をしたのち
、次の条件でアルマイト皮膜20μmを生成させた. 浴組戒  シュウ酸       5 0 g / 4
1金属AI1分として  0.5g/iI電解条件 浴
温  20±1℃ 直流1.5A/da2による定電流電解充分に水洗した
のち、次の条件で2次アルマイト皮膜として1μmの皮
膜を生戒させた.電解終了後同一浴で10分間のワイド
ニングを行った.浴組或  リン酸        8
0g/j!金属AI1分として  0.2g/1 電解条件 浴温  25±1℃ 直流1.OA/da”による定電流電解ワイドニング 
10分間浸漬 充分に水洗したのち、常法によりバリアー層調整を行い
、電解時間を1分とした他は、実施例1と同一条件でニ
ッケルー鉄を2次アルマイト皮膜中に電析させた. 充分に水洗したのち、次の条件で微細孔中のニッケルー
鉄上に鉄一コバルト合金を充分に充填し、微細孔を埋め
た. 浴組成  硫酸第一鉄      40g/j?硫酸コ
バルト     2 0 g/ ff硼酸      
   15g/iI クエン酸         5g/f P84.0 電解条件 浴満  25±1”C 商用交流AC15V なじみ時間   1分 スロースタート 30秒 電解時間    60分 充分に水洗したのち、純水を沸騰させた洛中に30分浸
漬し封孔したのち、アルマイト皮膜表面に溢れ出た鉄−
ニッケルを実施例1と同様に除去した. 比較例2 2次アルマイト皮膜を生戒させず、アルマイト皮膜微細
孔中にニッケルー鉄を電析させなかった他は、実施例2
と同様に処理した. 実施例1、2のものは、いずれも比較例と比べ1.5倍
以上の再生出力が得られた. E発明の効果〕 本発明による2層式磁気膜は、次のような作用効果があ
り、工業上非常に有益である.l.垂直異方性磁気膜の
みの楕戒から成る単層式磁気膜に比べ、その再生出力電
圧はおよそ1.5倍以上向上する. 2.アルマイト皮膜の微細孔の構造を変えることは、同
一生産形態の中で確実に、簡単に処理できることから、
他の2層式膜に比べ、品質の安定したI産化が容易であ
る. 3.母材の表面形状に制約されることなく、母材表面に
均質な2層式磁気膜が容易に生成できる.4.有効面以
外をマスキングして処理することにより、有効面のみに
2層式磁気膜が簡単に得られる.
Bath composition Sulfuric acid 150g/41 metal A
O as J minute. '5g/! I treatment conditions Bath temperature 3
0±1℃ constant voltage electrolysis with DC 15V, and when a steady current is detected, the voltage is lowered to IOV,
When a steady current commensurate with IOV flowed, the voltage was further lowered to 5 ■, and when a steady current commensurate with 5V flowed, electrolysis was stopped. After thorough washing with water, the barrier layer was prepared using a conventional method, and Fe-12 Nokel was electrodeposited at the bottom of the micropores under the following conditions. Bath composition Nickel sulfate 50g/. R ferrous sulfate 10 g/1 boron a 40 g/II citric acid
5g/I! PH4.5 Electrolysis conditions Bath temperature 20-23℃ Commercial AC 14V Break-in time 1 minute Slow start 30 seconds Electrolysis time 30 seconds After thorough washing with water, fully fill the iron-nickel in the micropores with iron under the following conditions and filled the micropores. Bath group precepts ferrous sulfate 50 g/II
Magnesium sulfate 80g/II Boric acid 40g/II Citric acid 5g/iIP84.5 Electrolysis conditions Bath temperature 20-23℃ Commercial AC 14V Break-in time 1 minute Slow start 30 seconds Electrolysis time 60 minutes Next, #4000 alumina abrasive grains Tape attached with (
The iron overflowing onto the surface of the alumite film was completely removed by wrapping with Nippon Micro Coating's wA #4000). Comparative Example 1 The pond in which the secondary alumite film was not formed and the Nickel iron was not electrodeposited into the fine pores of the alumite film was the same as in Example 1.
It was processed in the same way. Example 2 Using the same materials as in Example 1 and performing the same pretreatment, an alumite film of 20 μm was formed under the following conditions. Bathroom precepts oxalic acid 50 g/4
1 Metal AI 1 min 0.5g/iI Electrolysis conditions Bath temperature 20±1℃ Constant current electrolysis with DC 1.5A/da2 After thorough washing with water, a 1μm film was formed as a secondary alumite film under the following conditions. Ta. After electrolysis, widening was performed for 10 minutes in the same bath. Bath set or phosphoric acid 8
0g/j! Metal AI 1 minute: 0.2g/1 Electrolytic conditions Bath temperature: 25±1°C DC 1. Constant current electrolytic widening by OA/da”
After soaking for 10 minutes and thoroughly rinsing with water, nickel-iron was electrodeposited into the secondary alumite film under the same conditions as in Example 1, except that the barrier layer was adjusted by a conventional method and the electrolysis time was changed to 1 minute. After thorough washing with water, the nickel-iron in the micropores was sufficiently filled with iron-cobalt alloy to fill the micropores under the following conditions. Bath composition Ferrous sulfate 40g/j? Cobalt sulfate 20 g/ff boric acid
15g/iI Citric acid 5g/f P84.0 Electrolysis conditions Bath full 25±1"C Commercial AC 15V Break-in time 1 minute slow start 30 seconds Electrolysis time 60 minutes After thorough washing with water, boil pure water for 30 minutes After immersion and sealing, iron overflowed onto the surface of the alumite film.
Nickel was removed in the same manner as in Example 1. Comparative Example 2 Example 2 except that the secondary alumite film was not exposed and nickel-iron was not electrodeposited into the micropores of the alumite film.
It was processed in the same way. In both Examples 1 and 2, a reproduction output 1.5 times or more was obtained compared to the comparative example. E. Effects of the invention] The two-layer magnetic film according to the invention has the following effects and is very useful industrially. l. Compared to a single-layer magnetic film consisting of only vertically anisotropic magnetic films, the reproduction output voltage is approximately 1.5 times higher. 2. Changing the structure of the micropores in the alumite film can be done reliably and easily within the same production format, so
Compared to other two-layer membranes, it is easier to produce products with stable quality. 3. A homogeneous two-layer magnetic film can be easily produced on the surface of the base material without being restricted by the surface shape of the base material. 4. By masking and processing other than the effective surface, a two-layer magnetic film can be easily obtained only on the effective surface.

Claims (1)

【特許請求の範囲】 1、アルミニウム又はアルミニウム合金の陽極酸化皮膜
の微細孔において、該微細孔の底部の孔径が上層の微細
孔の孔径よりも任意に拡大された形状、あるいは微細孔
底部で微細孔が枝分かれした形状を成し、さらに該微細
孔中に磁性金属が充填されて成る磁気記録材料。 2、アルミニウム又はアルミニウム合金を陽極酸化処理
して、第1次陽極酸化皮膜を作製する第一工程と、該第
1次陽極酸化皮膜を再度陽極酸化処理して微細孔の底部
に第1次陽極酸化皮膜の微細孔径よりも孔径の大きな微
細孔を形成させ、第2次陽極酸化皮膜を作製する第二工
程と、必要に応じて当該各々の微細孔の拡大処理をした
のちバリアー層調整をし、磁性金属を電析充填させる第
三工程とから成る磁気記録材料の製造法。 3、アルミニウム又はアルミニウム合金を陽極酸化処理
して、第1次陽極酸化皮膜を作製する第一工程と、該第
1次陽極酸化皮膜生成後、微細孔の底部に枝分かれ構造
の微細孔を形成させる第2次陽極酸化皮膜を作製する第
二工程と、必要に応じて当該陽極酸化皮膜の微細孔を拡
大処理したのちバリアー層調整をし、磁性金属を電析充
填させる第三工程とから成る磁気記録材料の製造法。
[Claims] 1. The micropores in the anodic oxide film of aluminum or aluminum alloy have a shape in which the diameter at the bottom of the micropores is arbitrarily larger than the diameter of the micropores in the upper layer, or A magnetic recording material in which pores have a branched shape, and the micro pores are further filled with a magnetic metal. 2. A first step of anodizing aluminum or aluminum alloy to produce a primary anodic oxide film, and then anodizing the primary anodic oxide film again to form a primary anode at the bottom of the micropores. The second step is to form micropores with a larger pore diameter than the micropore diameter of the oxide film to produce a second anodic oxide film, and after enlarging each of the micropores as necessary, the barrier layer is adjusted. A method for producing a magnetic recording material, comprising: a third step of electrolytically filling a magnetic metal; 3. A first step of anodizing aluminum or aluminum alloy to produce a primary anodic oxide film, and after the formation of the primary anodic oxide film, forming micropores with a branched structure at the bottom of the micropores. The magnetic field consists of a second step of producing a secondary anodic oxide film, and a third step of enlarging the micropores of the anodic oxide film as necessary, adjusting the barrier layer, and electrodepositing magnetic metal. Method of manufacturing recording materials.
JP16293089A 1989-06-26 1989-06-26 Magnetic recording medium and its production Pending JPH0329114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16293089A JPH0329114A (en) 1989-06-26 1989-06-26 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16293089A JPH0329114A (en) 1989-06-26 1989-06-26 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH0329114A true JPH0329114A (en) 1991-02-07

Family

ID=15763937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16293089A Pending JPH0329114A (en) 1989-06-26 1989-06-26 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPH0329114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989406A (en) * 1995-08-08 1999-11-23 Nanosciences Corporation Magnetic memory having shape anisotropic magnetic elements
JP2009223989A (en) * 2008-03-18 2009-10-01 Fujitsu Ltd Nano-hole structure and magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989406A (en) * 1995-08-08 1999-11-23 Nanosciences Corporation Magnetic memory having shape anisotropic magnetic elements
JP2009223989A (en) * 2008-03-18 2009-10-01 Fujitsu Ltd Nano-hole structure and magnetic recording medium

Similar Documents

Publication Publication Date Title
JP7389847B2 (en) How to produce thin functional coatings on light alloys
JPH0343355B2 (en)
US2989446A (en) Electroplating
JPH0240756B2 (en)
JPH05503316A (en) Methods and products for applying finish coatings to anodizable metal substrates
JPH0329114A (en) Magnetic recording medium and its production
JPS6082694A (en) Manufacture of aluminum material for magnetic recording
JPS61500855A (en) Production of matte surfaces on metal layers
US3489660A (en) Electroplating bath and method
JPS633038B2 (en)
US2336568A (en) Method of metal electroplating
US1909716A (en) Method of chromium plating
JPS623423A (en) Substrate for magnetic recording material made of al
JPS59229738A (en) Manufacture of aluminum material for magnetic recording
Hothersall et al. The anodic polishing of electroplated nickel
Sallee et al. Electroplating of copper on aluminium with direct and pulsed currents
JP3344973B2 (en) How to color aluminum material
US2705830A (en) Coated metal objects
JP2908105B2 (en) Electrolytic coloring of aluminum or aluminum alloy
JPH01176318A (en) Perpendicular recording medium and formation thereof
JPS60128288A (en) Formation of black film on aluminum and aluminum alloy
Hussain Recent Developments in High-Speed Surface Modification in Metal Finishing Industry—Electrodepositing Nanocrystalline Nickel Directly on Aluminum Without Any Pre-treatment-A Review
JPS6098518A (en) Vertical magnetic recording medium and its production
JPH01225792A (en) Method for stabilizing electrodeposition bath
JPH01222091A (en) Formation of electrically conductive coating film on aluminum or aluminum alloy member